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a b s t r a c t

This paper combines the synergies of three mathematical and computational generalizations. The con-
cepts of fractional calculus, memristor and information visualization extend the classical ideas of
integro-differential calculus, electrical elements and data representation, respectively. The study embeds
these notions in a common framework, with the objective of organizing and describing the "continuum"
of fractional order elements (FOE). Each FOE is characterized by its behavior, either in the time or in the
frequency domains, and the differences between the FOE are captured by a variety of distinct indices,
such as the Arccosine, Canberra, Jaccard and Sørensen distances. The dissimilarity information is pro-
cessed by the multidimensional scaling (MDS) computational algorithm to unravel possible clusters
and to allow a direct pattern visualization. The MDS yields 3-dimensional loci organized according to
the FOE characteristics both for linear and nonlinear elements. The new representation generalizes the
standard Cartesian 2-dimensional periodic table of elements.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Leibniz (1646–1716) extended the differential calculus to the
paradigm known as "Fractional Calculus" (FC) [1,2]. However, the
FC remained an abstract tool restricted to the area of mathematics.

The first application of FC is usually credited to Abel (1802–1829)
with the so-called tautochrone curve problem [3,4]. Later we find
the work of Heaviside (1850–1925), who fist applied such ideas
in the scope of the operational calculus and electromagnetism
[5,6]. Nonetheless, it was during the last two decades that FC
was recognized as a good tool to characterize complex phenomena,
due to the ability of describing adequately non-locality and long-
range memory effects [7–11].

Paynter (1923–2002) formulated one systematic approach to
modeling and invented the so-called bond graphs [12]. He consid-
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ered 4 generalized variables, namely the effort, flow, momentum
and displacement {e,f,p,q} so that p ¼ R

e tð Þdt and q ¼ R
f tð Þdt. In

page 136 of his class notes [12] he designed a diagram including
the 4 state variables with vertex of a "tetrahedron of state". Paynter
characterized the functional relationship between the 4 variables
that are associated with the edges of the tetrahedron. The relations
for e� f , e� q and p� f (for resistance, capacitance and induc-
tance, respectively) were marked by continuous lines. Identically
for p� e and q� f (for the integral/differential relationships). How-
ever, the relation p� q was merely marked with a dashed line and
no particular importance was given to it.

In 1971 Chua [13] noticed again the symmetries in the electrical
integer order elements (IOE) and variables. Chua speculated that 4
elements were necessary to preserve a Cartesian arrangement. By
other words, in his opinion, besides the standard 3 elements repre-
sented by the resistor, capacitor and inductor, a 4-th one, the so-
called "memristor" or resistor with memory, was also necessary.
In 2008 these ideas were brought to light in the scope of a labora-
tory experiment [14] and the topic became popular in a variety of
applications.

The Chua [15] periodic table of elements (PTE) organizes two-
terminal IOE in a 2-dimensional Cartesian matrix. Besides includ-
ing IOE the generalization to real- and complex-order elements
was also proposed [16,17]. However, the necessity of the 4-th ele-
ment and the Cartesian layout of the PTE is still under debate
[18,19]. In fact, this type of organization may not be the best one
to accommodate the elements. It is out of the scope of the present
paper to address the problem of writing systems, that is the
method of visually representing communication. We recall that
the Greek alphabet and consequent systems, settled on a left-to-
right pattern, from the top to the bottom of the page. Nonetheless,
Arabic and Hebrew scripts are written right-to-left, while those
including Chinese characters were traditionally written vertically
top-to-bottom and from the right to the left of the page. Therefore,
we can question up to what point are we "prisoners" of our cultural
heritage (https://en.wikipedia.org/wiki/Writing_system#Direc-
tionality). Furthermore, present day computational techniques for
data processing and information visualization can provide superior
forms of representation.

Information visualization involves the computer construction of
some type of graphical representations, that otherwise would
require more efforts to be interpreted, and helps to unravel pat-
terns embedded in the data [20,21]. Due to the multidimensional
nature of most data, the information visualization can take advan-
tage of dimensionality reduction [22] and clustering [23]
techniques.

This paper adopts information visualization to organize two-
terminal fractional order elements (FOE). The new representation
generalizes the 2-dimensional PTE by means of 3-dimensional loci
of FOE. We verify that the FOE form a "continuum" where the IOE
are special cases, and not the opposite, as often assumed. There-
fore, without lack of generality, in the follow-up we shall mention
as FOE to all elements. The proposed numerical and computational
approach includes 2 phases. First, we characterize the FOE either in
the time or in the frequency domains. The comparison of the FOE
characteristics is performed by means of four metrics, namely
the Arccosine, Canberra, Jaccard and Sørensen distances. Second,
we process the dissimilarities through the multidimensional scal-
ing (MDS) visualization computational method, that produces loci
representative of the input information. The computational por-
traits are not restricted neither to 2-dimensional nor to Cartesian
concepts based on human notions. Indeed, the FOE loci reveal dis-
tinct patterns that are built upon the distance metrics properties.

Following these thoughts, the paper has the following organiza-
tion. Section 2 presents the concepts supporting the mathematical

and computational methods. Section 3 characterizes the FOE by
distinct methods, namely in the time and frequency domains.
Additionally the FOE are compared with four distances and the
information is processed by means of the MDS technique. Section 4
compares the effect of nonlinearities by means of Procrustes anal-
ysis. Finally, Section 5 draws the most important conclusions.

Mathematical and computational concepts

Fractional calculus

FC generalizes the concept of differentiation and integration to
non integer and complex orders [24,25]. We find a variety of appli-
cations of FC, such as in control, physics, anomalous diffusion, and
many others [26–29]. Fractional derivatives and integrals are non-
local operators that capture the history dynamics, contrary to what
happens with integer derivatives. Fractional systems have a mem-
ory of the dynamical evolution andmany natural and artificial phe-
nomena revealed these characteristics [7–10,30–32].

The most used definitions of fractional derivative are the
Riemann-Liouville, Grünwald-Letnikov and Caputo formulations
[33–35]. For certain functions, the fractional derivative follows clo-
sely their integer order version. For example, at steady state, a
sinusoidal function with amplitude A and phase U has the deriva-
tive of order a 2 R given by [36]:

da

dta
Acos xt þUð Þ½ � ¼ Axacos xt þUþ a

p
2

� �
; ð1Þ

where da

dta denotes the fractional derivative or order a, t represents
time, and f and x ¼ 2pf are the frequency and angular frequency,
respectively.

In the frequency domain, for zero initial conditions and the
function x tð Þ, we can write:

L
da

dta
x tð Þ

� �
¼ saL x tð Þf g; ð2Þ

F
da

dta
x tð Þ

� �
¼ jxð ÞaF x tð Þf g; ð3Þ

where L �f g and F �f g represent the Fourier and Laplace operators, s
stands for the Laplace variable and j ¼

ffiffiffiffiffiffiffi
�1

p
.

The frequency dependent negative conductance and negative
resistance

The frequency dependent negative conductance and frequency
dependent negative resistance (FDNC and FDNR) were introduced
in 1969 and 1971 by Bruton [37] and Antoniou [38]. The electronic
implementation of these elements have been under progress dur-
ing the last decades [39-42]. The FDNC and FDNR are denoted by
D- and N-elements and are usually considered with linear behav-
ior, having admittance and impedance Y sð Þ ¼ Z�1 sð Þ ¼ Ds2 and
Z sð Þ ¼ Ns2, respectively. These devices are often adopted in ladder
filters without inductors [37] and chaotic oscillators [43].

The FDNC and FDNR require an implementation using active
devices and, although not passive, demonstrate that they are feasi-
ble and useful. Moreover, for circuit branch impedances
Zi sð Þ ¼ kisni ; ki 2 R, ni 2 N; i ¼ 1;2; � � �, of integer order we obtain
also an integer order input impedance Z sð Þ. On the other hand, if
we use fractional impedances Zi sð Þ ¼ kisai ;ai 2 R, then we can
obtain Z sð Þ both integer and fractional [44].
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The memristor

The magnetic flux and the electrical charge, / tð Þ and q tð Þ, are
related to the voltage and current, v tð Þ and i tð Þ, by:

/ tð Þ ¼
Z t

�1
v sð Þds; q tð Þ ¼

Z t

�1
i sð Þds: ð4Þ

In linear circuits, the resistor, inductor and capacitor, R, L and C,
follow the relations:

v tð Þ ¼ Ri tð Þ; / tð Þ ¼ Li tð Þ; q tð Þ ¼ Cv tð Þ: ð5Þ
The "memristor" M is the element verifying the relation [45–

50]:
/ tð Þ ¼ M qð Þq tð Þ: ð6Þ

If we have a linear relationship between / and q, thenM qð Þ ¼ M

similarly to a resistance, since d/
dt ¼ M dq

dt ()v ¼ Mi.
The generalization of the memristor concept to a larger class,

the so-called "memristive systems", is also possible [15,51–53].
The charge-controlled memristor and flux-controlled memconduc-
tance are modeled by the expressions:

/ ¼ b/ qð Þ; q ¼ bq /ð Þ; ð7Þ
and their time derivatives yield:

v ¼ @b/ qð Þ
@q

i; i ¼ @bq /ð Þ
@/

v ; ð8Þ

whereMi qð Þ ¼ @b/ qð Þ
@q andMv /ð Þ ¼ @bq /ð Þ

@/ are the incremental memristor

and memconductance, respectively.
The expressions (8) establish that i ¼ 0 ) v ¼ 0 and

v ¼ 0 ) i ¼ 0, independently of q and /, respectively. Again, if
the models (7) are linear, then we obtain the resistance R and con-
ductance G, respectively.

If we consider the generalized relations:

r tð Þ ¼
Z t

�1

q sð Þds; q tð Þ ¼
Z t

�1

/ sð Þds; ð9Þ

then we have [54]:

r ¼ br /ð Þ; q ¼ bq qð Þ; ð10Þ

q ¼ CM /ð Þv ; / ¼ LM qð Þi; ð11Þ

where CM /ð Þ ¼ @br /ð Þ
@/ and LM qð Þ ¼ @bq qð Þ

@q stand for the incremental

memcapacitor and meminductor, respectively. Similarly to what
occurs with Mi qð Þ and Mv /ð Þ, the elements CM /ð Þ and LM qð Þ
"remember" the flux and charge previously applied. These ideas
support the so-called one-port higher order element, establishing
a relation between v tð Þ and i tð Þ, such that:

dm

dtm
v tð Þ ¼ w

dn

dtn
i tð Þ

� �
;m; n 2 Z: ð12Þ

Linearizing expression (12) around some operating point

Q ¼ dm

dtm vQ ;
dn

dtn iQ
� �

on the element characteristic (12), we obtain:

dn

dtn
v � vQð Þ ¼ mQ � d

m

dtm
i� iQð Þ; ð13Þ

where mQ denotes the slope of the line tangent to the characteristic
dm

dtm v tð Þ ¼ w dn

dtn i tð Þ
� �

at point Q .

In the frequency domain, expression (13) yields:

V jxð Þ ¼ Z jxð ÞI jxð Þ; ð14Þ
where

Z jxð Þ ¼ jxð Þn�m �mQ ; ð15Þ

is the small-signal impedance of the element at the operating point
Q .

Based on those concepts, the PTE was proposed [15] as repre-
sented in Fig. 1. Each point m;nð Þ represents an IOE and we verify
that: (i) there are four element categories that repeat ad infinitum
along the C�diagonal lines; (ii) if we take any m;nð Þ IOE and add
(subtract) a multiple of four to either m or n, or to both m and n,
then we obtain a higher (lower) order IOE of the same category;

Fig. 1. Simplified Cartesian representation of the PTE of two-terminal IOE. The
acronyms stand for resistor, inductor, frequency dependent negative conductance,
capacitor, memristor, meminductor, memcapacitor.

Fig. 2. The 3-dimensional representation of the PTE of two-terminal IOE using the
coordinate transformation (16). The acronyms R; L;D;C;M; LM ;CMf g stand for
fresistor, inductor, frequency dependent negative conductance, capacitor, memris-
tor, meminductor, memcapacitorg.
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(iii) if we add or subtract 1 to both m and n, then we move the
m;nð Þ IOE along its C�diagonal line to the new position
mþ 1;nþ 1ð Þ, maintaining the IOE category; (iv) both the local
and the global properties of all IOE on any C�diagonal line are pre-
served; (v) the cases m;nð Þ ¼ {(0,0), (–1,0), (–2,0), (0,–1), (–1,–1), (–
2,–1), (–1,–2)} stand for R; L;D; C;M; LM;CMf g. The location of the
elements in the PTE may also be specified by other types of coordi-
nates. For example, if we choose the coordinates r; cð Þ, where
r ¼ nþm and c ¼ n�m, then all IOE with the same value r=c
lie on one of the R=C�diagonals and the element of coordinates
r; cð Þ is at the intersection of both lines. Moreover, the R�diago-
nals are occupied either by resistive or reactive IOE, for even or
odd values of r, respectively [55].

The classical PTE represents only IOE and, therefore, we are
restricted to c 2 Z. However, other non-planar and non-Cartesian
arrangements are possible for representing the IOE. If we apply
the coordinate transformation m;nð Þ ! u;r; zð Þ, such that

u ¼ m� nð Þ � p
2
; r ¼ mþ n; z ¼ u; ð16Þ

then we obtain the 3-dimensional PTE illustrated in Fig. 2. With
this representation, R is located at the center of the spiral-like locus
and the elements in the diagonals are represented at horizontal
lines.

In another point of view, a closer look to the standard PTE
reveals that the space in the middle of the grid lines is, in fact,
the locus for the FOE. Indeed, it is known the existence of frac-
tional inductors and capacitors [56–60] and, therefore, the gen-
eralization of the PTE to a "continuum" of FOE is the logical
step to follow [61].

Distance functions

We adopt a set of 4 distances, dA; dC ; dJ; dS
	 


, to measure the dis-
similarity between pairs Pn;Pp

� �
of objects with real and imaginary

components [62]. Therefore, the items are characterized by K � 2

dimensional matrices Pn ¼ Re Pn1f g � � � ;Re PnKf g½ �T ; Im Pn1f g; � � � ;½
h

Im PnKf g�T � and Pp ¼ Re Pp1
	 


; � � � ;Re PpK
	 
 �T

; Im Pp1
	 


; � � � ;h
Im PpK

	 
�T �, where Re �f g and Im �f g stand for the real and imaginary
parts. The distances are given by the expressions:

dA Pn;Pp
� � ¼

arccos
PK

k¼1
Re Pnkf gRe Ppkf gþPK

k¼1
Im Pnkf gIm Ppkf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
Re Pnkf g2þIm Pnkf g2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
Re Ppkf g2þIm Ppkf g2

q
0
@

1
A;

ð17Þ

Fig. 4. The 3-dimensional loci of N ¼ 721 linear FOE, characterized in the time domain by means of the distances: (a) dA; (b) dC ; (c) dJ; (d) dS . The markers represent the FOE
and their color varies with the FOE order cn 2 �10;10½ �. The other parameters are Nx ¼ 40,xd 2 10�1;101

h i
, NA ¼ 1, Nt ¼ 1000 and Np ¼ 5. In the loci (a) and (b) the IOE of the

same category are connected with dashed lines.

Fig. 3. Block diagram of a FOE where w �ð Þ is some linear/nonlinear function:
input i tð Þ and output v tð Þ given by xd;e tð Þ ¼ Aecos xdtð Þ and zd;e tð Þ ¼
w Aex

cn
d cos xdt þ cn p

2

� � �
, respectively.
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dC Pn;Pp
� � ¼ XK

k¼1

jRe Pnkf g � Re Ppk

	 
j
jRe Pnkf gj þ jRe Ppk

	 
j
þ
XK
k¼1

jIm Pnkf g � Im Ppk
	 
j

jIm Pnkf gj þ jIm Ppk

	 
j ;
ð18Þ

dJ Pn;Pp
� � ¼ PK

k¼1 Re Pnkf g � Re Ppk
	 
� �2PK

k¼1Re Pnkf g2 þPK
k¼1Re Ppk

	 
2 �PK
k¼1Re Pnkf gRe Ppk

	 

þ

PK
k¼1 Im Pnkf g � Im Ppk

	 
� �2PK
k¼1Im Pnkf g2 þPK

k¼1Im Ppk
	 
2 �PK

k¼1Im Pnkf gIm Ppk
	 
 : ð19Þ

dS Pn;Pp
� � ¼PK
k¼1 Re Pnkf g � Re Ppk

	 
�� ��þPK
k¼1 Im Pnkf g � Im Ppk

	 
�� ��PK
k¼1 Re Pnkf g þ Re Ppk

	 
�� ��þPK
k¼1 Im Pnkf g þ Im Ppk

	 
�� �� : ð20Þ

If the objects to be compared have no imaginary part, then the
vectors Pn and Pp are K � 1 dimensional, and the set dA; dC ; dJ; dS

	 

corresponds to the standard fArccosine, Canberra, Jaccard,
Sørenseng distances [63].

We must note that other distances are possible [63] and that
several of them were also tested. By other words, we are not
restricted to the standard Cartesian concepts, neither for in the
chart nor for the difference measurements. It is well known that
the Cartesian perspective is a particular case of the Minkowski for-

mulation and that this is just a family of distances within a
plethora of generalized expressions [62,63]. However, further dis-
tances are not included herein for sake of parsimony, since
dA; dC ; dJ; dS

	 

illustrate adequately the proposed concepts.

Multidimensional scaling

The MDS is a computational recursive method that provides
dimensionality reduction and envisages to produce a locus with
clusters and, possibly, some data organization capable of being
visualized and interpreted [64–66]. Given a set of N objects K-
dimensional and a dissimilarity index, we calculate a N � N matrix,
D ¼ dnp

 �
, n; p ¼ 1; � � � ;N, of object-to-object dissimilarities, such

that dnp ¼ dpn and dnn ¼ 0. This information represents the input
of the visualization algorithm. The MDS represents the N objects
by points in a W-dimensional space, with W < K; and tries to
reproduce the measured dissimilarities. The MDS iterates the esti-
mate of point configuration for optimizing a given fitness, achiev-

ing a matrix of distances bD ¼ bdnp

h i
, n; p ¼ 1; � � � ;N, that

approximates the original one D ¼ dnp
 �

. A common fitness is the
raw stress:

S ¼
XN
n¼2

Xn�1

p¼1

d̂np � h dnp
� �h i2

; ð21Þ

Fig. 5. The 2 + 1-dimensional loci of N ¼ 721 linear FOE, characterized in the time domain by means of the distances: (a) dA; (b) dC ; (c) dJ; (d) dS . The z coordinate of the loci is
calculated by means of RBI based on the value of cn 2 �10;10½ � at each MDS x; yð Þ coordinate. The other parameters are Nx ¼ 40, xd 2 10�1;101

h i
, NA ¼ 1, Nt ¼ 1000

and.Np ¼ 5
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where h �ð Þ denotes some kind of linear or nonlinear transformation.
The MDS interpretation is based on the clusters and patterns in

the W-dimensional locus and not in the individual coordinates of
the points. Points that are close (distant) in the W-dimensional
locus represent similar (dissimilar) objects in the K-dimensional
space. We can translate, rotate and magnify the locus to provide
a better visualization. The MDS axes have no units and no special
physical meaning.

The MDS quality can be verified through the Shepard and stress
plots. The first compares the resulting and the original distances,bdnp and dnp, for a given value of W . Therefore, a narrow (large) dis-

persion of the points represents a good (poor) fit between bdnp and
dnp: On the other hand, the stress plot represents S versusW and is
a monotonically decreasing function. Usually the values W ¼ 2 or
W ¼ 3 are adopted, because they allow a straightforward compu-
tational visualization and establish a compromise between low
values of S or W .

Visualizing fractional order elements

In this Section we generate several MDS representations both of
linear and nonlinear FOE. Firstly, we describe the FOE by their
behavior either in the time or in the frequency domains. This infor-
mation will represent the objects P, that is, the FOE. Secondly, we
use the resulting data for comparing the FOE and calculate the dis-

similarity matrix D measured by means of a given distance func-
tion d. Finally, we feed the data into the MDS for constructing

the matrix bD and the W-dimensional loci of FOE.
Let us consider the set of N FOE of orders

C ¼ cn : cmin � cn � cmax;n ¼ 1; � � � ;Nf g. To each FOE we apply a
collection of sinusoidal signals xd;e tð Þ ¼ Aecos xdtð Þ with frequen-
cies X ¼ xd : xmin � xd � xmax; d ¼ 1; � � � ;Nxf g. For nonlinear sys-
tems the set of testing amplitudes is given by
A ¼ Ae : Amin � Ae � Amax; e ¼ 1; � � � ;NAf g, but, obviously, for the lin-
ear case we can use just one value (NA ¼ 1). Then we compute the
Nx � NA system outputs zd;e tð Þ ¼ w Aex

cn
d cos xdt þ cn p

2

� � �
, where w

represents some kind of linear/nonlinear function, t ¼ l � td,
l ¼ 0;1; � � � ;Nt � 1 and td ¼ Np � 2p

xd Nt�1ð Þ, with td denoting the sam-

pling period, Nt standing for the number of time samples, and Np

representing the number of periods of the signals (Fig. 3).
During the experiments some effect of truncating the series of cn

values, that is, of limiting to cmin and cmax was observed on the pro-
duced loci. Therefore, to reduce that effect, all experiments adopted
some extra values at both extremes that are not represented.

Time domain analysis and visualization of linear fractional order
elements

In this case we compare linear FOE in the time domain, meaning
that we consider NA ¼ 1. Therefore, after collecting the Nx outputs

Fig. 6. The 3-dimensional loci of N ¼ 721 linear FOE, characterized in the frequency domain by means of the distances: (a) dA; (b) dC; (c) dJ; (d) dS . The markers represent the
FOE and their color varies with the FOE order cn 2 �10;10½ �. The other parameters are Nx ¼ 40, xd 2 10�1;101

h i
, NA ¼ 1, Nt ¼ 1000 and Np ¼ 5. In the loci (a) and (b) the IOE

of the same category are connected with dashed lines.
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of the n-th FOE, we construct the K ¼ Nt � Nx dimensional
real-valued vectors Pn tð Þ ¼ z1;1 tð Þ; � � � ; zNx ;1 tð Þ½ � and calculate the
distance matrices D ¼ d Pn tð Þ;Pp tð Þ� � �

, n; p ¼ 1; � � � ;N, where
d Pn tð Þ;Pp tð Þ� �

denotes one distance of the set dA; dC ; dJ; dS
	 


between the vectors Pn tð Þ and Pp tð Þ given by expressions (17)–
(20). Finally, we process each matrix D by means of the MDS for
constructing the FOE loci.

Fig. 4 depicts the 3-dimensional MDS loci of N ¼ 721 linear FOE
with order values spaced linearly in the interval �10 � cn � 10,
when adopting Nx ¼ 40 test frequencies spaced logarithmically in
the interval 10�1 � xd � 101, Nt ¼ 1000 time samples and Np ¼ 5
periods. Several distinct amplitudes were tested numerically, but,
as expected, the FOE loci do not depend on this parameter. All
other parameters were adjusted by successively increasing their
values until the loci are insensitive to changes. The markers rep-
resent the FOE and the colors vary with the FOE order, cn, to
enhance the visualization. In the loci (a) and (b) the IOE of the
same category are connected by dashed lines. Such lines are not
included in (c) and (d), since for their good visualization we need
to rotate the charts. For all distances, we verify that the FOE form
smooth patterns, exhibiting regularities that depend on the FOE
categories. Moreover, the representations do not follow the stan-
dard Cartesian arrangement and use efficiently the 3-dimensional
visualization space.

Variations to the previous loci are possible to highlight specific
aspects of the organization of the FOE and to capture distinct infor-

mation provided by the MDS computational scheme. These possi-
bilities are illustrated in Fig. 5, where we consider two MDS
dimensions for the x; yð Þ coordinates, while the z coordinate is cal-
culated by means of radial basis interpolation (RBI) [67] of the FOE
order cn. The thin-plate spline RBI function, / eð Þ ¼ e2loge, is con-
sidered, where the variable e denotes the Euclidean distance
between the points generated by the 2-dimensional MDS.
Nonetheless, we believe that the 3-dimensional visualization of
the locus is more advantageous than the 2+1-dimensional portrait.
Therefore, for reducing length, in the follow-up we restrict to the
richer visualization method.

Frequency domain analysis and visualization of linear fractional order
elements

For the n-th FOE, n ¼ 1; � � � ;N, we convert the sinusoidal outputs
zd;1 tð Þ, d ¼ 1; � � � ;Nx, to the Fourier domain, yielding
F zd;1 tð Þ	 
 ¼ Zd;1 jxð Þ, where x ¼ xd. We generate the Nx � 2
dimensional complex-valued matrix Pn xð Þ ¼ Re Zd;1 jxð Þ	 


; Im


Zd;1 jxð Þ	 
� and calculate the dissimilarity matrices D that feed
the MDS algorithm and generate the FOE loci.

Fig. 6 depicts the 3-dimensional loci of the N ¼ 721 linear FOE,
characterized in the frequency domain by means of the distances
dA; dC ; dJ; dS

	 

. The values of the parameters are identical to those

adopted in the Subsection3.1. For all distancesweverify that the lin-
ear FOE loci do not depend on the amplitude of the sinusoidal inputs

Fig. 7. The 3-dimensional loci of N ¼ 721 nonlinear (w of degree 3) FOE, characterized in the time domain by means of the distances: (a) dA; (b) dC; (c) dJ; (d) dS . The markers
represent the FOE and their color varies with the FOE order cn 2 �10;10½ �. The other parameters are Nx ¼ 40, xd 2 10�1;101

h i
, NA ¼ 10, Ne 2 10�2;102

h i
, Nt ¼ 1000 and

Np ¼ 5. In the loci (a) and (c) the IOE of the same category are connected with dashed lines.
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and that the loci form smoothpatternswith regularities that depend
on the FOEcategories. The charts aredifferent fromthoseobtained in
the time domain, but follow an identical logic, namely using a non-
Cartesian arrangement in a 3-dimensional space.

Time domain analysis and visualization of nonlinear fractional order
elements

In this case we compare nonlinear FOE in the time domain
adopting for w a cubic nonlinearity. We must note that other non-
linearities [68] are possible and that several were tested. However,
they are not included herein for sake of parsimony, since this one
illustrates well the proposed ideas.

For the n-th nonlinear FOE, n ¼ 1; � � � ;N, we collect Nx � NA out-
puts, zd;e tð Þ, where d ¼ 1; � � � ;Nx and e ¼ 1; � � � ;NA. Then, for com-
paring the FOE, we construct the K ¼ Nt � Nx � NA dimensional
real-valued vectors Pn(t) = ½z1;1ðtÞ; . . . ; z1;NA

ðtÞ; . . . ; zNx ;1ðtÞ; . . . ;
zNx ;NA ðtÞ�. Finally, we calculate the distance matrices
D ¼ d Pn;Pp

� � �
, n; p ¼ 1; � � � ;N, and apply the MDS numerical algo-

rithm. Fig. 7 depicts the 3-dimensional MDS loci of the N ¼ 721
nonlinear FOE, characterized in the time domain by means of
dA; dC ; dJ; dS

	 

. The values of the parameters are identical to those

adopted in the previous Subsections, but for the nonlinear case
we consider NA ¼ 10 amplitudes of the input signal spaced loga-
rithmically in the interval 10�2 � Ne � 102. Comparing Figs. 7
and 4, we verify that the loci generated with the distances
dA; dSf g do not vary, while those generated with dC ; dJ

	 

vary con-

siderably with the presence of the nonlinearity. We verify again
that we can adjust the characteristics of the loci, in this case the
sensitivity to the nonlinearity w, by a judicious choice of the proper
distance.

Frequency domain analysis and visualization of nonlinear fractional
order elements

We compare N ¼ 721 nonlinear FOE in the frequency domain
adopting for w the cubic nonlinearity.

In a first phase, for the n-th FOE, n ¼ 1; � � � ;N, we convert the
Nx � NA outputs zd;e tð Þ to the Fourier domain, yielding
F zd;e tð Þ	 
 ¼ Zd;e jxð Þ; noting that for a cubic nonlinearity zd;e tð Þ
has the first and third harmonics. In a second phase, for comparing
the FOE, we generate the 2 � Nx � NAð Þ � 2 dimensional complex-
valued array Pn xð Þ ¼ Re Zd;e jxð Þ	 


; Im Zd;e jxð Þ	 
 �
. Finally, we cal-

culate the dissimilarity matrices D, and generate the MDS FOE loci.
Fig. 8 depicts the 3-dimensional MDS loci of the N ¼ 721 non-

linear FOE, characterized in the frequency domain. All values of
the parameters are kept unchanged from the previous Subsections.

Procrustes analysis and visualization of nonlinear fractional
order elements

In this Section, we compare the loci obtained with different
nonlinearities by means of Procrustes analysis [69–72]. The Pro-

Fig. 8. The 3-dimensional loci of N ¼ 721 nonlinear (w of degree 3) FOE, characterized in the frequency domain by means of the distances: (a) dA; (b) dC; (c) dJ; (d) dS . The
markers represent the FOE and their color varies with the FOE order c 2 �10;10½ �. The other parameters are Nx ¼ 40, xd 2 10�1;101

h i
, NA ¼ 10, Ne 2 10�2;102

h i
, Nt ¼ 1000

and Np ¼ 5. In the loci (a) and (d) the IOE of the same category are connected with dashed lines.
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crustes analysis takes a collection of loci and transforms them for
obtaining the "best" superposition. The algorithm performs four
iterative numerical steps: (i) the user chooses a reference locus
(by selecting one of the available instances); (ii) superimposes all
other loci into the current reference by means of linear transforma-
tions, namely translation, reflection, orthogonal rotation and scal-
ing; (iii) computes the mean form of the current set of
superimposed loci; (iv) compares the distance between the mean
and the reference instances to a given threshold value and, if
above, sets the reference to the mean form and continues to step
(ii). The result is a global representation of all loci that best con-
forms them.

Figs. 9 and 10 depict three superimposed 3-dimensional MDS
loci of N ¼ 721 FOE (using Procrustes), characterized in the time
and frequency domains, respectively. Besides the linear case we
adopt power law nonlinearities w of degree 3 and 5. The values
of all parameters are identical to those used in the previous Sec-
tion. We verify an evolution of the loci with n, demonstrating the
sensitivity of the technique to the nonlinearity. For the distances
dA and dS this evolution is smooth, while for dC and dJ we obtain
a sharp transition between the linear and the nonlinear cases,
when the FOE are characterized in the time and the frequency
domains, respectively. Therefore, we verify that we can extend
the construction of the MDS loci and their comparison to other
types of nonlinearites.

Conclusions

This paper used clustering and information visualization tech-
niques to organize and map FOE accordingly to their characteris-
tics. The new representation generalizes the concept of PTE,
revealing that the integer order cases are just a limited number
of cases in the FOE "continuum". The use of the MDS allows explor-
ing the 3-dimensional space for the representation and the adop-
tion of distinct measures, so that users can choose the one fitting
better their needs. The technique is effective both in the time
and frequency domains and can be extended from linear to nonlin-
ear elements. Moreover, the study provides a complementary per-
spective in the on-going discussion about the properties of the
memristor and fractional-order elements. Indeed, a new form of
representation, based in distinct domains and distances, may shed
further light into possible similarities or dissimilarities between
elements.

In summary, this paper did not intend to give responses to a
variety of possible questions such as if there are finite boundaries,
or not, to the Chua’s PTE, or what is the physical meaning of frac-
tional elements. The study shows that we are often conditioned by
representations methods that can be bettered by modern
computer-based information visualization algorithms. Further-
more, in the scope of the new visualization methods, the use of
Cartesian concepts, namely for graphical representations and for

Fig. 9. Three superimposed 3-dimensional loci of N ¼ 721 FOE (using Procrustes), characterized in the time domain by means of the distances: (a) dA; (b) dC ; (c) dJ; (d) dS . The
functions w of degree 1 (linear case), 3 and 5 are adopted.
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distance (or difference) assessment, can be outperformed by a
careful selection of the formulation that fits better a specific
application.
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