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A species factory refers to the source that gives rise to an exceptionally large
number of species. However,what is it exactly: a place, a time or a combination
of places, times and environmental conditions, remains unclear. Here we
search for species factories computationally, for which we develop statistical
approaches to detect origination, extinction and sorting hotspots in space
and time in the fossil record. Using data on European Late Cenozoic mam-
mals, we analyse where, how and how often species factories occur, and
how they potentially relate to the dynamics of environmental conditions.
We find that in the Early Miocene origination hotspots tend to be located in
areas with relatively low estimated net primary productivity. Our pilot
study shows that species first occurring in origination hotspots tend to have
a longer average longevity and a larger geographical range than other species,
thus emphasizing the evolutionary importance of the species factories.
1. Introduction
While it is clear that rates of evolution have varied in the past [1], in which way
they vary remains at the centre of palaeobiology research. Some places or times
tend to give rise to more new species than others. To explain this Vermeij &
Dietl [2] proposed the majority rule, which posits that the source of new or
recovering populations is to be found primarily in productive and large
environments. While not tested with data, intuitively, their hypothesis makes
sense. Leaving aside complications due to dependence on carrying capacity
[3] or diversity [4], environments that cover larger areas should accommodate
more species [5] and thus, under fixed rates of evolution, could potentially pro-
duce more new species. The more new species are produced, the higher the
chances are for them to spread and become common. How else could it be?

The concept of the species factory [6] describes quite the opposite phenom-
enon, where rather than originating from productive environments, many
successful species originate from harsh or marginal environments [7,8]. Three
examples of species factories in the mammalian record, the latest Middle Mio-
cene origins of the Pikermian palaeobiome in the Sub-Parathetyan province [7],
the Pliocene origin of Pleistocene megafauna in the Tibetan Plateau [9] and the
rise of arid-adapted fauna in the Plio-Pleistocene of the Eastern African Turkana
Basin [8], all point to trends of environmental change. The key condition is
that marginal environments that are initially rare later become widespread,
following persistent directional climate change, such as cooling or drying.

Here we ask whether some places, times, or combinations of places, times
and types of environment give rise to abnormal numbers of new species, and
if so, can we define and detect such hotspots in the mammalian fossil record
computationally? We further ask whether species factories are just about
luck, getting started ahead in environments that will later become widespread,
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or whether species factories could arise for other reasons. To
answer this we search for exceptional patterns in the fossil
record and analyse their contexts.

Even though the fossil record will remain incomplete
[10,11], as more fossil data are accumulated and analysed, a
more comprehensive picture emerges. In recent decades,
fossil data from many sources have been put together to form
large-scale fossil databases [12]. The availability of such vast
resources has accelerated the development and usage of com-
putational methods to analyse them, for instance, for tracking
faunal communities and their dynamics [13–19], estimating
biochronology of fossil localities [20–22], or reconstruction of
their paleoenvironments [23–28].

Various techniques have been developed to make infer-
ences on diversification rates that take the incomplete and
biased sampling of the fossil record into account, such as
sub-sampling [29,30] or capture–mark–recapture methods
[31–36]. While most of the studies have concentrated on
how origination and extinction rates have changed over
time, spatial aspects are gaining attention as well, especially
with availability of dedicated analysis toolboxes [37].

For analysing species factories our task is to detect anomalies
in macroevolutionary patterns over space and time. We statisti-
cally detect exceptional origination, extinction and sorting
patterns accounting for spatial resolution of the fossil record.
By sorting we mean appearance of species that originated else-
where and local extinctions. While many analyses of the
mammalian record operate at the genus level [29,30,32,38], and
there are good arguments for such choice [39], here we deliber-
ately analyse the mammalian fossil record at the species
level in order to reason about species factory phenomena.
Our computational approach is thus tuned to work with
species-level data that often lackprecise taxonomic identification.

Our data analysis focuses on the Late Cenozoic record of
mammalian species occurrences in Europe, reported in the
NOW database of fossil mammals [40]. We flag origination,
extinction and sorting hotspots in this region and analyse
them in the context of palaeoclimatic conditions. For recon-
structing palaeoclimatic conditions, we use existing dental
ecometric models [27] that rely on composition of plant
eating mammal communities and characteristics of their teeth.

In order to detect anomalies, we need baselines to quantify
what patterns are normally expected, and we need to do it as
locally as possible in time and space. For this purpose, we
train a logistic regression model that gives us an expected
number of occurrences of new species in a given place and
time depending on sampling intensities in the current and the
previous time unit. Then, we ask statistically, what is the prob-
ability to find this many or more occurrences of new species at
any given locality in that time interval by chance. If that prob-
ability is low, we take that as a potential indicator of an
exceptionally high origination rate at this place and time, and
flag such a locality as a potential species factory. This approach
extends naturally to flagging exceptional patterns of extinction
and species sorting in space and time, which we analyse in
the context of palaeoenvironmental reconstructions.
2. Study region and fossil data
We retrieved a public version of fossil data from the NOW
database [40] on 26April 2020. The data contained information
on species occurrences at localities, stratigraphic context of
localities, their age estimates, taxonomic affiliation of species
and their ecological characteristics.

We delimited our analysis to Europe, similar to previous
studies [41], as within −25° to 40° of longitude and latitude
above 35°. However, we referred to the global data to deter-
mine globally first and non-first occurrences of species, as
well as times of their global extinction.

We selected the localities falling within the age range of
European Land Mammal ages (known as MN units) [42,43],
covering age range from 23Ma to 1.9Ma [44] (MN1–MN17),
we also included two informal MQ units that covered the
time from 1.9Ma to 0.01Ma (MQ18–MQ19). All time bounds
that we used are listed in the electronic supplementary
material. We used MN and MQ units as time bins for the
analysis. The analysis of species factories was on bins MN2–
MQ18, while the first and the last bin was only used for
determining the first and the last observed occurrences.

The selected snapshot of data contained 48 318 rows of
data for the global dataset, that is 48 318 occurrences of
9692 unique species over 5360 localities. The spatially
restricted dataset (only localities with longitude between
−25° and 40° and latitude above 35°) included 22 939
occurrences of 2937 unique species over 2822 localities.

Data describing dental traits of the species came from
the NOW database as well. We used the relative molar crown
height (hypsodonty) and the number of longitudinal cutting
edges (lophs) recorded at the species level. All the occurrences
from species of the following orders were included in the
dental-based environmental estimations: Perissodactyla,
Artiodactyla, Primates, Proboscidea and Hyracoidea. Hypso-
donty in NOW is reported as categories ‘bra’, ‘mes’, ‘hyp’
and ‘hys’, corresponding to brachydont, mesodont, hypsodont
and hypselodont. We transformed this into an ordinal variable
assigning values 1 and 2 for ‘bra’ and ‘mes’, respectively, and 3
for both ‘hyp’ and ‘hys’ following [25]. Longitudinal loph
count in NOW ranged from 0 to 3 (many), but following [27],
from which the predictive models come, we capped the
number of longitudinal lophs at 2.
3. Computational methods
Our main methodological task is to define what makes the pat-
terns of origination exceptional. The main challenge is varying
sizes of the number of species at localities in time and space,
which may be an artefact due to uneven sampling of fossil
finds or it may be a genuine variation in diversity due to vary-
ing carrying capacity of the environment, or both. Rather than
assuming and modelling sampling process for the purpose of
data ‘correction’, we aim to directly model expectations for
exceptional and non-exceptional patterns of occurrences
along with any variations in sampling that there may be.

(a) Detecting exceptional origination (species factories)
Our task is to detect areas in space and time that show excep-
tionally high amounts of first occurrences. We take this as a
potential sign of origination hotspots (species factories).

All else being constant we would expect to see high num-
bers of first occurrences in areas and times from which we
have many samples from. Looking at the ratio of first to all
occurrences does not quite solve the problem of exaggerated
number of first occurrences. Exaggeration would be the
highest if we proceed from a very poorly sampled time bin
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Figure 1. A toy example on spatial weighting: (a) assumed geographical area of interest at the current time unit, (b) the same geographical are at the previous
time unit. A is the focal point (a potential species factory) for which the regression is made. Dots indicate nearby localities with fossil occurrences. A circle of a fixed
radius (e.g. 500 km) is drawn around the focal locality A in figure (a) with another circle drawn in figure (b) at the same place geographically.
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to a very intensively sampled time bin. Fossil data will never
be complete enough for this not to happen at all, but the
uneven sample sizes at different localities may cause us to
miss even more new species than on average. Sample sizes
may differ from locality to locality not only due to uneven
preservation or recovery, but also due to different productiv-
ities of environments. Less productive environments would
generally accommodate fewer species. In addition, the
number of occurrences may differ due to differences in time
averaging, that is, some localities might have accumulated
organismal remains for longer time than others.

Existing statistical methods for correcting for unequal
sampling, including capture–mark–recapture [45–49] do not
take into consideration potential variations in diversity due
to varying productivity of environments. In other words,
they require productivity of the environment (and thus orga-
nismal diversity) to be constant over time and attribute all
differences in diversity to uneven sampling. This does not
suit our purpose, where we aim to analyse species factories
in the context of environmental change.

Here we make a pilot attempt to circumvent this challenge.
When determining the baseline origination threshold we aim
to model transitions rather than absolute states. Our model
assumes that the magnitude of environmental change trends
are comparable across time units, despite absolute differences
in productivity. We rely on the assumptions that the carrying
capacity is similar locally geographically and that it changes
in a similar way over time for localities that are close to each
other geographically. Thus, for each locality of interest in
time and space we fit an individual localized model, which
captures changes in nominal diversity taking into account
its neighbouring localities. The main assumption behind this
approach is that differences in diversity of spatially nearby
localities are due to sampling, but differences across time
units over localmean diversity is due to changes in the carrying
capacity. With these spatially explicit models we aim to predict
the numberof first occurrences to be observed given the sample
size, no matter whether the number of occurrences is large or
small due to sampling, productivity or time averaging.

We model the expectation for the number of first occur-
rences as a function of sampling over consecutive time bins.
We model the number of events, not rates. For this, we
train a logistic regression model on locally weighted data.
Logistic regression is a classical statistical model that intern-
ally has a linear regression, which is topped up by a
sigmoid function such that the output of the model is a
probability estimate between 0 and 1. The logistic regression
has two input variables representing sampling intensities
‘before’ and ‘now’ (for last occurrences these would be
‘now’ and ‘after’) and one target variable denoting whether
the occurrence is a first occurrence of a species in time.

We weight occurrences spatially such that in the
regression modeling occurrences that are close to our focal
point are weighted more than occurrences that are far
away. Figure 1 illustrates the spatial treatment. For this toy
example, let us assume that locality A has four occurrences
with one first occurrence, locality B has three occurrences
and locality C (in time unit T− 1) has five occurrences. Dis-
tance from locality A to B is 400 km and C is 350 km away
from the centre of the circle (locality A). Then, there are
4 + (1− 400/500) · 3 = 4.6 weighted occurrences at time unit
T and (1− 350/500) · 5 = 1.5 weighted occurrences at time
unit T− 1. We add one row (data point) for each occurrence
in locality A to the overall regression model. In this case,
we add four identical rows of [1.5, 4.6] as inputs and we
add the vector [1, 0, 0, 0] to the overall target vector. Similar
procedure is repeated for every locality in every time unit
starting from MN2 so that every occurrence is included
once in the dataset on which the model is fit.

The logistic regression gives us a way to estimate the
probability that a given occurrence (with given sampling den-
sities) is a first occurrence and then, given howmany weighted
occurrences a locality has, we can estimate how many
weighted first occurrences to expect at any given grid point.
Then, we estimate the probability of observing as many or
more weighted first occurrences as counted at the focal grid
point using the binomial distribution. Further details on
modelling data and methodological choices are described in
electronic supplementary material, the appendix.

(b) Generalization to exceptional extinction patterns
and species sorting

Similar principles as we described for identifying exceptional
origination hotspots can be applied to analyse exceptional
patterns of extinction and sorting. For extinctions, instead of
first occurrences one should estimate the probability of
observing as many or more last occurrences. Otherwise, the
process is analogous to origination, but when creating the
regression dataset, we look at occurrences in the current
and next time unit (instead of current and previous), and
we use occurrences within time units MN1–MQ18.

Detecting exceptional species sorting patterns (immigration
and local extinction) requires an additional data processing
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step.We look at a geographical area around the focal point with
a given radius in two consecutive time units (‘current’ and ‘pre-
vious’ for immigration, and ‘current’ and ‘subsequent’ for local
extinction). For both time units, we list all the unique species
observed within the focal area. Then, we remove all species
from those two lists that either are first seen in the second
time unit or last seen in the first time unit, i.e. we only keep
species that actually exist somewhere in the world in both
time units. Comparing these two lists now give us the lower
bound on which species were present in the focal area in both
time units and which may have become locally extinct or immi-
grated into it.

When creating the regression dataset to evaluate local
extinction, we add a row for each species that is listed in the
first time unit and include the sum of weighted occurrences
in the first time unit and the second time unit as inputs of
the model, and a one or a zero as the target, depending
whether the species went locally extinct or not. Here, local
extinction refers to species that were present in the focal area
in the first time unit but not in the second, while they were
observed somewhere else in the world at that time bin. The
data for the immigration are prepared analogously. Similarly
to origination and extinction, we fit a logistic regression with
two input variables, weighted occurrences in the focal area
in the two consecutive time units, and an intercept to the data.

(c) Estimation of environmental contexts
Dental characteristics of plant eating mammal communities
can be used to infer palaeoenvironmental conditions [25].
Here, we use the regression model presented by Liu et al.
[27] that uses dental crown height (hypsodonty, HYP) and
the count of longitudinal cutting edges (lophs, LOP) of
molar teeth within large plant eating mammal communities
as inputs to estimate the primary productivity (NPP) of the
environment. As any predictions about the past, these
estimates are coarse and come with uncertainties.

We weigh observations spatially the same way as
described in figure 1 in attaining average distance weighted
HYP and LOP values for every grid point (where HYP and
LOP scores are available in NOW database). HYP values
are ordinal, roughly corresponding to the ratio scale. LOP
values are counts. Taking the average over HYP and LOP is
meaningful biologically and computationally.

(d) Implementation
The data and analysis pipeline is available on

GitHub (https://github.com/jaksticks/NOW_codes). The
code is in Python. We used the statsmodels package for
Python to perform all the regression analyses. The analysis
is scripted in Jupyter notebooks.

For our main analysis, we used a radius of 500 km for the
spatial aggregation. We also performed the same analyses
using a 100 km radius, the corresponding complementary
plots are available in the code repository.
4. Results
(a) Palaeoenvironments
Figure 2 maps estimates of environmental productivity. We
observe that Early Miocene eastern Europe (Turkey in particular)
begins to drop in NPP before the rest of Europe. This becomes
particularly evident in MN9 and MN10. By MN11 and MN12
most of Europe has also dropped considerably in NPP. From
MN13 to MN16 there appears to be a fairly clear division
between more lush environments (higher estimated NPP) in cen-
tral or northern central Europe, whereas western and eastern
Mediterranean remain arid (low in estimated NPP). From
MN17 onwards we observe further overall aridification.

Figures 3 and 4 depict identified origination, extinction
and sorting hotspots. Figures of origination, extinction, immi-
gration and local extinction separately are given in electronic
supplementary material.

In the earlier part of the Miocene, up to and including
MN10, origination hotspots are primarily on the more arid
side of the environmental gradient (figure 5a). Extinction hot-
spots appear quite dynamic throughout (figure 5b).
Meanwhile, the estimated productivity for sorting hotspots is
mostly in par with the mean for non-hotspots up to and includ-
ing MN7–8 (figure 5c,d). Immigration hotspots show quite
wild environmental fluctuations between MN9 and MN12,
and then up to MN17 they tend to be found on the more
lush side compared to non-hotspot areas. Local extinction
also shows much more variation (compared to non-hotspots)
after and including MN10 than it did prior to that time bin.
(b) Faunal dynamics in the Early Miocene
The Early Miocene (MN2–MN4) displays widespread
origination hotspots occurring (figure 3). While this may be
partially due to modest representation of older records in
Europe in the NOW data, the identified hotspots in these
Early Miocene times extend far beyond the region with
increasingly dense sampling (electronic supplementary
material, figure S12). In particular, central Europe as well as
Turkey and Greece continuously appear as hotspots, most
prominently in MN3. At the same time bin (MN 3) central
Europe appears as an immigration hotspot (figure 4). The
map of productivity estimates suggests that during MN3 cen-
tral Europe might have had slightly more productive
environment than the surrounding areas and also more pro-
ductive than in the previous time step. Turkey and Greece
lack large mammal data to display environmental estimates
for MN3, but the territory appears much more productive
than the European context in MN4 and also partially lights
up as an origination hotspot.

The red area in MN2 in the Iberian peninsula does not
have central localities (no black dots), but lights up red due
to neighbouring localities within 250 km (500 km radius)
showing exceptionally many new species. Perhaps in future
work this could be remedied with an exponentially decaying
weight scheme for the occurrences or by cutting out grid
points that are too far away from any localities.

Figure 5 compares environmental estimates at identified
hotspots against regular areas over time. We see that overall
statistically in the Early Miocene origination hotspots tend
to occur at the more arid end of the environment, thus the
visual pattern in central Europe and Turkey makes an excep-
tion. An interesting observation emerges when comparing
trends, we can see that the estimated productivity around
origination and extinction hotspots steadily increases over
MN2–MN4 against more or less steady level of productivity
for regular sites at the same time period. At the same time,
immigration patterns show the reverse—immigration hot-
spots stay at the steady level while regular spots show an

https://github.com/jaksticks/NOW_codes
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upward trend. Intuitively, this makes sense, origination and
extinction hotspots seem to be at the frontier of environ-
mental change, whereas immigration hotspots are those
places that carry on the previous conditions while globally
the environment changes; in other words, refugia.
(c) Faunal dynamics in the Middle Miocene
The Middle Miocene appears as time of stability in terms of
origination and extinction. One prominent area is northeast
Spain, which appears as an origination hotspot already
since MN4 and carries onwards as a hotspot all the way
through MN7–8. This might be related to a known diachrony
of the MN system, with the temporal time correlates of MN
units 4–6 being consistently younger in Spain than in the east-
ern Mediterranean or central Europe, so that some actually
later-occurring taxa might appear to occur ahead of their
time in Spain [50]. Despite this offset, Turkey also displays
recurring origination hotspots in the same time frame, most
prominently in MN5. Thus it would clearly be premature to
attribute these patterns to diachrony alone.

While the majority of Europe remains relatively stable in
terms of origination, many more hotspots of sorting appear,
which are also dynamically intermixed during this period.
Migration patterns that start in MN4 continue through
MN5—geographically central Europe acts as a source area,
while southeast and (later) southwest act as sink hotspots.
It seems this could be a natural succession of the Early Mio-
cene species factory in central Europe; the ‘manufactured’
species now move away. Environmentally, we indeed see
(figure 2) that the directions of dispersal preserve slightly
higher productivity in MN5, especially the southwest.

In MN6 and even more so in MN7–8 the directions of
species sorting hotspots reverse—the central north becomes
the immigration hotspot. However, there is no clear environ-
mental contrast in association with this. The box plots
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comparing environmental conditions of sorting hotspots with
non-hotspots are more dynamic than in the Early Miocene,
the conditions progress to more arid in MN6, but then go
back to the Early Miocene level in MN7–8.
Overall, distribution of conditionsof sortinghotspots against
background conditions strongly suggest that species sorting
tracks stable conditions. It does not mean that conditions need
to remain stable at the same place.
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We rather see that when many sorting hotspots occur (like
in the Middle Miocene here), those hotspots, especially the
immigration hotspots, conserve the environmental conditions
of previous times, acting as refugia [51].

(d) Faunal dynamics in the Late Miocene
The known Vallesian pattern is seen in MN9 western Europe,
but this appears to be a local, rather than a continent-wide
event, which is in line with recent research [52]. Eastern
Europe, however, does exhibit another extinction hotspot in
MN9 (figure 3). Both Spain and eastern Europe spots show
as notably more arid than the rest during the time period
(figure 2). At the same time Turkey, which also shows as extre-
mely arid in MN9, appears as an origination hotspot. After
several time units of stability, associated with higher pro-
ductivity estimates during MN10–MN12, in MN13 Turkey
displays large local extinction and permanent extinction hot-
spots, which might be interpreted as biodiversity sinks. The
estimates show that in MN13 Turkey is extremely arid along
with Spain, while the northern territories across Europe
return to more productive environments.

Overall, the Late Miocene has the most a notable dip
in estimated aridification in MN11 and MN12 (figure 6). In
MN11, both local and permanent extinction hotspots are by
a wide margin environmentally harsher than the rest of the
localities (figure 5). Those might be interpreted as sink
areas. Those highly prominent local and permanent extinc-
tion hotspots in MN11 cover large areas in central-southern
Europe (figures 4 and 3). Italy at the same time acts as an
origination hotspot, quickly becoming an extinction hotspot
in the following MN12 time unit. This probably reflects
the presence of insular, highly endemic faunas in Italy at
this time.

The origination hotspot trend in the Late Miocene is simi-
lar to the pattern observed in the Early Miocene. Origination
hotspots start the most arid as compared to the background
conditions and steadily increase in productivity while the
background conditions follow the European v-shaped trend
in average aridity. In other words, it seems that the defining
feature of species factories to be exceptional environmentally
and represent conditions that soon will become wide spread
broadly holds. In the Late Miocene, species factories start arid
and then become like the rest. It is more difficult to make
clear conclusions from immigration contrasts at the same
period, but at least in MN10, which is the first notable time
step towards more arid conditions, origination hotspots are
notably more arid than the background, while immigration
hotspots are notably less arid than the background (figure 5).
(e) Faunal dynamics in the Pliocene and Pleistocene
The final stage of our analysis firstly (MN14–MN16) display
highly polarized environments, continuing the pattern from
MN13—productive in the north and more arid in the south,
and then at the latest time stages (MN17–MQ18) everything
becomes quite arid. In MN14, the productive northeast acts
as a large origination hotspot, to an extent continuing into
MN15 and shifting south in MN16 (figure 3). Again, MN16
is just before everything gets more arid and at that unit orig-
ination hotspots are in harsher conditions than the rest of the
localities (figure 5). At the same time of polarized Europe
MN14 and MN15 show notable immigration hotspots in cen-
tral Europe (figure 4) that appear notably more productive in
terms of NPP than the background conditions (figure 5). In
MN16, when the last margins of the productive north begin
to disappear central Europe and especially central eastern
Europe become one huge local extinction hotspot (figure 4).
While the productivity maps look like the Black Sea shores
in MN16 might have acted as a refugium, the question is
why species so massively go locally extinct and why is this
not becoming a permanent extinction hotspot neither in
MN16 nor in MN 17 (figure 3) when the last green colour
disappears from NPP estimates (figure 2).

The final periods of the analysis are as quiet as they are
dramatic. MN17 is extremely stable in terms of origination
and extinction, but shows massive local extinction hotspots.
An open question is in what other places they continuing
after local extinctions. MQ18 shows extinction hotspots in
the south and several large origination hotspots in the
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north, as well as massive immigration hotspots. Could those
that left in MN17 now be getting back?

( f ) Species longevity and occupied area
Considering only species that had a first and a last occurrence
within MN2–MQ18 in the study area, we find that the aver-
age age of origination hotspot species (species that had at
least one first occurrence in an origination hotspot) is 3.5
Myr, whereas non-hotspot species (species without any first
occurrence in an origination hotspot) only had an average
observed lifespan of 2.5Myr. If we for a moment disregard
species that occurred in a single time unit, then the corre-
sponding average longevity of the remaining species would
be 5.0 and 4.1Myr, respectively.

We further estimated the geographical ranges of each
species over their lifetime. Specifically, for each species and
time unit, if a given species had three or more occurrence
locations, we calculated the area of the convex hull of those
locations. When only two locations existed for a given species
and time unit, we calculated the distance between those
locations and assumed a 10 km wide rectangle between
those two locations for which we calculated the correspond-
ing area. If there was only one location for a given species and
time unit, we assumed the species range to be zero for that
instance. We found that origination hotspot species occupied
an average area of 135 000 km2 and non-hotspot species occu-
pied an average area of 86 000 km2 over their longevity.
Excluding single time unit species, we found that hotspot
and non-hotspot species’ average occupied areas were
229 000 km2 and 177 000 km2, respectively.

We also looked at average longevity and occupied areas for
species that had a last occurrence in an extinction hotspot.
We found that the mean longevity was 3.1 and 2.9Myr for hot-
spot and non-hotspot species, respectively. Removing single
time unit species, we found that the mean longevity for
hotspot species was 4.6Myr and for non-hotspot species it
was 4.5Myr. The mean occupied area for hotspot species
was 176 000 km2 and for non-hotspot species it was
68 000 km2. Removing single time unit species, we found
that the mean occupied area for hotspot species was
333 000 km2 and for non-hotspot species it was 125 000 km2.
5. Discussion
Species factory as an evolutionary concept has existed as part
of the informal discourse of evolutionary palaeontologists
for a long time [7,53], but apart from our earlier study in
adaptive dynamics [54] appears not to have been defined
explicitly or formalized computationally. The term has been
used in a broad sense for the source area of exceptionally
many species [6]. Empirically the concept has been applied
in several contexts to explain the dynamics of mammalian
faunas—the latest Middle Miocene origins of the Pikermian
palaeobiome in the Sub-Parathetyan province [7], the Plio-
cene origin of Pleistocene megafauna in the Tibetan Plateau
[9] and the rise of arid-adapted fauna in the Plio-Pleistocene
of the eastern African Turkana Basin [8]. How prevalent the
phenomenon is across the world and what macroevolution-
ary mechanisms may be behind it has remained unclear.

Our attempt to define and account for species factories
and related concepts in a systematical way at a large spatial
and temporal scale shows that the phenomenon can be
detected computationally. The phenomenon, of course
depending on the thresholds for deciding what is excep-
tional, appears to be more common than the few anecdotal
cases known previously. Based on the patterns resulting
from our analysis, it seems that species factories are by and
large a matter of being present in locations that represent con-
ditions that are about to become widespread. Whether
adaptations leading to these originations are somehow
special or simply a matter of lucky placement remains an
open question but from our pilot analysis we see that species
from recognized species factories do tend to live longer and
become more widespread than species on average. We hope
follow up studies will address this question in more detail.

A refugium is the macroevolutionary counterpart of
species factory. The term refers a location that supports
relict populations of previously more widespread species.
The concept has been commonly used to describe survival
through and recovery from adverse conditions, such as gla-
cial–interglacial cycles. Here we label as refugia areas that
receive abnormally many survivors that have become locally
extinct elsewhere. Such areas can be a long or short term
refugia depending on what happens next. The absence of
extinction hotspots along with refugia implies that a
refugium was successful; the species did not come there to
die, but to survive through bad times and carry on.

From this perspective, species sorting appears as a more
complicated phenomenon than origination, not expected to
follow any simple pattern. It draws on availability of
immigrants, availability of dispersal routes, the absence of
competitors and other such factors that are challenging to
account for analytically.

The interpretation of the extinction hotspots is less clear,
but from the perspective of species survival they could be
either well-sampled places of bad luck at bad times, or they
could be short-lived refugia. An open question concerns the
large differences in species range between extinction hotspot
and non-hotspot species. Why do common species appear
there last before extinction, while rare species do not?
Could this be a matter of broad versus local adaptation?

Another open question is what proportion of species orig-
inate from ‘species factories’. While we showed that species
factories exist, we could not within the methodology of our
pilot analysis assess the prevalence of the factories. How
common are they? Clearly, species factories cannot be as
common a mechanism as the majority rule postulated by
Vermeij & Dietl [2]. A species factory is an exception but
not an unexpected one. It does require a certain configuration
of environmental changes over time and space but over
millions of years of environmental change that particular
configuration will inevitably occur from time to time.

The computational methods put together in this paper
allow us to find exceptional patterns from fossil occurrence
data. To the extent of the coverage that the fossil record can
give us, we expect these patterns to be robust with a natural
level of noise present in the data. The tailored computational
solution involved many design choices. As always, choices
might have been different, the solution that we report here
was driven by feasibility and transparency of the approach.
We did not explicitly model sampling effects on diversity
versus true variation in diversity due to changing carrying
capacity. This is an open question for which we do not
have resolutions to offer yet. Nonetheless, we hope that we
captured both effects implicitly to a crude approximation
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via locally weighted models. Rather than modelling sampling
versus carrying capacity explicitly, the idea of the current
study was to model how many events are expected assuming
that the carrying capacity was similar locally geographically
and did not change fast in time. In this case, we expected
the localized regression approaches with local weighing to
take care of potential unevenness in sampling.

The hotspots that we found open broader research direc-
tions for future: what is the community composition, what
are the environmental conditions, are there common features
between different hotspots? Do species from local extinction
hotspots tend to move to immigration hotspots? Identifying
and studying these different hotspot areas can help us
learn more about important evolutionary and ecological
mechanisms over geological time scales.
R.Soc.B
289:20212294
6. Conclusion
We set out to identify species factories computationally. For
that we developed a regionally informed statistical approach
to detect exceptional places and times of species origination,
extinction and sorting in the fossil record. Applying this
approach to the mammalian fossil record of the Late Ceno-
zoic we found that early hotspots were characterized by
species adapted to environments that subsequently became
more common, giving these hotspot species a potential selec-
tive advantage. Our pilot results also suggest that species
originating in hotspots had on average longer longevity
and larger geographic ranges than other species.

Species factories thus appear to be a real phenomenon.
Our analysis suggests that species factories can be found par-
ticularly in synch with gradual but persistent directional
changes of environmental conditions. A species from the fac-
tory is thus a lucky species—appearing at the right time in
the right place, and with the right set of evolutionary raw
material for the new adaptations required.
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