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The rapid spread of SARS-CoV-2 leading to the COVID-19 pandemic with more than 400,000 deaths world-
wide and the global economy shut down has substantially accelerated the research and development of
novel and efficient COVID-19 antiviral drugs and vaccines. In the short term, antiviral and other drugs have
been subjected to repurposing against COVID-19 demonstrating some success, but some excessively hasty
conclusions drawn from significantly suboptimal clinical evaluations have provided false hope. On the
other hand, more than 300 potential therapies and at least 150 vaccine studies are in progress at various
stages of preclinical or clinical research. The aim here is to provide a timely update of the development,
which, due to the intense activities, moves forward with unprecedented speed.

Lay abstract: The COVID-19 pandemic took the whole world by surprise by its rapid spread causing enor-
mous destruction to the global health and economy. The unprecedented severity of the disease has led
to worldwide death tolls not seen since the Spanish flu pandemic in 1918. The spread of COVID-19 due
to modern mobility and the absence of efficient antiviral drugs and vaccines have forced administrations
all over the world to place societies under confinements and lockdowns. Accelerated attention has been
paid to the development of novel treatments and prevention of COVID-19. The review aims at providing
an update of the status on drug and vaccine development to eliminate the pandemic.
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Coronaviruses such as the α-coronaviruses HCoV-229E and HCoV-NL63 and β-coronaviruses HCoV-OC43 and
HCoV-HKU1 are endemic in human populations and have been associated with 15–30% of annual respiratory
tract infections [1,2]. However, the first major human outbreak in 2002–2003 with serious consequences was caused
by the SARS-CoV originating in Guangdong in China [3], which resulted in over 8000 recorded cases and 774
deaths [4]. The spread of SARS-CoV was relatively inefficient, which made it controllable through quarantining
and helped it to die out in June 2003 [5]. In 2012, another coronavirus-based outbreak occurred in Saudi Arabia
and other Middle Eastern countries caused by the novel MERS-CoV [6]. Fortunately, the outbreak did not spread,
but still resulted in 855 cases and claimed 333 deaths [7]. Bats have been suggested as the origin of MERS-CoV
although dromedary camels can act as intermediate hosts [8], which was confirmed by replication of MERS-CoV
in camel cell lines [9] and isolation of an identical virus from a person who had been in contact with an infected
camel [10].

SARS-CoV-2 causing COVID-19 was first detected in the city of Wuhan in China in December 2019 and spread
quickly throughout the world by person-to-person transmission leading to the worst pandemic since the Spanish
flu in 1918 [11,12]. Based on sequence comparison to virus isolated from SARS-CoV-2 infected patients, bats, snakes
and pangolins have been suggested as potential carriers of SARS-CoV [12]. One problem with diagnostics and
prevention of spread of SARS-CoV-2 relates to its asymptomatic carrier stage [13] and also to the existence of various
degrees of severity of COVID-19 ranging from mild flu-like symptoms to pneumonia and death [12]. As there
are neither antiviral drugs nor vaccines available, the pandemic has forced countries to take extreme quarantine
measurements including closing borders, sealing off hot spot areas, closing down nonessential businesses and air
traffic and confining people to their homes. Despite these radical measures more than 37 million people have
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Figure 1. Schematic attachment of SARS-CoV-2 on host cell. The S protein of SARS-CoV-2 attaches to host cells
through the ACE2 as the first step of virus entry.

been tested positive for COVID-19 and at least 1 million deaths have been recorded as of 13 October 2020 [14].
Independent of whether the pandemic will further expand, it will die out or return in a seasonal pattern, there is an
urgent need for diagnostics to identify carriers and persons, who have recovered from COVID-19 [15]. Moreover,
there is an acute need for developing new drugs against COVID-19. However, efficient vaccines against COVID-19
are absolutely essential for allowing life on the planet to return to what could be considered as normal conditions.
In this review, the potential targets for antiviral drugs and vaccine development are described. Moreover, the current
situation related to repurposing and novel drugs is summarized. Finally, an update on vaccine development is
presented including the current status on preclinical and clinical studies.

Targets for SARS-CoV
Certain stages of the lifecycle of coronaviruses, particularly the virus attachment and entry (Figure 1), provide
potential targets for antiviral drug and vaccine development against SARS-CoV-2 [16]. The ssRNA genome of
SARS-CoV-2 is encapsulated by the structural spike S, envelope E, membrane M and nucleocapsid N proteins [17].
The initial attachment of SARS-CoV-2 takes place between the RBD of the S1 region of S the protein and its
host cell receptor. This receptor interaction is of great importance as it defines the virus tropism as different
coronaviruses target different host cell receptors. For instance, MERS-CoV recognizes DPP4 [18], while both
SARS-CoV and SARS-CoV-2 target ACE2 [19]. For this reason, ACE2 has been selected as a drug target for the
development of angiotensin receptor blockers, monoclonal antibodies and even plant and mushroom extracts based
on traditional Chinese medicine [20]. Replication of viral ssRNA in the cytoplasm presents another important
target for antiviral drug development and several drugs acting on RdRp have been demonstrated to decrease viral
RNA production [21]. Moreover, RNAi-based gene silencing is another approach to inhibit viral replication [22].
Similarly, vaccine development relies strongly on efficient target identification independent on whether the approach
involves subunit or peptide vaccines or vaccines based on viral vector or nucleic acid delivery. The identification
of approaches for production of antigens, which can elicit strong neutralizing immune responses and potentially
provide protection against challenges with viral pathogens is essential. In the context of drug design, bioinformatics
can play an important role. In the case of vaccine development, immuno-informatics can additionally be of great
support.
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Table 1. Repurposing and novel antiviral drugs for COVID-19.
Drug Disease Outcome Ref.

Lopinavir/ritonavir + ribavirin MERS-like
MERS
SARS
COVID-19
COVID-19

Lower viral load in marmosets with MERS-like disease
Clinical trial in MERS patients ongoing
Favorable clinical response compared with ribavirin alone
No difference to patients receiving standard of care
No difference to arbidol treatment

[27]
[28]
[29]
[30]
[31]

Faviparavir COVID-19
COVID-19

Faster viral clearance, improved chest imaging
Initiation of Phase III trial in 150 COVID-19 patients in India

[32]
[33]

Remdesivir COVID-19
COVID-19
COVID-19

Clinical improvements in 68% of patients
Reduced time to clinical improvement
Reduced recovery time of patients

[34]
[35]
[36]

Hydroxychloroquine COVID-19
COVID-19

Reduced viral load, but study design and execution suboptimal
No advantage of hydroxychloroquine compared with standard of care in COVID-19 patients

[37]
[38]

Camostat mesylate SARS
COVID-19
COVID-19

Prevention of SARS-CoV spread in mouse model
Block of SARS-CoV-2 entry into lung cells
Recruitment in progress for Phase II study in COVID-19 patients

[39]
[40]
[41]

Sofosbuvir COVID-19 Planned clinical trial in COVID-19 patients [42]

Emodin
Resveratrol

SARS
MERS

Inhibition of SARS-CoV
Inhibition of MERS-CoV in vitro, potentially also SARS-CoV-2

[43]
[44]

Protease inhibitor
Ebselen

COVID-19
COVID-19

SARS-CoV-2 inhibition by virtual screening
Anti-inflammatory, antioxidant, cytoprotective effects in SARS-CoV-2 infected Vero cells

[45]
[46]

ACE2 inhibitor �RBD
+ Fc

SARS
MERS

Efficient inhibition of SARS-CoV in cell cultures
Blocking of MERS-CoV infection in mice

[47]
[48]

SARS-CoV/CoV-2 mAbs SARS
COVID-19

SARS-CoV mAbs m396 and CR3014 do not bind to SARS-CoV-2
47D11 neutralizes both SARS-CoV and SARS-CoV-2 in cell cultures

[49]
[50]

AT1R inhibitors, losartan COVID-19 Potential drug to be tested in patients with hypertension, diabetic kidney disease for disease
outcome/hospitalization

[51]

Repurposing drugs
The urgent need for drugs against COVID-19 has encouraged investigators to verify the potential of repurposing
drugs, previously developed as antiviral drugs for other viral or other infectious diseases. For instance, lopinavir-
ritonavir has been used for treatment and prevention of HIV/AIDS [23], remdesvir was designed for hepatitis C
and Ebola virus disease therapy [24] and hydroxychloroquine as an antimalarial agent [25]. Recently, in search of
additional repurposing drug candidates, 26 SARS-CoV-2 proteins expressed in human cells showed protein–protein
interaction with 332 human proteins by affinity-purification mass spectrometry [26]. The study further revealed 69
ligands, which included preclinical and clinical compounds as well as US FDA-approved drugs, of which at least
five targets and more than ten different chemotypes could present potential antiviral drug targets for COVID-19.
Potential repurposing drugs for COVID-19 therapy are summarized and listed in Table 1.

The combination of lopinavir/ritonavir has been demonstrated to inhibit HIV protease activity and has previously
been successfully used for the treatment of HIV/AIDS [52]. Related to coronaviruses, marmosets with a MERS-
like disease were subjected to lopinavir/ritonavir treatment, which resulted in improved clinical, radiological and
pathological outcomes and reduction in viral load [27]. Furthermore, a multicentre, placebo-controlled, double-
blind randomized clinical trial for lopinavir/ritonavir combination therapy is ongoing for hospitalized patients with
laboratory-confirmed MERS [28]. Related to SARS, a clinical study in 41 patients treated with lopinavir/ritonavir
and ribavirin presented favorable clinical responses compared with ribavirin treatment alone [29].

In the context of COVID-19, 99 patients receiving lopinavir/ritonavir showed no difference in clinical improve-
ment, mortality or detectable viral RNA levels in comparison to control patients subjected to standard of care [30].
In a single-blind, randomized clinical trial, 44 patients with mild or moderate manifestation of COVID-19 re-
ceived lopinavir/ritonavir or arbidol [31]. In general, no differences were seen for pharyngeal SARS-CoV detection,
pyrexia, cough or lung CT scans between the treatment and control groups although the percentage of patients with
severe or critical status was higher after lopinavir/ritonavir treatment (38.1%) compared with 12.55 for arbidol
and 14.3% for control groups. Based on 143 publications, lopinavir/ritonavir showed no clear benefit compared
with standard care [53]. Although there was some reduction in acute distress syndrome, the benefit–risk profile for
lopinavir/ritonavir cannot be considered positive for treatment of COVID-19 patients.
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The nucleoside analogue favipiravir is a potent inhibitor of viral RNA polymerase showing efficacy against a
wide range of influenza viruses [54]. Patients with laboratory-confirmed COVID-19 received either favipiravir or
lopinavir/ritonavir in addition to IFN-α [32]. The results demonstrated a shorter viral clearance and a significant
improvement in chest imaging for patients treated with favipiravir. Very recently, it was announced that Glenmark
Pharmaceuticals will start a Phase III clinical trial in India, where 150 patients with mild to moderate COVID-19
will be enrolled [33].

Much attention has been paid to the use of the adenosine nucleoside triphosphate analogue remdesivir for
COVID-19. For instance, compassionate treatment of 53 COVID-19 patients resulted in clinical improvement in
36 patients (68%), discharge of 25 patients and death of seven patients [34]. In another study in China, 158 patients
received remdesivir and 79 patients were subjected to placebo, which demonstrated no statistically significant
benefits of remdesivir treatment over placebo, although the time was reduced for clinical improvement to occur [35].
Moreover, in a double-blind, randomized, placebo-controlled trial in 1059 adult COVID-19 patients, remdesivir
showed shorter patient recovery time (11 days) compared with placebo (15 days) [36]. The Kaplan–Meier estimates
of mortality was also lower for patients receiving remdesivir (7.1%) than placebo (11.9%). Next, an additional
5600 patients will be enrolled in the trial, which will be conducted in China, France, Germany, Hong Kong, Italy,
Japan, Korea, The Netherlands, Singapore, Spain, Sweden, Switzerland, Taiwan, the UK and the USA.

Chloroquine and hydroxychloroquine with at least 80 registered clinical trials have recently received much atten-
tion as potential therapeutics against COVID-19, partly based on ill-founded political over-optimistic statements
and on claims from badly designed and executed clinical trials [20]. Although a study on 20 COVID-19 patients
in France demonstrated reduction in viral load, the trial design was poor and the results were unreliable with six
patients dropping out [37]. In an open label randomized controlled study in 150 hospitalized COVID-19 patients
in China, hydroxychloroquine administration did not show any advantage to standard of care treatment alone [38].
In contrast, the study indicated that hydroxychloroquine decreased the survival of hospitalized patients and in-
creased the risk of ventricular arrhythmias. Administration of chloroquine and hydroxychloroquine has also been
associated with adverse reactions in patients [55]. For instance, high dose chloroquine caused more severe delayed
ventricular repolarisation, QT prolongation, in COVID-19 patients in Brazil [56]. Moreover, patients treated with
hydroxychloroquine and azithromycin showed statistically significant changes in QT prolongation suggesting a
high risk for arrhythmia [57].

Camostat mesylate, a serine protease inhibitor has been used for pancreatitis and cancer treatment [39]. As
camostat mesylate acts as an inhibitor of transmembrane protease serine 2, it was demonstrated to block the
spread of SARS-CoV in a mouse model by prevention of the interaction with the CoV S protein [40]. More
recently, it was shown that camostat mesylate blocked the entry into lung cells of SARS-CoV-2 isolated from a
patient [41,58]. Previously, camostat mesylate has shown very few adverse events and the use of the drug for the
treatment of acute symptoms of chronic pancreatitis in more than 100,000 individuals in Japan, only one case
of acute eosinophilic pneumonia was reported [59]. Currently, an estimated 114 individuals will be recruited for a
double-blind randomized controlled Phase II clinical trial comparing camostat mesylate treatment to placebo in
COVID-19 patients [60].

Repurposing sofosbuvir, an anti-HCV antiviral agent, has been based on the high sequence and structural
homology of the RdRps of HCV and SARS-CoV-2 [61]. In silico modelling suggests that sofosbuvir can tightly bind
to the SARS-CoV-2 RdRp leading to viral eradication. Moreover, sofosbuvir is safe, well tolerated and shows high
intracellular stability and might therefore be suitable for clinical trials for COVID-19 patients [42].

Finally, as natural products have demonstrated inhibitory effect on viral infection and replication, they might
also be adequate for the treatment of COVID-19 [62]. Several flavonoids interfere with activation of the NLRP3
inflammasome showing activity against enteroviruses [63] and Dengue virus [43]. Moreover, the anthraquinone
compound emodin produced by many fungi species and found in Chinese herbs has been demonstrated to inhibit
the interaction of SARS-CoV S protein with ACE2 [44]. The polyphenol resveratrol, found in high concentrations
in grapes, red wine and sprouted peanuts has been shown to inhibit MERS-CoV infection in vitro and might also
be effective against SARS-CoV-2 [45,64].

Novel antiviral drugs
In addition to efforts to evaluate antiviral drugs developed for other indications, intense activity in development of
novel drugs is in progress (Table 1). In this context, the x-ray structure of the SARS-CoV-2 3CLpro protease alone
or complexed with α-ketoamides allowed the design of specific 3CLpro inhibitors with favorable pharmacokinetic
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Table 2. RNAi-based gene silencing against coronaviruses.
Delivery Disease Effect Ref.

siRNAs for S1S2/hairpin cDNA
siRNAs for S, nsP-12, 13, 16
siRNAs for S, nsP-12
siRNAs for ezrin

SARS
SARS
SARS
SARS

Inhibition of SARS-CoV replication in Vero E6 cells
90% inhibition of SARS-CoV replication in FRhK4 cells
Reduced SARS-like symptoms in rhesus macaques
Inhibition of actin-binding protein ezrin

[76]
[77]
[78]
[79]

shRNAs for ACE2 SARS Reduced SARS-CoV infection in Vero cells [80]

miRNAs for MERS-CoV ORF1ab MERS Computational predictions for MERS silencing [81]

siRNAs for MERS-CoV ORF1ab MERS Computational predictions for MERS silencing [81]

shRNAs for M, N PDCoV Decrease in viral titres and RNA levels in ST cells [82]

shRNAs for M PEDV Inhibition of viral RNA replication [22]

shRNAs for M SADV Inhibition of viral RNA replication [22]

siRNAs for ORF1ab, 3a, s, M, N COVID-19 Computational design of SARS-CoV-2 siRNAs [83]

properties in mice [46]. In another study, the N3 inhibitor of 3CLpro was identified by combined structure-
assisted drug design, virtual drug screening and high-throughput screening computer-aided drug design [65]. The
N3 inhibitor demonstrated irreversible inhibition of SARS-CoV-2 3CLpro. Additional high-throughput screening
identified ebselen, which showed anti-inflammatory, antioxidant and cytoprotective properties in SARS-CoV-2-
infected Vero cells.

Obviously for blocking virus entry, ACE2 is a relevant drug target for COVID-19, providing the advantage of
targeting the host ACE2 protein and not allowing the virus to circumvent the drug activity by mutations [47]. One
approach is to target the small RBD in the S protein, which has been indicated as the key domain for binding
ACE2 and it has demonstrated efficient inhibition of entry of SARS-CoV in cell cultures [48]. The same strategy
can be applied for the equivalent RBD for SARS-CoV-2. An alternative approach was applied for MERS-CoV,
where an Fc fragment was attached to the RBD protein to extend its circulation time and to block viral infection
in mice [66]. However, this strategy requires the elimination of cytotoxic Fc domain functions, since the RBD-Fc
fusion can also bind to normal cells [67]. A second similar strategy, already demonstrated for SARS-CoV entry and
replication [68], relates to the administration of an antibody that binds to the ACE2 protein. Another option is to
utilize a nanobody or VHH domains from camelids [69,70]. Importantly, although the ACE2 binding affinity is
similar for SARS-CoV and SARS-CoV-2, the furin cleavage site uniquely present in the SARS-CoV-2 S protein
provides the means for designing specific SARS-CoV-2 inhibitors [49]. In the context of therapeutic monoclonal
antibodies, the first SARS-CoV-2-specific human monoclonal antibody CR3022 demonstrated potent binding to
the RBD of SARS-CoV-2 S [50]. However, as CR3022 does not overlap the ACE2 binding site, it might need
to be combined with other neutralizing antibodies. Moreover, the need for monoclonal antibodies with specific
binding affinity to the SARS-CoV-2 RBD was highlighted by the finding that the potent SARS-CoV-specific m396
and CR3014 neutralizing antibodies did not show binding or the SARS-CoV-2 S protein. Recently, the human
47D11 monoclonal antibody targeting a communal epitope was demonstrated to neutralize both SARS-CoV and
SARS-CoV-2 in cell cultures and may potentially offer prevention and treatment of COVID-19 [71].

Another approach, which also could be described as a repurposing drug relates to existing AT1R blockers such
as losartan, successfully used for hypertension treatment [51]. AT1R is a valid target as ACE2, which activates AT1R
by cleavage of angiotensin I, serves as the binding site for both SARS-CoV and SARS-CoV-2 [72]. A rapid approach
would therefore be to investigate whether patients subjected to AT1R antagonist treatment due to hypertension,
diabetic kidney disease or other indications have a better disease outcome or a lower frequency of hospitalization
than the general population.

Gene silencing based on RNAi has been used for basic research for years [73] but represents a fairly novel
approach for treatment of viral diseases [74]. Briefly, RNA molecules can be engineered as siRNAs, shRNAs and
miRNAs in the form of 19–23 bp dsRNAs mediating sequence-specific degradation of target mRNA [75]. In the
context of coronaviruses, gene silencing has been applied for siRNAs to inhibit SARS-CoV replication in Vero E6
cells (Table 2) [76]. In another study, 48 siRNA sequences covering the SARS-CoV genome were engineered [77].
Transfection of chemically synthesized siRNAs into fetal kidney cells, before or after SARS-CoV infection, resulted
in four siRNAs showing potent inhibition of infection and replication. The prophylactic effect of 90% lasted
for at least 72 h. Combination of siRNA duplexes also significantly suppressed SARS-like symptoms in rhesus
macaques [78].
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Table 3. Examples of preclinical vaccine development against COVID-19.
Vaccine/vector Approach/findings Affiliation Ref.

Live-attenuated virus Generation of multiple SARS-CoV-2 vaccine
candidate genomes

Codagenix, The Serum Institute of India [87]

Inactivated virus Neutralizing antibodies in rodents, primates,
protection against SARS-CoV-2

Beijing Institute of Biological Products Company
Ltd, China

[88]

Protein subunit: SARS-CoV-2 molecular clamp High levels of neutralizing antibodies University of Queensland, Australia [89]

Protein subunit: SARS-CoV-2 spherical TMVs In vivo studies in progress Lomonosov Moscow State University, Russia [90]

Protein subunit: SARS-CoV-2 baculovirus Preclinical evaluation in progress Sanofi-Pasteur, GSK [91]

Nonreplicating Ad expressing CoV-2 S Humoral and cellular responses, reduced viral load University of Oxford, UK, AstraZeneca [92]

Nonreplicating PIV5 expressing CoV-2 S Preclinical evaluation in progress University of Georgia, University of Iowa, IA, USA [93]

Nonreplicating RABV expressing CoV-2 S Preclinical evaluation in progress Bharat Biotech, Thomas Jefferson University,
PA, USA

[94]

Nonreplicating MVA expressing CoV-2 S Preclinical evaluation in progress GeoVax [95]

Replicating MV expressing CHIKV VLPs Preclinical evaluation in progress Institute Pasteur, Themis, University of Pittsburgh,
PA, USA, Merck

[96]

DNA plasmid expressing SARS-CoV-2 S Antigen-specific T cell responses, Inhibition of
SARS-CoV-2

Inovio Pharmaceuticals [97]

DNA plasmid expressing full-length
SARS-CoV-2 S

Protection against SARS-CoV-2 challenges in
macaques

Harvard Medical School, Janssen Vaccines [98]

mRNA-based delivery of SARS-CoV-2 sequences High levels of neutralizing antibodies after
immunization with 2 μg of mRNA

CureVac [99]

saRNA-based delivery of SARS-CoV-2 sequences Preclinical evaluation in progress Imperial College London [100]

Furthermore, siRNA-silenced ACE2-targeted expression in Vero cells, which also led to reduced SARS-CoV
infection [80]. Similarly, siRNA duplexes knocked down expression of the actin-binding protein ezrin, which is
known to interact with the SARS-CoV S protein during virus entry [79]. Related to MERS-CoV, four miRNA and
five siRNA molecules from the ORF1ab region were rationally designed by computational methods for the silencing
of nine MERS-CoV strains [81]. The potency of the in silico designed RNAi molecules needs next to be verified for
MERS-CoV inhibition in cell lines and in vivo. In another study, shRNAs targeting the porcine delta coronavirus
(PDCoV) M and N genes showed 13.2- and 32.4-fold reduction, respectively, in titres when swine testicular cells
were challenged with PDCoV [82]. Likewise, the viral RNA decreased by 45.8 and 56.1%, respectively. Moreover,
shRNAs targeting the M gene of porcine epidemic diarrhea virus (PEDV) and swine acute diarrhea virus and the N
gene of PDCoV, expression of each viral RNA was inhibited more than 98% [22]. Additionally, the viral replication
was significantly impaired for porcine epidemic diarrhea virus, SADS-CoV and PDCoV. In the case of COVID-19,
computational strategies have identified nine siRNAs targeting ORF1ab, ORF3a, S, M and N sequences, which
should next be evaluated in cell lines and in vivo [83,84].

Vaccines
The struggle with developing novel or repurposed antiviral drugs against COVID-19 has further strengthened the
demand for the need of efficient vaccines against the current SARS-CoV-2, its potential mutated versions and other
emerging viruses [20]. Needless to say, there are numerous vaccine development efforts in progress today with more
than 100 vaccine candidates at the preclinical stage and at least 13 vaccine candidates in clinical trials [85,86]. The
spectrum of approaches is broad comprising live attenuated virus, inactivated virus, protein subunits, nonreplicating
and replicating viral vectors and nucleic acid vaccines based on DNA plasmids, mRNA molecules and self-replicating
RNA vectors (Table 3). Although numerous studies have been conducted on other animal and human coronavirus
vaccines as previously described [20], the focus here is uniquely on COVID-19 vaccines.

In the context of live-attenuated vaccines, viral deoptimization has been used for the rapid generation of
multiple SARS-CoV-2 vaccine candidate genomes for preclinical testing [87]. The vaccine production will then
be subjected to scale-up manufacturing and clinical evaluation. Related to inactivated COVID-19 vaccines, the
BBIBP-CoV vaccine candidate elicited neutralizing antibodies in mice, rats, guinea pigs, rabbits and nonhuman
primates [88]. Vaccination with two doses of 2 μg provided protection against SARS-CoV-2 in rhesus macaques
and the good genetic stability for vaccine manufacturing will allow evaluation in clinical trials. Several preclinical
studies on protein subunit vaccines are in progress utilizing nanoparticles, virus-like particles, SARS-CoV S spike

1512 Future Microbiol. (2020) 15(15) future science group



Coronavirus pandemic: treatment & future prevention Review

protein with or without adjuvant, various peptides and molecular clamp technologies [85]. Application of molecular
clamp technologies has allowed to lock unstable prefusion versions of surface proteins in a form that shows better
immunogenicity [101] and subjected to preclinical studies for the SARS-CoV-2 S protein has demonstrated high levels
of neutralizing antibodies against SARS-CoV-2 [89]. In another approach, spherical tobacco mosaic virus particles,
previously shown to enhance the immunogenic potential of a rabies vaccine [102], have been applied for COVID-19
vaccine development [90]. Among the expression systems utilized for protein subunit vaccines, baculovirus-based
expression of the SARS-CoV S protein has previously induced high titre SARS-CoV-specific neutralizing antibodies
in mice [103] and therefore represents a potential alternative approach for vaccine development against COVID-
19 [91]. There are numerous preclinical COVID-19 vaccine programs using nonreplicating viral vectors based on
adenoviruses, parainfluenza virus, rabies virus and vaccinia virus. For instance, the vaccine based on the adenovirus
vector ChAdOx1 expressing the SARS-CoV-2 S protein generated strong humoral and cell-mediated immune
responses in mice [92]. Furthermore, a single immunization induced humoral and cellular responses in rhesus
macaques and a significantly reduced viral load and absence of pneumonia. In the case of parainfluenza virus-based
vaccines, it was shown that a single-dose of intranasal immunization of a parainfluenza virus 5 vector expressing
the MERS-CoV S protein induced neutralizing antibody and T-cell responses in mice [93]. Furthermore, a single
intranasal administration of 104 recombinant parainfluenza virus 5 particles provided protection against challenges
with lethal doses of MERS-CoV. The proof of concept demonstrated for MERS in mice, presents the basis for the
development of human vaccines for MERS and COVID-19. In the context of rabies virus, proof of concept has
been established for recombinant expression of HIV-1, MERS-CoV, Ebola virus and hepatitis C sequences [94],
which makes it a potential vector for vaccine development against COVID-19. Additionally, rabies virus infections
target the CNS and the nicotinic acetylcholine receptor in a similar way as has been postulated for SARS-CoV-2,
which binds to the nicotine acetylcholine receptor after orthograde or retrograde transport into the CNS. Modified
Vaccinia Ankara has been successfully applied for vaccine development against both Ebola virus [104] and Lassa
virus [105] and is therefore an attractive candidate for COVID-19 vaccine development. The Modified Vaccinia
Ankara-based replication-deficient expression platform has now been mobilized for the preparation of COVID-19
vaccines, currently at the preclinical stage [95]. In another approach, a live-attenuated replication-proficient measles
virus was engineered for the expression of CHIKV-like particles, which protected immunized mice from lethal
challenges with CHIKV [106] and showed immunogenicity, safety and tolerability in a double-blind, randomized,
placebo-controlled Phase II clinical trial [107]. Encouraged by the results from the MV-CHIKV vaccine studies, a
preclinical vaccine program was initiated for an MV-based COVID-19 vaccine [96].

Several preclinical vaccine studies using DNA plasmid-based delivery are in progress. For example, a synthetic
DNA-based vaccine targeting the SARS-CoV-2 S protein showed robust expression in vitro and elicited antigen-
specific T cells responses and functional antibodies in immunized mice and guinea pigs [97]. The antibodies
neutralized the SARS-CoV-2 infection and blocked S protein binding to the ACE2 receptor. Moreover, a series
of DNA vaccine candidates expressing different forms of SARS-CoV-2 S showed humoral and cellular immune
responses in rhesus macaques [98]. When challenged with SARS-CoV-2, the full-length S vaccine resulted in
significant reduction in viral loads and protection. Similar to DNA-based vaccine development, RNA delivery
has also been investigated including nanoparticle and liposome-encapsulated RNA as well as self-replicating RNA
vectors [108]. In the case of liposome-encapsulated CHIKV mRNA, intravenous administration provided protection
against CHIKV challenges in immunized mice [109], which has paved the way to evaluate mRNA-based approaches
for COVID-19 vaccines. In the context of mRNA-based SARS-CoV-2 vaccines, candidates have been selected
based on quality criteria and biological activity from preclinical trials [99]. Another approach has been to use
self-amplifying RNA for vaccine development against COVID-19 [100].

Clinical trials
In the context of clinical trials, several trials ranging from Phase I to III are in progress and the most advanced ones
are described based on published preliminary results from a Phase I study with an Ad-based vector (Table 4) [110].
In the case of inactivated COVID-19 vaccine produced in Vero cells, healthy volunteers will be subjected to
immunization with different doses and exploration of immunogenicity and vaccine persistence in two Phase I/II
trials [111,112]. It is anticipated that clinical trials will be completed by the end of the year and the vaccine to reach
the market early next year [113]. Another purified inactivated SARS-CoV-2 virus vaccine candidate induced SARS-
CoV-2-specific neutralizing antibodies in rodents and nonhuman primates and also provided complete protection
in macaques [114] supporting the initiation of clinical trials [115]. A total of 422 subjects, age 60 or older, will be
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Table 4. Clinical trials for COVID-19 vaccines.
Vaccine/vector Approach/findings Stage Affiliation Ref.

Inactivated virus Immunogenicity and vaccine persistence
studies

Phase I/II Wuhan Institute of Biological
Products, Sinopharm

[111]

Inactivated virus Immunogenicity and vaccine persistence
studies

Phase I/II Beijing Institute of Biological Products,
Sinopharm

[112]

Inactivated virus + alum Evaluation of safety and
immunogenicity

Phase I/II Sinovac [115,116]

Inactivated virus Study in progress Phase I Institute of Medical Biology, Chinese
Academy of Medical Sciences

[117]

Protein subunit: full-length CoV-2 S + NP Study in progress Phase I/II Novavax [119,120]

Nonreplicating Ad expressing CoV-2 S Study in progress Phase I/II University of Oxford, AstraZeneca [121,122]

Nonreplicating Ad expressing CoV-2 S Recruitment of patients has started Phase II/III University of Oxford, AstraZeneca [122,123]

Nonreplicating Ad 5 expressing CoV-2 S Safe, tolerable immunization
neutralizing antibody responses

Phase I Beijing Institute of Biotechnology,
CanSino Biological Inc.

[124,125]

Nonreplicating Ad 5 expressing CoV-2 S Study in progress Phase II Beijing Institute of Biotechnology,
CanSino Biological Inc.

[126]

DCs transduced LV expressing CoV-2 Study in progress Phase I Shenzhen Geno-Immune Medical
Institute

[127]

DNA plasmid + electroporation Study in progress Phase I Inovio Pharmaceuticals [128]

LNP-encapsulated mRNA Preliminary results of SARS-CoV-2
antibody production

Phase I Moderna, NIAID [129–131]

LNP-encapsulated mRNA Study in progress Phase I/II BioNTech, Fosun Pharma, Pfizer [132]

enrolled in a randomized, double-blinded, single-centre, placebo-controlled Phase I/II trial to evaluate the safety
and immunogenicity of the vaccine. In a similar study, 774 healthy individuals aged 18–59 years are enrolled [116].
In a Phase I trial on an inactivated SARS-CoV-2 vaccine, 942 healthy volunteers have been enrolled in May 2020 in
China [117]. The protein subunit vaccine NVX-CoV2373 is a stable, prefusion protein of the full-length SARS-CoV-
2 S applying nanoparticle technology and the saponin-based Matrix™ adjuvant, known for its induction of strong
cellular activation of both Th1 and Th2 types, eliciting robust antibody and cytotoxic T-cell responses [118]. The
Phase I/II study will be conducted with the SARS-CoV-2 rS nanoparticle vaccine with or without Matrix™ adjuvant
in healthy volunteers aged 18–59 years [119,120]. Preliminary immunogenicity and safety results are expected from
the Phase I part of the trial shortly and additional data in the randomized, observer-blinded, placebo-controlled
Phase II part later.

Several clinical COVID-19 vaccine trials are in progress using Ad vectors. For instance, A Phase I/II study for
the ChAdOx1 nCoV-19 vaccine in healthy adults is in progress in the UK to assess the safety, tolerability and
reactogenicity of the vaccine [121]. Currently more than 1000 immunizations have been carried out and follow-up
is ongoing [122]. Moreover, a Phase III trial for the ChAdOx1 nCoV-19 vaccine, which aims at enrolling up to
10,260 adults and children has started [123]. Moreover, the Ad 5 vector expressing the SARS-CoV-2 S protein was
evaluated for safety, tolerability and immunogenicity in a dose-escalation, open-label, nonrandomized, first-in-
human trial in China [124,125]. Three doses of 5 × 1010, 1 × 1011 and 1.5 × 1011 viral particles were administered
intramuscularly in 108 healthy adults aged 18–60 years. Adverse reactions in the form of injection site pain were
mild to moderate and no serious adverse events were recorded by day 28 post vaccination. Neutralizing antibodies
were discovered in vaccinees showing a peak humoral response against SARS-CoV-2 at 28 days post vaccination and
rapid specific T-cell responses from day 14. More information on the safety and immunogenicity will be received
on the Ad-based COVID-19 vaccine from the ongoing Phase II trial [126]. An interesting approach for COVID-19
vaccine development comprise the application of lentivirus transduced dendritic cells (DCs). It has previously been
demonstrated that immunization of mice with DCs transduced with lentivirus vectors expressing CD40L and the
HIV-1 SL9 epitope induced enhanced antigen-specific T cell proliferation and memory differentiation [133]. In this
context, a Phase I trial applying DCs transduced with a lentivirus vector expressing the SARS-CoV-2 S protein
(LV-SMENP) has been initiated in China [127].

In the context of nucleic acid-based vaccines, encouraging results from preclinical studies [97] has permitted the
initiation of a Phase I clinical trial on a DNA-based SARS-CoV-2 vaccine in 40 healthy volunteers and plans have
been made to initiate a Phase II/III follow-up study [128]. Related to RNA-based vaccines, liposome encapsulated
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mRNA has previously been demonstrated to be efficient for immunization against CHIKV [97] and has also been
subjected to vaccine development for COVID-19 [129]. Liposome nanoparticles containing mRNA encoding a
prefusion stabilized SARS-CoV-2 S protein was used as the vaccine candidate in a Phase I, open-label, dose-ranging
clinical trial to evaluate the safety, reactogenicity and immunogenicity in 150 healthy volunteers [129,130]. Preliminary
results from eight participants showed that immunization induced neutralizing antibodies to SARS-CoV-2 at levels
for recovered COVID-19 patients for the lower dose of 25 μg while the higher dose of 100 μg elicited significantly
higher levels of SARS-CoV-2 antibodies [131]. In addition, the first cohort of healthy adults have been enrolled in
a Phase II trial [129]. In total, 300 adult participants aged 18–54 years and another 300 volunteers aged 55 years
or older will be enrolled. Moreover, a Phase III study protocol for a randomized, placebo-controlled trial with
30,000 participants has been finalized [129]. Finally, a Phase I/II randomized, placebo-controlled observer-blind,
dose-finding trial with four SARS-CoV-2 RNA vaccine candidates has been initiated in healthy volunteers [132].
The safety, tolerability, immunogenicity and potential efficacy at three different dose levels in three age groups,
ranging from 18–55, 65–85 and 18–85 years, will be evaluated.

Conclusion & future perspective
Ultimately, to overcome the COVID-19 pandemic the development of broadly available functional vaccines is of
outmost importance and the highest priority [20]. The struggle generally seen with development of efficient antiviral
drugs and the necessity of vaccinating the majority of the global population cannot be overstated for regaining the
confidence in ‘life returning to normal’. Publicly, the burning questions have been whether an efficient vaccine can
be developed and if so, when will it happen? As presented in this review the efforts to successfully develop drugs
and vaccines against COVID-19 can be described as unprecedented and have never before reached the size and
spectrum of research and development activities bringing together scientists and clinicians from both academic
institutions and the pharmaceutical and biotech industry. Although preliminary results from several clinical trials
have been encouraging there is no guarantee that the pandemic can be tamed by drugs or vaccines in the near future.
Clearly, the accelerated recovery observed for patients treated with remdesivir, the potential of novel drugs targeting
ACE2, monoclonal antibodies and RNAi-based gene silencing, although at a relatively early stage of development,
are promising. Moreover, the numerous preclinical and the double-digit clinical trials on vaccines have given hope
for achieving prophylactic protection for large populations. Obviously, all possible approaches should be considered
and therefore the therapeutic potential of plasma from convalescent COVID-19 patients should not be overlooked
as it has previously been demonstrated successful for SARS and MERS [134]. In the context of COVID-19, several
studies have been conducted [135]. For instance, in a case study, plasma from six donors the anti-SARS-CoV-2 IgM
antibody was weakly reactive showing optical density ratios from 1.22 to 2.01 detected by ELISA for all other
donors except for one donor with a slightly higher optical density ratio of 5.63 [136]. All donors except one showed
high IgG titres (≥1:320), which made them eligible donors. Treatment of a patient with severe COVID-19 allowed
release from mechanical ventilation 11 days after the treatment and was then transferred to a general ward.

Although the competition, especially to obtain an efficacious vaccine, is fierce and the spirit is characterized by
‘the winner takes it all’, the impressive diversity of approaches should enhance the probability of success. However,
most likely there will be a need for several types of drugs and vaccines due to manufacturing characteristics, the
function, target population, longevity and range of activity of drugs or vaccines. In any case, the next 6–12 months
will be intense and exciting to follow the drug and vaccine development. It cannot be overstated that for not only
medical, but also social and economic reasons we need to overcome the current pandemic and to be better prepared
for new waves of COVID-19 and other emerging viruses. It is therefore appropriate to join all efforts to together
overcome the COVID-19 pandemic illustrated by the rainbow symbol painted by children all over the world with
the message ‘everything will be alright’.
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Executive summary

Background
• The COVID-19 pandemic has caused unprecedented medical, social and economic damage globally highlighting

the need for efficient antiviral drugs and vaccines.
Repurposing drugs
• A number of studies on repurposed drugs originally developed and/or approved for other viral infections have

been subjected to safety and efficacy studies for COVID-19.
Novel antiviral drugs
• Novel antiviral drugs targeting viral entry and replication of SARS-coronavirus-2 (SARS-CoV-2) have been

designed by computational methods and tested in preclinical animal models.
• RNAi-based gene silencing by nonviral and viral delivery of siRNAs, shRNAs and miRNAs to target viral entry and

replication as means of reducing viral loads has been evaluated in cell lines and animal models.
Vaccines
• Vaccines based on inactivated and live-attenuated virus, protein subunits, viral vector-based delivery, DNA

plasmid and mRNA vaccines haven been verified for immune responses and protection against SARS-CoV-2
challenges in immunized rodents and primates.

Clinical trials
• COVID-19 vaccine candidates based on inactivated virus, protein subunits, viral vectors, DNA and mRNA vectors

have been subjected to clinical trials in which preliminary results have demonstrated safety, tolerability and
immunogenicity.
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