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Abstract

The explosive growth of the human neuroimaging literature has led to major advances in 

understanding of human brain function, but has also made aggregation and synthesis of 

neuroimaging findings increasingly difficult. Here we describe and validate an automated brain 

mapping framework that uses text mining, meta-analysis and machine learning techniques to 

generate a large database of mappings between neural and cognitive states. We demonstrate the 

capacity of our approach to automatically conduct large-scale, high-quality neuroimaging meta-

analyses, address long-standing inferential problems in the neuroimaging literature, and support 

accurate ‘decoding’ of broad cognitive states from brain activity in both entire studies and 

individual human subjects. Collectively, our results validate a powerful and generative framework 

for synthesizing human neuroimaging data on an unprecedented scale.

INTRODUCTION

The development of non-invasive neuroimaging techniques such as functional magnetic 

resonance imaging (fMRI) has spurred explosive growth of the human brain imaging 
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literature in recent years. In 2010 alone, over 1,000 fMRI articles were published1. This 

proliferation has led to substantial advances in understanding of human brain and cognitive 

function; however, it has also introduced important new challenges. In place of too little 

data, researchers are now besieged with too much. Because individual neuroimaging studies 

are often underpowered and exhibit relatively high false positive rate2-4, multiple studies are 

required to achieve consensus regarding even broad relationships between brain and 

cognitive function. Distilling the extant literature thus necessitates development of new 

techniques for large-scale aggregation and synthesis of human neuroimaging data4-6.

Here we describe and validate a novel framework for brain mapping, NeuroSynth, that takes 

an instrumental step towards automated large-scale synthesis of the neuroimaging literature. 

NeuroSynth combines text mining, meta-analysis, and machine learning techniques to 

generate probabilistic mappings between cognitive and neural states that can be used for a 

broad range of neuroimaging applications. Whereas previous approaches have relied heavily 

on researchers’ manual efforts (e.g., 7,8)—a constraint that limits the scope and efficiency of 

resulting analyses1—the present framework is fully automated, enabling rapid and scalable 

synthesis of the neuroimaging literature. We demonstrate the capacity of this framework to 

generate large-scale meta-analyses for hundreds of broad psychological concepts; support 

quantitative inferences about the consistency and specificity with which different cognitive 

processes elicit regional changes in brain activity; and decode and classify broad cognitive 

states in new data based solely on observed brain activity.

RESULTS

Our methodological approach includes several steps (Fig. 1a). First, we used text-mining 

techniques to identify neuroimaging studies that used specific terms of interest (e.g., ‘pain’, 

‘emotion’, ‘working memory’, etc.) at a high frequency (>1 in 1,000 words) within the 

article text. Second, we automatically extracted activation coordinates from all tables 

reported in these studies. This approach produced a large database of term-to-coordinate 

mappings; we report results based on 100,953 activation foci drawn from 3,489 

neuroimaging studies published in more than 15 journals (Online methods). Third, we 

conducted automated meta-analyses of hundreds of psychological concepts, producing an 

extensive set of whole-brain images quantifying brain-cognition relationships (Fig. 1b). 

Finally, we used a machine learning technique (naïve Bayes classification) to estimate the 

likelihood that new activation maps were associated with specific psychological terms, 

enabling relatively open-ended decoding of psychological constructs from patterns of brain 

activity (Fig. 1c).

Automated coordinate extraction

Our approach differs from previous work in its heavy reliance on automatically extracted 

information, raising several potential data quality concerns. For example, the software might 

incorrectly classify non-coordinate information in a table as an activation focus (i.e., a false 

positive); different articles report foci in different stereotactic spaces, resulting in potential 

discrepancies between anatomical locations represented by the same set of coordinates and 

the software did not discriminate activations from deactivations.
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To assess the impact of these issues on data quality, we conducted an extensive series of 

supporting analyses (Supplementary Note). First, we compared automatically extracted 

coordinates with a reference set of manually-entered foci in the SumsDB database7,9, 

revealing high rates of sensitivity (84%) and specificity (97%). Second, we quantified the 

proportion of activation increases versus decreases reported in the neuroimaging literature. 

We found that decreases constitute a small proportion of results and have minimal effect on 

the results we report. Third, we developed a preliminary algorithm for automatically 

detecting and correcting (based on ref. 10) for between-study differences in stereotactic 

space (Supplementary Fig. 1). Collectively, these results indicate that while automated 

extraction misses a minority of valid coordinates, and work remains to be done to increase 

the specificity of the extracted information, the majority of coordinates are extracted 

accurately, and a number of factors of a priori concern have relatively small influences on 

the results.

The database of studies and coordinates, software, and meta-analysis maps for several 

hundred terms used in the present study are made available via a web interface (http://

neurosynth.org) that provides instant access to, and visualization of, thousands of whole-

brain images.

Large-scale automated meta-analysis

We used the database of automatically extracted activation coordinates to conduct a 

comprehensive set of automated meta-analyses for several hundred terms of interest. For 

each term, we identified all studies that used the term at high frequency anywhere within the 

article text11 and submitted all associated activation foci to a meta-analysis. This approach 

generated whole-brain maps displaying the strength of association between each term and 

every location in the brain, enabling multiple kinds of quantitative inference (e.g., if the term 

‘language’ was used in a study, how likely was the study to report activation in Broca’s 

area? If activation was observed in the amygdala, what was the probability that the study 

frequently used the term ‘fear’?).

To validate this automated approach—which rests on the assumption that simple word 

counts are a reasonable proxy for the substantive content of articles—we conducted a series 

of supporting analyses (Supplementary Note). First, we demonstrated that NeuroSynth 

accurately recaptured conventional boundaries between distinct anatomical regions by 

comparing lexically defined regions-of-interest (ROIs) to anatomically defined ROIs 

(Supplementary Fig. 2). Second, we used NeuroSynth to replicate previous findings of 

visual category-specific activation in regions such as the fusiform face area (FFA12) and 

visual word form area (VWFA13; Supplementary Fig. 3). Third, we demonstrated that more 

conservative meta-analyses restricting the lexical search space to only article titles yielded 

similar, though less sensitive, meta-analysis results (Supplementary Fig. 4).

Finally, we compared our results with those produced by prior manual approaches. 

Comparison of automated meta-analyses of three broad psychological terms (‘working 

memory’, ‘emotion’, and ‘pain’) with previously published meta- or mega-analytic 

maps14-16 revealed a marked convergence between approaches both qualitatively (Fig. 2) 

and quantitatively (Supplementary Fig. 5). To directly test the convergence of automated 
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and manual approaches when applied to similar data, we manually validated a set of 265 

automatically extracted pain studies and performed a standard multilevel kernel density 

analysis (MKDA15) contrasting experimental pain stimulation with baseline (n = 66 valid 

studies). Direct comparison between automated and manual results revealed a striking 

overlap (correlation across voxels = .84; Supplementary Fig. 6). Thus, these results 

demonstrated that, at least for broad domains, an automated meta-analysis approach 

generates results comparable in sensitivity and scope to those produced more effortfully in 

previous studies.

Quantitative reverse inference

The relatively comprehensive nature of the NeuroSynth database enabled us to address a 

long-standing inferential problem in the neuroimaging literature—namely, how to 

quantitatively identify cognitive states based on patterns of observed brain activity. This 

problem of ‘reverse inference’17 arises because most neuroimaging studies are designed to 

identify neural changes that result from known psychological manipulations, and not to 

determine what cognitive state(s) a given pattern of activity implies (Fig. 1b, ref.17). For 

instance, fear consistently activates the human amygdala, but this does not imply that people 

who show amygdala activation must be experiencing fear, because other affective and non-

affective states have also been reported to produce amygdala activation4,18. True reverse 

inference requires knowledge of which brain regions and networks are selectively, and not 

just consistently, associated with particular cognitive states15,17.

Because the NeuroSynth database contains a broad set of term-to-activation mappings, our 

framework is well suited for drawing quantitative inferences about mind-brain relationships 

in both the forward and reverse directions. We were able to quantify both the probability of 

observing activation in specific brain regions given the presence a particular term 

(P(Activation|Term), or ‘forward inference’), and the probability of a term occurring in an 

article given the presence of activation in a particular brain region (i.e., P(Term|Activation), 

or reverse inference). Comparison of these two analyses provided a way to assess the 

validity of many common inferences about the relationship between neural and cognitive 

states.

For illustration purposes, we focused on the sample domains of working memory, emotion, 

and pain, which are of substantial basic and clinical interest and have been extensively 

studied using fMRI (for additional examples, see Supplementary Fig. 7). These domains are 

excellent candidates for quantitative reverse inference, as they are thought to have somewhat 

confusable neural correlates, with common activation of regions such as dorsal anterior 

cingulate cortex (ACC)19 and anterior insula.

Results revealed important differences between the forward and reverse inference maps in 

all three domains (Fig. 2). For working memory, the forward inference map revealed the 

most consistent associations in dorsolateral prefrontal cortex (DLPFC), anterior insula and 

dorsal medial frontal cortex (MFC), replicating previous findings15,20. However, the reverse 

inference map instead implicated anterior PFC and posterior parietal cortex as the regions 

most selectively activated by working memory tasks.
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We observed a similar pattern for pain and emotion. In both domains, frontal regions 

broadly implicated in goal-directed cognition21-23 showed consistent activation in the 

forward analysis, but were relatively non-selective in the reverse analysis (Fig. 2). For 

emotion, the reverse inference map revealed much more selective activations in the 

amygdala and ventromedial PFC (Fig. 3). For pain, the regions of maximal pain-related 

activation in insula and ACC shifted from anterior foci in the forward analysis to posterior 

ones in the reverse analysis (Fig. 3). This is consistent with nonhuman primate studies 

implicating dorsal posterior insula as a primary integration center for nociceptive afferents24 

as well as human studies demonstrating that anterior aspects of the so-called ‘pain matrix’ 

respond non-selectively to multiple modalities25.

Perhaps most strikingly, several frontal regions that showed consistent activation for 

emotion and pain in the forward analysis were actually associated with a decreased 

likelihood that a study involved emotion or pain in the reverse inference analysis (Fig. 3). 

This seeming paradox reflected the fact that even though lateral and medial frontal regions 

were consistently activated in studies of emotion and pain, they were activated even more 

frequently in studies that did not involve emotion or pain (Supplementary Fig. 8). Thus, the 

fact that these regions showed involvement in pain and emotion likely reflected their much 

more general role in cognition (e.g., sustained attention or goal-directed processing22,23) 

rather than pain- or emotion-specific process.

These results demonstrate that without the ability to distinguish consistency from selectivity, 

neuroimaging data can produce misleading inferences. For instance, neglecting the high base 

rate of ACC activity might lead researchers in the areas of cognitive control, pain, and 

emotion each to conclude that the ACC plays a critical role in their particular domain. 

Instead, because the ACC is activated consistently in all of these states, its activation may 

not be diagnostic of any one of them—and conversely, might even predict their absence. 

The NeuroSynth framework can potentially address this problem by enabling researchers to 

conduct quantitative reverse inference on a large scale.

Open-ended classification of cognitive states

An emerging frontier in human neuroimaging is brain ‘decoding’: inferring a person’s 

cognitive state based solely on their observed brain activity. The problem of decoding is 

essentially a generalization of the univariate reverse inference problem addressed above: 

instead of predicting the likelihood of a particular cognitive state given activation at a single 

voxel, one can generate a corresponding prediction based on an entire pattern of brain 

activity. The NeuroSynth framework is well positioned for such an approach: whereas 

previous decoding approaches have focused on discriminating between narrow sets of 

cognitive states and have required extensive training on raw fMRI datasets (e.g., refs.26-28), 

the breadth of cognitive concepts represented in the NeuroSynth database affords relatively 

open-ended decoding, with little or no training on new datasets.

To assess the ability of our approach to decode and classify cognitive states, we trained a 

naïve Bayes classifier29 capable of discriminating between flexible sets of cognitive states 

given new images as input (Fig. 1c). First, we tested the classifier’s ability to correctly 

classify studies in the NeuroSynth database that were associated with different terms. In a 
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10-fold cross-validated analysis, the classifier discriminated between studies of working 

memory, emotion, and pain, with high sensitivity and specificity (Fig. 4a), demonstrating 

that each of these domains has a relatively distinct neural signature (Fig. 4b).

To assess the classifier’s ability to decode cognitive states in individual human subjects, we 

applied the classifier to 281 single-subject activation maps derived from contrasts between: 

N-back working memory performance vs. rest (n = 94), negative vs. neutral emotional 

photographs (n = 108); and intense vs. mild thermal pain (n = 79). The classifier performed 

substantially above chance, identifying the originating study type with sensitivities of 94%, 

70%, and 65%, respectively (chance = 33%), and specificities of 80%, 86%, and 98% (Fig. 

4a). Moreover, there were systematic differences in activation patterns for correctly vs. 

incorrectly classified subjects. For example, incorrectly classified subjects in physical pain 

tasks (e.g., Fig. 4c) systematically activated lateral orbitofrontal cortex and dorsomedial 

prefrontal cortex, but not SII/posterior insula, suggesting that the discomfort due to noxious 

heat in these subjects may have been qualitatively different (e.g., emotionally-generated vs. 

physically-generated pain). Thus, these findings demonstrate the viability of decoding 

cognitive states in new subjects without training while suggesting novel hypotheses 

amenable to further exploration.

Next, to generalize beyond working memory, emotion, and pain, we selected 25 broad 

psychological terms used at high frequency in the database (Fig. 5). Classification accuracy 

was estimated in ten-fold cross-validated two-alternative and multi-class analyses. The 

classifier performed substantially above chance in both two-alternative classification (mean 

pairwise accuracy of 72%; Fig. 4) and relatively open-ended multi-class classification on up 

to ten simultaneous terms (Supplementary Fig. 9). Moreover, the results provide insights 

into the similarity structure of neural representation for different processes. For instance, 

pain was highly discriminable from other psychological concepts (all pairwise accuracies > 

74%), suggesting that pain perception may be a distinctive state that is neither grouped with 

other sensory modalities or with other affective concepts like arousal and emotion. 

Conversely, conceptually related terms like ‘executive’ and ‘working memory’ could not be 

distinguished at a rate different from chance, reflecting their closely overlapping usage in 

the literature.

DISCUSSION

The advent of modern neuroimaging techniques such as fMRI has spurred dramatic growth 

in the primary cognitive neuroscience literature, but has also made comprehensive synthesis 

of the literature increasingly difficult. The NeuroSynth framework introduced here addresses 

this problem in several ways. First, we validated a novel approach for conducting large-scale 

automated neuroimaging meta-analyses of broad psychological concepts that are lexically 

well represented in the literature. A key benefit is the ability to quantitatively distinguish 

forward inference from reverse inference, enabling researchers to assess the specificity of 

mappings between neural and cognitive function—a long-standing goal of cognitive 

neuroscience research. Although considerable work remains to be done to improve the 

specificity and accuracy of the tools developed here, we expect quantitative reverse 

inference to play an increasingly important role in future meta-analytic studies.
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Second, we demonstrated the viability of decoding broad psychological states in a relatively 

open-ended way in individual subjects—to our knowledge, the first application of a domain-

general classifier that can distinguish a broad range of cognitive states based solely on prior 

literature. Particularly promising is the ability to decode brain activity without prior training 

data or knowledge of the “ground truth” for an individual. Our results raise the prospect that 

legitimate ‘mind reading’ of more nuanced cognitive and affective states might eventually 

become feasible given additional technical advances. However, the present NeuroSynth 

implementation provides no basis for such inferences, as it distinguishes only between 

relatively broad psychological categories.

Third, the platform we introduce is designed to support immediate use in a broad range of 

neuroimaging applications. To name just a few potential applications, researchers could use 

these tools and results to define region-of-interest masks or Bayesian priors in hypothesis-

driven analyses; conduct quantitative comparisons between meta-analysis maps of different 

terms of interest; use the automatically-extracted coordinate database as a starting point for 

more refined manual meta-analyses; draw more rigorous reverse inferences when 

interpreting results by referring to empirically established mappings between specific 

regions and cognitive functions; and extract the terms most frequently associated with an 

active region or distributed pattern of activity, thus contextualizing new research findings 

based on the literature.

Of course, the NeuroSynth framework is not a panacea for the many challenges facing 

cognitive neuroscientists, and a number of limitations remain to be addressed. We focus on 

two in particular here. First, the present reliance on a purely lexical coding approach, while 

effective, is suboptimal in that it relies on traditional psychological terms that may fail to 

carve the underlying neural substrates at their natural joints, fails to capitalize on 

redundancy across terms (e.g., ‘pain’, ‘nociception’, and ‘noxious’ overlap closely but are 

modeled separately), and does not allow closely related constructs to be easily distinguished 

(e.g., physical vs. emotional pain). Future efforts could overcome these limitations by using 

controlled vocabularies or ontologies for query expansion, developing extensions for 

conducting multi-term analyses, and extracting topic-based representations of article text 

(Supplementary Note).

Second, while our automated tools accurately extract coordinates from articles, they are 

unable to extract information about fine-grained cognitive states (e.g., different negative 

emotions). Thus, the Neurosynth framework is currently useful primarily for large-scale 

analyses involving broad domains, and should be viewed as a complement to, and not a 

substitute for, manual meta-analysis approaches. We are currently working to develop 

improved algorithms for automatic coding of experimental contrasts, which should 

substantially improve the specificity of the resulting analyses. In parallel, we envision a 

‘crowdsourced’ collaborative model in which multiple groups participate in validation of 

automatically extracted data, thereby combining the best elements of both automated and 

manual approaches. Such efforts should further increase the specificity and predictive 

accuracy of the decoding model, and will hopefully lead to the development of many other 

applications that we have not anticipated here.
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To encourage further application and development of a synthesis-oriented approach, we 

have publicly released most of the tools and data used in the present study via a web 

interface (http://neurosynth.org). We hope that cognitive neuroscientists will use, and 

contribute to, this new resource, with the goal of developing next-generation techniques for 

interpreting and synthesizing the wealth of data generated by modern neuroimaging 

techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

ONLINE METHODS

Automated coordinate extraction

To automatically extract stereotactic coordinate information from published neuroimaging 

articles, we developed a software library written in the Ruby programming language. We 

have released the NeuroSynth Automated Coordinate Extraction (ACE) tools under an open 

source license, and encourage other researchers to contribute to the codebase (http://

github.com/neurosynth). Because the code is freely available for inspection and use, we 

provide only a functional, non-technical overview of the tools here.

In brief, ACE consists of a parsing engine that extracts coordinate information from 

published articles by making educated guesses about the contents of the columns reported in 

tables in neuroimaging articles (at present, ACE does not attempt to extract coordinates that 

are reported in the main text of an article, or in supplementary materials). For each full-text 

HTML article provided as input, ACE scans all tables for rows that contain coordinate-like 

data. Rows or tables that do not contain values that correspond to a flexible template used to 

detect coordinates are ignored. Moreover, all extracted coordinates are subjected to basic 

validation to ensure that they reflect plausible locations in stereotactic space (e.g., all 

coordinates with absolute values > 100 in any plane are discarded).

Although neuroimaging coordinates are reported in a variety of stereotactic spaces in the 

neuroimaging literature30,31, for technical reasons, the results reported in the main text 

ignore such differences and collapse across different spaces. Moreover, the parser does not 

distinguish activations from deactivations, and aggregates across all reported contrasts 

within each article—i.e., it makes no attempt to code different tables within an article, or 

different contrasts within a table, separately. As extensive validation analyses show 
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(Supplementary Note), these factors appear to exert only a modest influence on results, and 

in some cases can be automatically accounted for; however, for present purposes we simply 

note that the net effect of these limitations should be to reduce fidelity rather than to 

introduce systematic bias.

In addition to extracting coordinates, ACE parses the body of each article and generates a 

list of all words that appear at least once anywhere in the text, along with a corresponding 

frequency count for each word. All data are then stored in a relational (MySQL) database 

that maintains associations between words, articles, and activation foci, allowing flexible 

and powerful structured retrieval of information.

Database

The foci used to generate the results of the present study were extracted from 17 source 

journals, including Biological Psychiatry, Brain, Brain and Cognition, Brain and Language, 

Brain Research, Cerebral Cortex, Cognitive Brain Research, Cortex, European Journal of 

Neuroscience, Human Brain Mapping, Journal of Neurophysiology, Journal of 

Neuroscience, NeuroImage, NeuroLetters, Neuron, Neuropsychologia, and Pain. We 

deliberately focused on journals containing a high incidence of functional neuroimaging 

studies; thus, some important general neuroscience or science journals (e.g., Science, 

Nature, Nature Neuroscience, etc.) were not included. The range of years represented varied 

by journal, with the earliest studies dating to 2000, and the latest to early 2010. In total, the 

database contains 3,489 articles and 100,953 foci, representing the single largest extant 

database of neuroimaging foci—though still capturing only a minority of the published 

literature1.

Importantly, the database has considerable potential for additional growth. Because 

neuroimaging studies appear in dozens of different journals (besides those analyzed here), 

which typically require the use of publisher-specific or journal-specific filter to correctly 

obtain coordinates from tables, the database will continue to grow as new filters are added. 

An additional limitation is that many journals have not yet made full-text HTML versions of 

older articles available online; as such efforts proceed, the database will grow 

correspondingly. Finally, because authors report coordinate information in a variety of 

different formats, false negatives may occur (i.e., ACE may fail to extract real coordinate 

information). However, these limitations do not bias the present analyses in any particular 

way, and suggest that if anything, one can expect the sensitivity and specificity of the 

reported results to improve as the database grows and additional quality assurance 

procedures are implemented.

Statistical inference and effect size maps

In keeping with previous meta-analyses that employed multilevel kernel density analysis 

(MKDA15), we represented reported activations from each study by constructed a binary 

image mask, with a value of 1 (reported) assigned to each voxel in the brain if it was within 

10 mm of a focus reported in that article, and 0 (not reported) if it was not within 10 mm of 

a reported focus (see ref. 15). These maps used 2×2×2 mm3 voxels, with nV=231,202 voxels 
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in the brain mask. We denote the activation map for study i as Ai = (Aij), a length-nV binary 

vector.

A frequency cut-off of 0.001 was used in order to eliminate studies that only used a term 

incidentally (i.e., in order to be considered about pain, a study had to use the term ‘pain’ at a 

rate of at least one in every 1,000 words). Subsequent testing revealed that the results were 

largely insensitive to the exact cut-off used (including no cut-off at all), except that very 

high cut-offs (e.g., 0.01 or higher) tended to leave too few studies for reliable estimation of 

most terms. (As the database grows, even very conservative thresholds that leave no 

ambiguity at all about the topic of a study should become viable.) The total number of terms 

harvested was nT=10,000 (though the vast majority of these were non-psychological in 

meaning—e.g., ‘activation’, ‘normal’, etc.). We write term indicator for study i as Ti = (Tik), 

a length-nT binary vector marking each term “present” (i.e. has frequency above the cut-off) 

or “absent” (frequency below the cut off).

For each term of interest in the database (e.g., ‘pain’, ‘amygdala’, etc.) we generated whole-

brain meta-analysis maps displaying the strength of statistical association between the term 

and reported activation at each voxel. For each voxel j and term k, every study can be cross-

classified by activation (present or absent) and term (present or absent), producing a 2 × 2 

contingency table of counts.

Statistical inference maps were generated using a Chi-Square test of independence, with a 

significant result implying the presence of a dependency between term and activation (i.e., a 

change in activation status would make the occurrence of the term more or less likely). This 

approach departs from the MKDA approach used in previous meta-analyses 3,15,16 in its 

reliance on a parametric statistical test in place of permutation-based family-wise error rate 

(FWE) correction; however, permutation-based testing was not computationally feasible 

given the scale of the present meta-analyses (multiple maps for each of several thousand 

terms).

To stabilize results and ensure all cells had sufficient observations for the parametric Chi-

Square test, we excluded all voxels that were active in fewer than 3% of studies 

(Supplementary Fig. 10). The resulting p-value map was FDR-corrected for multiple 

comparisons using a whole-brain FDR threshold of 0.05, identifying voxels where there was 

significant evidence that term frequency varied with activation frequency. Intuitively, one 

can think of regions that survive correction as those that display differential activation for 

studies that include a term versus studies that do not include that term.

We also compute maps of the posterior probability that term k is used in a study given 

activation at voxel j:

(generically referred to as P(Term|Activation) in the text). We use the “smoothed” estimates 

for the likelihood of activation given term:
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where p(·) reflects an estimated versus true probability, m is a virtual equivalent sample size, 

and p is a prior probability. The parameters m and p are set equal to 2 and 0.5 respectively; 

this smoothing is equivalent to adding two virtual studies that have term k present—one 

having an activation one, one without. This regularization prevents rare activations or terms 

from degrading accuracy32. For P(Tk=1) we impose a uniform prior for all terms, 

P(Tk=1)=P(Tk=0)=0.5. We use this uniform prior because terms differed widely in 

frequency of usage, leading to very different posterior probabilities for different terms. This 

is equivalent to making an assumption that the usage and non-usage of the term would be 

equally likely in the absence of any knowledge about brain activation. Note that this is a 

conservative approach; using uniform priors will tend to reduce classifier accuracy relative 

to using empirically estimated priors (i.e., allowing base rate differences to play a role in 

classification), because it increases the accuracy of rare terms at the expense of common 

ones. Nonetheless, we opted to use uniform priors because they place all terms on a level 

footing and provide more interpretable results.

The estimate of P(Aj=1) reflects the regularization and the prior on term frequency:

where

To ensure that only statistically robust associations were considered, all posterior probability 

maps were masked with the FDR-corrected p-value maps. For visualization purposes, 

thresholded maps were mapped to the PALS-B12 surface atlas33 in SPM5 stereotaxic space. 

Average fiducial mapping (AFM) values are presented. Datasets associated with Figure 2 

and Supplementary Figure 3 are available in the SumsDB database (http://sumsdb.wustl.edu/

sums/directory.do?id=8285126).

Naive Bayes classifier

We used a naive Bayes classifier29 to predict the occurrence of specific terms using whole-

brain patterns of activation. In classifier terminology, we have nS instances of feature-label 

pairs (Ai,Ti). The use of a Naive Bayes classifier allows us to neglect the spatial dependence 

in the activation maps Ai. Since simultaneous classification for the presence/absence of all 

nT terms is impractical due to the larger number (2nT) of possible labels, for this work we 

only consider mutually exclusive term labels—ranging from binary classification of two 

terms (e.g., pain vs. working memory) to multiclass classification of ten terms (e.g., pain, 

working memory, language, conflict, etc.).
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For this setting we revise notation slightly from the previous section describing calculation 

of the posterior probability maps, letting scalar Ti take values 1, …, nT* for subset of nT* 

terms under consideration. For a new study with activation map A, the probability of term t 

is

P(A) is computed as above for the studies under consideration, and by independence,

and we use a regularized estimate for voxel j,

where I(·) is the indicator function (1 if the operand is true, 0 otherwise).

Note that although the assumption of conditional independence is usually violated in 

practice, leading to biased posterior probabilities, this generally does not affect classification 

performance, because classification depends on the rank-ordered posterior probabilities of 

all classes rather than their absolute values. In complex real-world classification settings, 

naive Bayes classifiers often substantially outperform more sophisticated and 

computationally expensive techniques34.

In the context of the present large-scale analyses, the naive Bayes classifier has several 

advantages over other widely used classification techniques (e.g., support vector 

machines35,36). First, it requires substantially less training data than many other techniques, 

because only the cross-classified cell counts are needed. Second, it is computationally 

efficient, and can scale up to extremely large sets of features (e.g., hundreds of thousands of 

individual voxels) or possible outcomes without difficulty. Third, it produces easily 

interpretable results: the naive Bayes classifier’s assumption of conditional independence 

ensures that the strength of each feature’s contribution to the overall classification simply 

reflects the posterior probability of class membership conditioned on that feature (i.e., P(T=t|

Ai).

Cross-validated classification of study-level maps

For cross-validated classification of studies included in the NeuroSynth database (Figs. 3 

and 4), we used the NBC to identify the most probable term from among a specified set of 

alternatives (e.g., ‘pain’, ‘emotion’, and ‘working memory’) for each map. We used four-
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fold cross-validation to ensure unbiased accuracy estimates. Because the database was 

known to contain errors, we took several steps to obtain more accurate classification 

estimates. First, to improve the signal-to-noise ratio, we trained and tested the classifier only 

on the subset of studies with at least 5,000 “active” voxels, i.e. studies satisfying ΣjAij ≥ 

5,000, occurring when there were more than about four reported foci; nS = 2,107 studies 

satisfied this criterion. This step ensured that studies with few reported activations (a 

potential marker of problems extracting coordinates) did not influence the classifier. Second, 

we only considered voxels that were activated in at least 3% of studies, i.e. ΣiAij/nS ≥ 0.03, 

ensuring that noisy features would not exert undue influence on classification. Third, any 

studies in which more than one target term was used were excluded in order to ensure that 

there was always a correct answer (e.g., if a study used both ‘pain’ and ‘emotion’ at a 

frequency of 0.001 or greater, it was excluded from classification). No further feature 

selection was used (i.e., all remaining voxels were included as features).

Classifier accuracy was calculated by averaging across classes (i.e., terms) rather than 

studies (e.g., if the classifier correctly classified 100% of 300 working memory studies, but 

0% of 100 pain studies, we would report a value of 50%, reflecting the mean of 0% and 

100%, rather than the study-wise mean of 75%, which allows for inflation due to differing 

numbers of studies). Using this accuracy metric, called balanced loss in the machine 

learning literature, eliminated the possibility of the classifier capitalizing on differences in 

term base rates, and ensured that chance accuracy was always 50%. Note that this is the 

appropriate comparison for a naive Bayes classifier when uniform prior probabilities are 

stipulated, because the classifier should not be able to capitalize on base rate differences 

even if they exist (as it has no knowledge of base rates beyond the specified prior).

For binary classification (nT*=2), we selected 25 terms that occurred at high frequency in 

our database (> 1 in 1,000 words in at least 100 different studies; see Figs. 5 and Supp. Fig. 

3) and ran the classifier on all possible pairs. For each pair, the set of studies used included 

all those with exactly one term present (ns ranging from 23 to 794; mean = 178.2, median = 

141). Statistical significance for each pairwise classification was assessed using Monte 

Carlo simulation. Across all comparisons, the widest 95% confidence interval was 0.4 – 0.6, 

and the vast majority of observed classification accuracies (283 / 300) were statistically 

significant (P < 0.05; 257/300 were significant at P < .001).

For multi-class analyses involving more than nT* > 2 terms (Supp. Fig. 5), an exhaustive 

analysis of all possible combinations was not viable due to combinatorial explosion and 

increased processing time required. We therefore selected 100 random subsets of nT* terms 

from the larger set of 25, repeating the process for values of nT* between 3 and 10. All 

procedures were otherwise identical to those used for binary classification.

Classification of single-subject data

For classification of single-subject data, we used data drawn from several previous studies, 

including a large study of N-back working memory37,38, five studies of emotional 

experience and reappraisal39-43, and three studies of pain14,44. Methodological details for 

these studies can be found in the corresponding references. For working memory, we used 

single-subject contrasts comparing N-back working memory blocks to a fixation baseline. 
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For emotion studies, we used single-subject contrast maps comparing negative emotional 

pictures (from the IAPS set) to neutral pictures. For pain studies, we compared high and low 

thermal pain conditions.

Because the NBC was trained on binary maps (i.e., active vs. inactive), and single-subject p-

maps varied continuously, all single-subject maps were binarized prior to classification. We 

used an arbitrary threshold of P < 0.05 to identify ‘active’ voxels. Because the maps the 

classifier was trained on did not distinguish activations from deactivations, only positively 

activated voxels (i.e., N-back > fixation, negative emotion > neutral emotion, or high pain > 

low pain) were considered active. Negatively activated voxels and non-significantly 

activated voxels were all considered inactive. To ensure that all single-subject maps had 

sufficient features for classification, we imposed a minimum cut-off of 1% of voxels—that 

is, for maps with fewer than 1% of voxels activated at P < 0.05, we used the top 1% of 

voxels, irrespective of threshold. Once the maps were binarized, all classification procedures 

were identical to those used for cross-validated classification of study-level maps.

It is important to note that the studies and contrasts included in the single-subject 

classification analysis were selected using objective criteria rather than on the (circular) 

basis of optimizing performance. The results we report include all studies that were 

subjected to the classifier (i.e., we did not selectively include only studies that produced 

better results), despite the fact that there was marked heterogeneity within studies. For 

instance, one of the pain studies produced substantially better results (n = 41; sensitivity = 

80%) than the other two (total n = 34; sensitivity = 47%), likely reflecting the fact that the 

former study contained many more trials per subject, resulting in more reliable single-

subject estimates. Thus, the accuracy levels we report are arguably conservative, as they do 

not account for the potentially lower quality of some of our single-subject data.

Similarly, the contrasts we used for the three sets of studies were selected a priori based on 

their perceived construct validity, and not on the basis of observed classification success. In 

fact, post-hoc analyses demonstrated that alternative contrasts would have produced better 

results in some cases. Notably, for the emotion studies, using single-subject maps 

contrasting passive observation of negative IAPS pictures with active reappraisal of negative 

pictures would have improved classifier sensitivity somewhat (from 70% to 75%). 

Nonetheless, we opted to report the less favorable results in order to provide a reasonable 

estimate of single-subject classifier accuracy under realistic conditions, uncontaminated by 

selection bias. Future efforts to optimize the classifier for single-subject prediction—e.g., by 

developing ways to avoid binarizing continuous maps, improving the quality of the 

automatically-extracted data through manual verification, etc.—would presumably lead to 

substantially better performance.
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Figure 1. 
Schematic overview of NeuroSynth framework and applications. (a) Schematic of 

NeuroSynth approach. The full text of a large corpus of articles is retrieved and terms of 

scientific interest are stored in a database. Articles are retrieved from the database based on 

a user-entered search string (e.g., the word ‘pain’), and peak coordinates from the associated 

articles are extracted from tables. A meta-analysis of the peak coordinates is automatically 

performed, producing a whole-brain map of the posterior probability of the term given 

activation at each voxel (i.e P(Pain|Activation)). (b) Two types of inference in brain 

imaging. Given a known psychological manipulation, one can quantify the corresponding 

changes in brain activity and generate a forward inference; however, given an observed 

pattern of activity, drawing a reverse inference about associated cognitive states is more 

difficult, because multiple cognitive states could have similar neural signatures. (c) Given 

meta-analytic posterior probability maps for multiple terms (e.g., working memory, emotion, 

pain), one can classify a new activation map by identifying the class with the highest 

probability P given the new data (in this example, pain).
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Figure 2. 
Comparison of previous meta-analysis results with forward and reverse inference maps 

produced automatically using the NeuroSynth framework. Meta-analyses were carried out 

for working memory (top row), emotion (middle row), and physical pain (bottom row), and 

mapped to the PALS-B12 atlas45. (a) Meta-analytic maps produced manually in previous 

studies14-16. (b) Automatically generated forward inference maps displaying the probability 

of observing activation given the presence of the term (i.e., P(Activation|Term)). (c) 

Automatically generated reverse inference maps display the probability of the term given 

observed activation (i.e., P(Term|Activation)). Thus, regions in (b) are consistently 

associated with the term, and regions in (c) are selectively associated with the term. To 

account for base differences in term frequencies, reverse inference maps assume uniform 

priors (i.e., equal 50% probabilities of Term and No Term). Activation in orange/red regions 

implies a high probability that a term is present, and activation in blue regions implies a high 

probability that a term is not present. Values for all images are displayed only for regions 

that are significant for a test of association between Term and Activation, with a whole-brain 

correction for multiple comparisons (FDR = .05). DLPFC = dorsolateral prefrontal cortex; 

dACC = dorsal anterior cingulate cortex; aI = anterior insula.
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Figure 3. 
Comparison of forward and reverse inference in selected regions of interest. (a) Labeled 

regions of interest displayed on lateral and medial brain surfaces. (b) Comparison of forward 

inference (i.e., probability of activation given term P(T|A)) and reverse inference 

(probability of term given activation P(A|T)) for the domains of working memory (top), 

emotion (middle), and pain (bottom). Bars with asterisks denote statistically significant 

effects (whole-brain FDR, q = .05). dACC = dorsal anterior cingulate cortex (coordinates: 

+2, +8, +50); aIns = anterior insula (+36, +16, +2); IFJ = inferior frontal junction (−50, +8, 
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+36); pIns = posterior insula (+42, −24, +24); aPFC = anterior prefrontal cortex (−28, +56, 

+8); vmPFC = ventromedial prefrontal cortex (0, +32, −4). L and R refer to the left and right 

hemispheres, respectively.
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Figure 4. 
Three-way classification of working memory (WM), emotion, and pain. (a) Naive Bayes 

classifier performance when cross-validated on studies in the database (left) or applied to 

entirely new subjects (right). Sens. = sensitivity; Spec. = specificity. (b) Whole-brain 

maximum posterior probability map; each voxel is colored by the term with the highest 

associated probability. (c) Whole-brain maps displaying the proportion of individual 

subjects in the three pain studies (total n = 79) who showed activation at each voxel (P < .

05, uncorrected), averaged separately for subjects who were correctly (n = 51; top row) or 

incorrectly (n = 28; bottom row) classified. Regions are color-coded according to the 

proportion of subjects in the sample who showed activation at each voxel.
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Figure 5. 
Accuracy of the naive Bayes classifier when discriminating between all possible pairwise 

combinations of 25 key terms. Each cell represents a cross-validated binary classification 

between the intersecting row and column terms. Off-diagonal values reflect accuracy (in %) 

averaged across the two terms. Diagonal values reflect the mean classification accuracy for 

each term. Terms were ordered using the first two factors of a principal components analysis 

(PCA). All accuracy rates above 58% and 64% are statistically significant at P < .05 and P 

< .001, respectively.
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