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Abstract

Gene expression programs change over time, differentiation and development and in response to 

stimuli. However, nearly all techniques for profiling gene expression in single cells do not directly 

capture transcriptional dynamics. Here, we present a method for combined single-cell 

combinatorial indexing and mRNA labelling (sci-fate), which uses combinatorial cell indexing and 

4sU labeling of newly synthesized mRNA to concurrently profile the whole and newly synthesized 

transcriptome in each of many single cells. We used sci-fate to study the cortisol response in 

>6,000 single cultured cells. From these data, we quantified the dynamics of the cell cycle and of 

glucocorticoid receptor activation, and explored their intersection. Finally, we developed software 

to infer and analyze cell state transitions. We anticipate that sci-fate will be broadly applicable to 

quantitatively characterize transcriptional dynamics in diverse systems.

Editorial summary

Gene expression dynamics in single cells are tracked by labeling newly synthesized RNA in 

indexed cells.

During organismal development, as well as during myriad physiological and 

pathophysiological processes, individual cells traverse a manifold of molecularly and 

functionally distinct states. However, although experimental methods for profiling various 
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aspects of single cell biology have recently proliferated, nearly all such methods deliver only 

a static snapshot of each cell. To address this in part, “pseudotime” methods computationally 

place individual cells along a continuous trajectory based on their transcriptomes1-6. 

However, pseudotime infers rather than directly measures transcriptional dynamics, is 

dependent on sufficient representation along the trajectory, and may fail to capture the 

detailed dynamics of individual cells (e.g. directionality, multiple superimposed potentials, 

etc.)7. In contrast, time-lapse microscopy can experimentally measure transcriptional 

dynamics, but is limited to visualization of a few marker genes in a few cells, and as such 

may be insufficient to decipher the complexity of many biological systems.

Here we describe a technique, sci-fate, to measure the dynamics of gene expression in large 

numbers of single cells and at the level of the whole transcriptome. In brief, we integrated 

protocols for labeling newly synthesized mRNA with 4-thiouridine (4sU)8,9 with single cell 

combinatorial indexing RNA-seq (sci-RNA-seq10). As a proof-of-concept, we applied sci-

fate to a model system of cortisol response, characterizing expression dynamics in over 

6,000 single cells. From these data, we quantify the dynamics of the transcription factor (TF) 

modules that underpin the cell cycle, glucocorticoid receptor activation, and other processes, 

and develop a framework for inferring the distribution of cell state transitions. The methods 

described here may be broadly applicable to quantitatively characterize transcriptional 

dynamics in diverse systems.

Overview of sci-fate

Briefly, sci-fate relies on the following steps (Fig. 1a): (i) Cells are incubated with 4-

thiouridine (4sU), a thymidine analog, to label newly synthesized RNA11-17. (ii) Cells are 

harvested, fixed with 4% paraformaldehyde, and then subjected to a thiol(SH)-linked 

alkylation reaction which covalently attaches a carboxyamidomethyl group to 4sU by 

nucleophilic substitution8. (iii) Cells are distributed by dilution to 4 x 96 well plates. The 

first sci-RNA-seq molecular index is introduced via in situ reverse transcription (RT) with a 

poly(T) primer bearing both a well-specific barcode and a degenerate unique molecular 

identifier (UMI). During first strand cDNA synthesis, modified 4sU templates guanine rather 

than adenine incorporations. (iv) Cells from all wells are pooled and then redistributed by 

fluorescence-activated cell sorting (FACS) to multiple 96-well plates. (v) Double-stranded 

cDNA is synthesized. After Tn5 transposition, cDNA is PCR amplified via primers 

recognizing the Tn5 adaptor on the 5’ end and the RT primer on the 3’ end. These primers 

also bear a well-specific barcode that introduces the second sci-RNA-seq molecular index. 

(vi) PCR amplicons are subjected to massively parallel DNA sequencing. As with other sci- 

methods18-26, most cells pass through a unique combination of wells, such that their 

contents are marked by a unique combination of barcodes that can be used to group reads 

derived from the same cell. (vii) The subset of each cell’s transcriptome corresponding to 

newly synthesized transcripts is distinguished by T→ C conversions in reads mapping to 

mRNAs (Methods).

For quality control, we first tested sci-fate with a mixture of HEK293T (human) and 

NIH/3T3 (mouse) cells under four conditions: with vs. without 4sU labeling (200 nM, 6 

hrs), and with vs. without the thiol(SH)-linked alkylation reaction. The resulting 
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transcriptomes were overwhelmingly species-coherent (>99% purity for both human and 

mouse cells, 2.7% collisions; Supplementary Fig. 1ab) with similar mRNA recovery rates 

(overall median 21,342 unique molecular identifiers (UMIs) per cell; Supplementary Fig. 

1c). However, only with 4sU labeling and thiol(SH)-linked alkylation did we observe a 

substantial proportion of reads bearing T → C conversions, i.e. newly synthesized 

transcripts (46% and 31% for treated human and mouse cells, respectively, vs. 0.8% for 

untreated cells; Supplementary Fig. 1d). The aggregated transcriptomes of cells derived from 

sci-fate and conventional sci-RNA-seq were highly correlated (Spearman’s correlation r = 

0.99; Supplementary Fig. 1ef), suggesting that short-term labeling and conversion do not 

substantially bias transcript counts.

Profiling of transcriptome dynamics in cortisol response

To investigate the transcriptional dynamics of cortisol response27, we applied sci-fate to an 

in vitro model wherein dexamethasone (DEX), a synthetic mimic of cortisol, activates 

glucocorticoid receptor (GR), which binds to thousands of locations across the genome and 

rapidly alters gene expression28-31. Specifically, we treated lung adenocarcinoma-derived 

A549 cells for 0, 2, 4, 6, 8 or 10 hrs with 100 nM DEX. In each condition, cells were 

incubated with 4sU (200 nM) for the two hours immediately preceding harvest. We then 

performed a 384 x 192 sci-fate experiment (Fig. 1b). Each of the six conditions was 

represented by 64 wells during the first round of indexing, such that all samples could be 

processed in a single sci-RNA-seq experiment to minimize batch effects.

After filtering out low quality cells, potential doublets and a small subgroup of differentiated 

cells (Methods), we obtained single cell profiles for 6,680 cells (median 26,176 UMIs 

corresponding to mRNAs detected per cell). A median of 20% of mRNA UMIs were labeled 

per cell (Fig. 1c; Supplementary Fig. 2a-c). The proportion of newly synthesized mRNAs 

was markedly higher in reads mapping to intronic (65%) vs. exonic (13%) regions (p-value 

< 2.2e-16, two-sided Wilcoxon signed-rank test; Fig. 1d; Supplementary Fig. 2de), 

consistent with the expectation that the intronic reads are more likely to have been recently 

synthesized. We also compared intronic reads and newly synthesised mRNA for RNA 

velocity analysis32 and observed a subjectively consistent picture, suggesting they capture 

similar information (Supplementary Fig. 2f).

In exploring these data, we first asked whether the newly synthesized vs. whole 

transcriptome data convey identical or distinct information with respect to cell state. 

Performing dimensionality reduction with Uniform Manifold Approximation and Projection 

(UMAP)33 on whole transcriptomes failed to separate DEX untreated (0 hrs) vs. treated (2+ 

hrs) cells (Fig. 1e, left, Supplementary Fig. 2g). In contrast, applying UMAP to the newly 

synthesized subset of the single cell transcriptomes readily separated DEX untreated vs. 

treated cells (Fig. 1e, center). These patterns are likely a consequence of the fact that in DEX 

treated cells, the newly synthesized transcriptome more faithfully reflects the GR response 

itself. Illustrative of this, the classic markers for GR response, FGD428 and FKBP534, 

exhibited the highest fold induction in comparisons of the newly synthesized transcriptome 

at 0 hrs vs. 2 hrs, but the magnitude of their induction was dampened in comparisons of the 
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whole transcriptome between the same time points (Supplementary Fig. 2hi; Supplementary 

Table 1).

To jointly make use of the information conveyed by the whole and newly synthesized 

transcriptomes, we combined their top principal components (PCs) for UMAP analysis. This 

approach separates cells that had experienced no (0 hrs), recent (2 hrs) or extended (4+ hrs) 

DEX treatment (Fig. 1e, right). With this joint approach, cells corresponding to two clusters 

defined by analysis of whole transcriptomes (clusters 1 & 4; Fig. 1f, left) each split into two 

groups (Fig. 1f, right). Examining the levels of newly synthesized mRNAs corresponding to 

cell cycle markers35, one pair of these new groups corresponds G2/M phase cells (high 

levels of both overall and newly synthesized G2/M markers), and the other to early G0/G1 

phase cells (high levels of overall but low levels of newly synthesized G2/M markers) (Fig. 

1g; Supplementary Fig. 2jk). Of note, cells from the 2 hr time point exhibited a distribution 

of cell cycle states according to this joint information (Fig. 1eg). Overall, these analyses 

illustrate how joint analysis of the newly synthesized and whole components of single cell 

transcriptomes can recover cell state information that is not easily obtained from the whole 

transcriptomes alone.

TF module activity decomposes cellular processes

Multiple dynamic gene regulatory processes are concurrently underway in this in vitro 
system -- minimally, the GR response and the cell cycle. We speculated that these might be 

disentangled, and their intersection probed, by first identifying the TF modules driving new 

mRNA synthesis in relation to each process.

TF modules, comprising candidate links between TFs and their regulated genes, were 

identified as follows. For each gene, across the 6,680 cells, we computed correlations 

between the levels of newly synthesized mRNA for that gene and the overall expression 

level of each of 859 expressed TFs, using LASSO (least absolute shrinkage and selection 

operator) regression. Out of 1,086 links involving TFs characterized by ENCODE36, 807 

were validated by TF binding sites near the genes’ promoters36, a 4.3-fold enrichment 

relative to background expectation (odds ratio for validation = 2.89 for LASSO-identified 

links vs. 0.67 for background, p-value < 2.2e-16, two-sided Fisher’s Exact test). These 

covariance links were further filtered by ChIP-seq binding37, and supplemented with 

additional covariance links validated by motif38 enrichment analysis (Fig. 2a; Methods). 

Altogether, we identified 986 links between 29 TFs and 532 genes (Supplementary Fig. 3ab; 

Supplementary Table 2). As a control, we permuted the cell order of the cell x TF expression 

matrix (Ti) (Methods), and then repeated the analysis. No links were identified after 

permutation. Some of the identified TF-gene regulatory relationships are supported by a 

manually curated database of TF networks (TRRUST39), e.g. E2F1 (top enriched TF of 

E2F1-linked genes = E2F1, adjusted p-value = 8e-7)40, NFE2L2 (top enriched TF of 

NFE2L2-linked genes = NFE2L2, adjusted p-value = 0.003)40, and SREBF2 (top enriched 

TF of SREBF2-linked genes: SREBF2, adjusted p-value = 0.0006)40.

The 29 TFs with one or more gene links included well-established GR response effectors 

such as CEBPB41, FOXO142, and JUNB43 (Supplementary Fig. 3cd). This group also 
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included several TFs not previously implicated in GR response, including YOD1 and 

GTF2IRD1, both of which exhibited greater expression and activity in DEX-treated cells 

(Supplementary Fig. 3ef). The main TFs driving cell cycle progression were also identified, 

e.g. E2F1, E2F2, E2F7, BRCA1, MYBL244. Notably, the expression levels of TFs such as 

E2F1 were more highly correlated with the levels of newly synthesized than overall target 

gene mRNAs (Supplementary Fig. 3g). We also observed regulatory links corresponding to 

TFs involved in cell differentiation such as GATA345, mostly expressed in a subset of 

quiescent cells, as well as TFs involved in oxidative stress response such as NRF146 and 

NFE2L2 (NRF2)47.

We calculated a measure of each of these 29 TFs’ activities in each cell, based on the 

normalized aggregation of the levels of newly synthesized mRNA for all of its target genes. 

We then computed the absolute correlation coefficient between each pair of TFs with respect 

to their activity across the 6,680 cells. Hierarchical clustering of these pairwise correlations 

identified several major TF modules, i.e. sets of TFs that appear to be regulating the same 

process (Fig. 2b). A first large TF module corresponds to all cell cycle-related TFs in the set, 

e.g. E2F1, FOXM144. A second large TF module corresponds to GR response-related TFs, 

e.g. FOXO1, CEBPB, JUNB, RARB41-43. The other modules include one corresponding to 

GR-activated G1/G2/M phase cells (KLF6, TEAD1, YOD1; Supplementary Fig. 3h), and 

another corresponding to likely-differentiating GR-activated G1 phase cells (GATA3, AR; 

Supplementary Fig. 3h)45,48. Additional TFs or TF modules appear to capture other 

processes that are heterogeneous in this population of cells, including NRF1 and NFE2L2 
for stress response/apoptosis (top enriched pathway of NFE2L2-linked genes: ferroptosis, 

adjusted p-value = 1e-5)40,46,47,49; KLF5 for DNA damage repair (top pathway: ATM 

signaling, adjusted p-value = 0.018)40,50; and SREBF2 for cholesterol homeostasis (top 

pathway: “SREBF and miR33 in cholesterol and lipid homeostasis”, adjusted p-value = 

9e-6)40,51.

To assign cell cycle states to individual cells, we first ordered cells by their cell cycle-linked 

TF module activity. This resulted in a smooth, nearly circular trajectory, in which the levels 

of newly synthesized mRNA corresponding to known cell cycle markers was dynamic (Fig. 

2c)35. We observed a gap between late G2/M phase and early G1 phase, consistent with the 

dramatic cell state change during cell division. By unsupervised clustering of the activities 

of individual TFs within the cell cycle-linked TF module, we identified 9 cell cycle states 

spanning the early, middle and late cell cycle phases (Fig. 2d). Early G1 and late G2/M 

phase cells exhibited decreased synthesis of new RNA relative to other parts of the cell 

cycle, possibly due to chromosomal condensation during mitosis (Fig. 2e)52-54. Other (i.e. 
non-cell-cycle) TF modules exhibited different dynamics in relation to cell cycle progression 

(Fig. 2f). For example, GATA3 activity peaks in early G1 phase, potentially reflecting a cell 

differentiation pathway distinct from cell cycle reentry45. In contrast, the modules of KLF5 
and SREBF2, associated with DNA repair and lipid homeostasis, respectively, exhibited 

greater activity from S to G2 phase, possibly related to roles in DNA replication and cell 

division, respectively55.

Similarly, the cells can also be ordered into a smooth trajectory based on GR response-

linked TF module activity. As expected, this trajectory correlates well with DEX treatment 
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time, as well as the activity of GR response-related TFs (Fig. 2g). By unsupervised 

clustering of the activities of individual TFs within the GR response-linked TF module, we 

identified GR response states corresponding to no, low and high levels of activation (Fig. 

2g).

We next sought to explore the intersection of the 9 cell cycle states (Fig. 2d) and the 3 GR 

response states (Fig. 2g). Each of 27 possible state combinations were represented by some 

cells, with the smallest group corresponding to 1.1% of the overall dataset (n = 74 cells, 

intersection of “early G2/M” cell cycle state and “no GR activation” state; Supplementary 

Fig. 4ab). Although we observe several TF modules that appear specific to certain 

intersections of the cell cycle and GR response (KLF6/TEAD1/YOD1 and GATA3/AR, 

discussed above), several observations support the conclusion that the dynamics of the cell 

cycle and GR response operate largely independently. First, we observe minimal correlation 

between the activities of the primary TF modules for cell cycle and GR response across the 

6,680 cells (Pearson’s correlation r = 0.004; Fig. 2b). Second, the relative proportions of 

each of the 27 possible state combinations are readily predicted by proportions of cell cycle 

and GR response states, i.e. with no interaction term (Supplementary Fig. 4b).

Inferring single cell transcriptome dynamics with sci-fate

We next sought to develop a strategy to use sci-fate data to infer the past transcriptional state 

of each cell, i.e. at the onset of 4sU labeling, which might in turn allow us to relate cells 

derived from different time points. The inference of past transcriptional state requires 

knowledge of two parameters -- first, the detection rate of newly synthesized transcripts (i.e. 
the proportion of newly synthesised transcripts containing one or more detected T > C 

mutations), and second, the degradation rate of each mRNA species. Below, we discuss how 

each of these parameters can be estimated directly from the sci-fate data generated for this 

experiment. A more detailed consideration is provided in the Methods.

Under the assumption that mRNA degradation rates are not affected by DEX treatment (this 

assumption is validated further below), it is relatively straightforward to estimate sci-fate’s 

detection rate for newly synthesized transcripts. Each sci-fate transcriptome in this dataset 

consists of two components -- the newly synthesized transcriptome, whose detection rate we 

hope to estimate, and the ‘leftover’ transcriptome, i.e. transcripts that were present at the 

onset of 4sU labeling, minus any degradation over the course of the two hours. Comparing 

the 0 hr (untreated) and 2 hr DEX treatment groups, we expect that their leftover bulk 

transcriptomes (at the onset of 2 hr 4sU labeling) should be identical, as should sci-fate’s 

detection rate for newly synthesized transcripts. As such, an equation can be constructed 

relating the transcriptomes of these treatment groups to one another (Methods). For each of 

186 genes exhibiting the largest differences in new transcription between the two conditions, 

we solved this equation to estimate sci-fate’s detection rate. As these estimates were largely 

consistent across genes and robust to sequencing depth (Supplementary Fig. 5a-e), we used 

their median value (82%) as sci-fate’s estimated detection rate for all subsequent analyses.

We next sought to estimate the degradation rate of each mRNA species. As noted above, the 

bulk transcriptome at each time point in our experiment can be decomposed into the newly 
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synthesized transcriptome and the leftover transcriptome. Furthermore, the leftover 

transcriptome should equal the bulk transcriptome from the time point two hours earlier, 

provided that we correct for mRNA degradation over that interval. From these assumptions, 

an equation can be constructed and solved to estimate the mRNA half-life of each gene, 

which we did independently for each 2 hr interval of the experiment (Methods; 

Supplementary Table 3). As a first quality check, we simply compared these estimated 

mRNA degradation rates between time points, and found them to be both consistent and 

robust to sequencing depth (Supplementary Fig. 5fg; median Pearson’s r = 0.92). As a 

second quality check, we compared them to orthogonally generated estimates of mRNA 

half-lives from the literature9. Despite the fact that different technologies were used on 

different cell lines (A549 vs. K562), the estimates of mRNA half-lives were reasonably 

consistent (Supplementary Fig. 5h; Pearson’s r = 0.76). Of note, the absolute differences in 

estimated mRNA half-lives between sci-fate and previous techniques could be due to the use 

of different cell lines or systematic differences between the techniques.

With these parameters in hand, we next estimated the past transcriptional state of each cell in 

our dataset (Methods; Supplementary Fig. 6ab), and sought to use these estimated states to 

link individual cells to one another across time points (Fig. 3a). Specifically, for each cell B 

(e.g. a cell from the 2 hr time point), we used a recently developed alignment method35 to 

identify a cell A profiled at an earlier time point (e.g. a cell from the 0 hr time point), 

wherein A’s current state was closest to B’s estimated past state. In this framework, A can 

be regarded as the parent state of B. Applying this strategy to each of the five intervals 

comprising our experiment, we constructed a set of linkages spanning the entire dataset and 

time course (Fig. 3b).

A key contrast with conventional pseudotime is that with sci-fate, each cell is now 

characterized not only by its present state, but also by specific linkages to a series of distinct 

cells matching its predicted past and/or future states (Fig. 3c). To evaluate whether these 

mini-trajectories contain structure, we applied UMAP and unsupervised clustering, which 

resulted in three distinct trajectory clusters (Fig. 3d). To annotate these, we checked the 

proportions of each of the aforementioned three GR response states and nine cell cycle states 

in each of them, as a function of time. As expected, all three trajectories exhibited a rapid 

transition from no GR activation to low/high GR activation (Fig. 3e). However, each 

trajectory appears to correspond to a different starting point with respect to the cell cycle 

(Fig. 3f). Trajectory 1 corresponds to cells that transition from G2/M to G1 phase over the 

course of the 10 hr experiment. Trajectory 2 corresponds to cells that transition from late S 

phase to G2/M phase over the course of the experiment. Trajectory 3 corresponds to cells 

that transition from G1 to either S phase or G1 arrest over the course of the experiment. The 

inference of G1 arrest subsequent to DEX treatment is consistent with the dynamics of cell 

state proportions in this experiment as well as with previous research56,57. As a control, we 

clustered the cell state transition trajectories by simply aligning neighboring time points 

without knowledge of newly synthesized mRNA; this failed to recover expected cell cycle 

dynamics (Supplementary Fig. 6c).
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Inferred cell transitions recapitulate expected dynamics

We next sought to evaluate whether the distribution of cell state transitions inferred by sci-

fate are consistent with the expected dynamics. We assigned each cell into one of the 27 

states (3 GR response x 9 cell cycle states) and computed a cell state transition network (Fig. 

4a), with the assumption that the cell state transitions in this experiment follow a Markov 

process with transition probabilities that do not change over time. This assumption is 

validated in part by the observation that the distribution of predicted cell state transitions 

estimated from the last three time intervals (4-6 hrs, 6-8 hrs, 8-10 hrs) are highly correlated 

with each other (Supplementary Fig. 7a) despite varied cell state proportions at 4 hrs vs. the 

later time-points (Supplementary Fig. 7b). Consistent with DEX treatment, transitions are 

highly biased from G1 to S, S to G2/M, and G2/M to G1 phase of the cell cycle (Fig. 4a). As 

a control analysis, cell state transition networks were similarly derived, but based either on 

randomly permuted cell state transition links, or on links derived from mature mRNAs only; 

these both failed to recapitulate the expected pattern of cell cycle transitions (Supplementary 

Fig. 7c).

The 27 states shown in Fig. 4a each correspond to subsets of cells whose transcriptomes are 

similar, making use of the joint information provided by distinguishing between old (> 2 

hrs) vs. new (< 2 hrs) transcripts. Importantly, the distribution of transitions are inferred, 

rather than explicitly known, but supported by the fact that they correspond to expected 

phenomena, e.g. irreversible progression through GR response, as well as irreversible 

progression through the cell cycle. As examples, S phase cells without GR activation (0 hrs 

treatment) mostly transit into S phase cells with GR activation (2 hrs treatment), while G2/M 

phase cells with no GR activation (0 hrs treatment) mostly transit to G2/M or G1 phase cells 

with GR activation (2 hrs treatment) (Fig. 4b). For comparison, overlaying the same UMAP 

coordinates with RNA velocity vectors32 recovered similar patterns, but only when treatment 

time information was incorporated into the RNA velocity analysis (Supplementary Fig. 7d).

Can we use this framework to better understand the characteristics of transcriptional states 

that govern their dynamics? As a first approach, we calculated the pairwise Pearson’s 

distance between the aggregated transcriptomes of each of the 27 states. As expected, the 

greater the distance between any pair of states, the lower the proportional representation of 

that transition in the network (Spearman’s correlation coefficient = −0.38; Fig. 4c). As a 

second approach, we computed “instability” as the proportion of cells inferred to be moving 

out of a given state between time points (Fig. 4d). As expected, states corresponding to no 

GR activation were the least stable by this metric. Furthermore, amongst high GR activation 

states, states corresponding to early G1 were the most stable. These representations of the 

data are consistent with the transition network, wherein the states corresponding to high GR 

activation and early G1 are a frequent “destination” of all nearby states (purple triangles in 

Fig. 4a).

Discussion

Sci-fate captures information analogous to RNA velocity32, which distinguishes ‘older’ vs. 

‘newer’ transcripts based on their splicing status. On one hand, RNA velocity is more 
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straightforward than sci-fate, as it makes use of information that is indirectly captured by 

many single cell profiling technologies, while sci-fate requires 4sU labeling steps that cannot 

necessarily be used in all contexts. On the other hand, sci-fate lends itself to experimental 

control in a way that RNA velocity does not, as the timing and length of 4sU labeling can be 

specified whereas with RNA velocity it is a product of endogenous splicing dynamics. 

Furthermore, as we show, an experimental design that couples the labeling of newly 

synthesized mRNA to a time series enables the quantitative analysis of cells with complex 

transcriptional histories and futures.

While our manuscript was under review, two methods directed at the same goal, scSLAM-

seq and NASC-seq, were reported58,59. Although there are similarities including the labeling 

strategy, we note major differences with respect to performance, accuracy and scalability: 

(1) Because sci-fate uses combinatorial indexing, we successfully measured newly 

synthesized mRNA in >6,000 cells in one experiment, compared with <200 cells for 

scSLAM-seq or NASC-seq. Given that sci-fate is easily adaptable to three level 

combinatorial indexing26, it should already be possible to profile newly synthesized mRNA 

is >1 million cells per experiment. (2) sci-fate costs <$0.20 per cell for library preparation 

with two-level indexing, and <$0.01 per cell with three-level indexing26. By comparison, 

both scSLAM-seq and NASC-seq utilize smart-seq which costs ~$11 per cell for library 

preparation60. On a related point, sci-fate required an order of magnitude fewer raw reads 

per cell (~200,000 sci-fate vs. ~2 million with scSLAM-seq), but achieved a greater number 

of genes detected per cell. (3) A key feature of sci-fate is that we performed in situ 4sU 

chemical conversion in bulk, fixed cells, resulting in a high reaction efficiency and low 

mRNA loss. In contrast, scSLAM-seq and NASC-seq require extracting mRNA from each 

cell followed by bead-based purification and chemical conversion. As a result, sci-fate 

exhibits higher efficiency to detect low abundance transcripts (median 6,500 genes detected 

per cell with sci-fate vs. ~4,000 with scSLAM-seq, despite of 1/10 of the raw sequencing 

depth). Furthermore, sci-fate exhibits a higher detection rate of newly synthesised mRNA 

(82% in sci-fate vs. <50% in scSLAM-seq). (4) The signal-to-noise ratio (labeled vs. 

unlabeled cells) of sci-fate is 38- to 58-fold, compared with only ~10-fold for scSLAM-seq 

or NASC-seq. This is partly due to the fact that the sci-fate library preparation is strand-

specific, whereas smart-seq is not. (5) sci-fate enables direct counting of newly synthesised 

vs. pre-existing mRNA via 3’ tagged unique molecular identifiers (UMIs)61, which are used 

by neither scSLAM-seq nor NASC-seq. Additional advantages of sci-fate include 

compatibility with fixed cells and the ability to concurrently process multiple independent 

biological samples within a single experiment. Finally, it is notable that in situ 4sU chemical 

conversion requires cell permeabilization and, at least in our experience, PFA fixation, 

neither of which is straightforward to introduce on droplet-based scRNA-seq platforms such 

as 10x Genomics.

We note that while sci-fate enables quantification of mRNA synthesis in single cells, we 

remain in need of methods for measuring mRNA degradation rates in single cells. Related to 

that, our simplifying assumption that gene-specific degradation rates are constant across our 

DEX time course might not be a good choice in other systems. Specifically, in systems 

where the gene-specific degradation rates are expected or observed to substantially vary over 

time, these should be estimated for each time interval separately.
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Sci-fate can be broadly applied to most in vitro systems to quantitatively characterize cell 

state dynamics within short time windows (e.g. one to several hours). For even shorter time 

frames, a concern is that signal-to-noise will drop as the rate of labeling falls towards the 

background rate of 0.8%. For longer time frames, a time series approach can be adopted as 

in the main experiment described here.

A major limitation of sci-fate is that 4sU labeling experiments are generally performed 

within in vitro cell culture models. However, recent studies have shown that 4sU can be used 

in conjunction with transgenic UPRT-expressing mice to stably label cell type-specific 

nascent RNA transcription in vivo62-64, suggesting that sci-fate, with further optimizations to 

enhance 4sU incorporation and detection rate, can potentially be used to profile single cell 

transcriptional dynamics in vivo and at scale.

Online Methods:

Mammalian cell culture

All mammalian cells were cultured at 37°C with 5% CO2, and were maintained in high 

glucose DMEM (Gibco cat. no. 11965) for HEK293T and NIH/3T3 cells or DMEM/F12 

medium for A549 cells, both supplemented with 10% FBS and 1X Pen/Strep (Gibco cat. no. 

15140122; 100U/ml penicillin, 100 μg/ml streptomycin). Cells were trypsinized with 0.25% 

typsin-EDTA (Gibco cat. no. 25200-056) and split 1:10 three times per week.

Sample processing for sci-fate

For HEK293T and NIH/3T3 cells, cells were incubated with 200uM 4sU for 6 hours before 

cell harvest. A549 cells were treated with 100 nM DEX for 0 hrs, 2 hrs, 4 hrs, 6 hrs, 8 hrs or 

10 hrs. Cells in all treatment conditions were incubated with 200uM 4sU for the last two 

hours before cell harvest. Of note, an excessively long labeling time (the extreme of which 

results in all transcripts being labeled) may result in information loss. Through a test 

experiment on HEK293T cells, we found that the transcriptome degradation rate is around 

10% per hour for each cell. We then selected two hours as the labeling time window, such 

that about 80% of detected transcriptomes per cell would be previously synthesized and 

usable to infer previous cell state. In theory, a shorter labeling time enables more accurate 

cell past state inference but also requires sampling more time points to cover a continuous 

process with a given time interval (i.e. 10 hours in our DEX treatment experiment). A short 

labeling time would also potentially be affected by greater noise. In our data, the background 

labeling rate (“labeled” reads ratio in non-labeled cells) is 0.8%. Given that 2 hours of 

labeling results in detection of ~20% of transcripts as newly synthesized, to keep at least a 

10:1 signal-to-noise ratio, the minimum labeling period should be at least 50 minutes.

All cell lines (A549, HEK293T and NIH/3T3 cells) were trypsinized, spun down at 300xg 
for 5 min (4°C) and washed once in 1X ice-cold PBS. All cells were fixed with 4ml ice cold 

4% paraformaldehyde (EMS) for 15 min on ice. After fixation, cells were pelleted at 500xg 
for 3 min (4°C) and washed once with 1ml PBSR (1 x PBS, pH 7.4, 1% BSA, 1% 

SuperRnaseIn, 1% 10mM DTT). After wash, cells were resuspended in PBSR at 10 million 

cells per ml, and flash frozen and stored in liquid nitrogen. Paraformaldehyde fixed cells 
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were thawed on 37°C water bath, spun down at 500xg for 5 min, and incubated with 500ul 

PBSR including 0.2% Triton X-100 for 3min on ice. Cells were pelleted and resuspended in 

500ul nuclease free water including 1% SuperRnaseIn. 3ml 0.1N HCl were added into the 

cells for 5min incubation on ice 24. 3.5ml Tris-HCl (pH = 8.0) and 35ul 10% Triton X-100 

were added into cells to neutralize HCl. Cells were pelleted and washed with 1ml PBSR. 

Cells were resuspended in 100ul PBSR. 100ul PBSR with fixed cells were incubated with 

mixture including 40ul Iodoacetamide (IAA, 100mM), 40ul sodium phosphate buffer 

(500mM, pH = 8.0), 200ul DMSO and 20ul H2O, at 50°C for 15min. The reaction was 

quenched by 8ul DTT (1M) and 8.5ml PBS67. Of note, the cell lost rate is high (> 95%) in 

the chemical conversion and centrifugation step. Cells were pelleted and resuspended in 

100ul PBSI (1 x PBS, pH 7.4, 1% BSA, 1% SuperRnaseIn). For all later washes, cells were 

pelleted by centrifugation at 500xg for 5 min (4°C).

The following steps are similar with sci-RNA-seq protocol with paraformaldehyde fixed 

nuclei19,20. Briefly, cells were distributed into four 96-well plates. For each well, 500 to 

5,000 cells (2 μL) were mixed with 1 μl of 25 μM anchored oligo-dT primer (5′-

ACGACGCTCTTCCGATCTNNNNNNNN[10bp 

index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3′, where “N” is any base and “V” 

is either “A”, “C” or “G”; IDT) and 0.25 μL 10 mM dNTP mix (Thermo), denatured at 55°C 

for 5 min and immediately placed on ice. 1.75 μL of first-strand reaction mix, containing 1 

μL 5X Superscript IV First-Strand Buffer (Invitrogen), 0.25 μl 100 mM DTT (Invitrogen), 

0.25 μl SuperScript IV reverse transcriptase (200 U/μl, Invitrogen), 0.25 μL RNaseOUT 

Recombinant Ribonuclease Inhibitor (Invitrogen), was then added to each well. Reverse 

transcription was carried out by incubating plates at the following temperature gradient: 4°C 

2 minutes, 10°C 2 minutes, 20°C 2 minutes, 30°C 2 minutes, 40°C 2 minutes, 50°C 2 

minutes and 55°C 10 minutes. All cells were then pooled, stained with 4’,6-diamidino-2-

phenylindole (DAPI, Invitrogen) at a final concentration of 3 μM, and sorted at 50 cells per 

well into 5 μL EB buffer. Cells were gated based on DAPI stain such that singlets were 

discriminated from doublets and sorted into each well. 0.66 μl mRNA Second Strand 

Synthesis buffer (NEB) and 0.34 μl mRNA Second Strand Synthesis enzyme (NEB) were 

then added to each well, and second strand synthesis was carried out at 16°C for 180 min. 

Each well was then mixed with 5 μL Nextera™ TD buffer (Illumina) and 1 μL i7 only TDE1 

enzyme (25 nM, Illumina, diluted in Nextera™ TD buffer), and then incubated at 55°C for 5 

min to carry out tagmentation. The reaction was stopped by adding 12 μL DNA binding 

buffer (Zymo) and incubating at room temperature for 5 min. Each well was then purified 

using 36 uL AMPure XP beads (Beckman Coulter), eluted in 16 μL of buffer EB (Qiagen), 

then transferred to a fresh multi-well plate.

For PCR reactions, each well was mixed with 2μL of 10 μM P5 primer (5′-

AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCT

TCCGATCT-3′; IDT), 2 μL of 10 μM P7 primer (5′-

CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-3′; IDT), and 20 μL 

NEBNext High-Fidelity 2X PCR Master Mix (NEB). Amplification was carried out using 

the following program: 72°C for 5 min, 98°C for 30 sec, 18-22 cycles of (98°C for 10 sec, 

66°C for 30 sec, 72°C for 1 min) and a final 72°C for 5 min. After PCR, samples were 

Cao et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2020 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pooled and purified using 0.8 volumes of AMPure XP beads. Library concentrations were 

determined by Qubit (Invitrogen) and the libraries were visualized by electrophoresis on a 

6% TBE-PAGE gel. Libraries were sequenced on the NextSeq™ 500 platform (Illumina) 

using a V2 150 cycle kit (Read 1: 18 cycles, Read 2: 130 cycles, Index 1: 10 cycles, Index 2: 

10 cycles).

Read alignment and downstream processing

Read alignment and gene count matrix generation for the single cell RNA-seq was 

performed using the pipeline that we developed for sci-RNA-seq10 with minor 

modifications. Reads were first mapped to a reference genome with STAR/v2.5.2b68, with 

gene annotations from GENCODE V19 for human, and GENCODE VM11 for mouse. For 

experiments with HEK293T and NIH/3T3 cells, we used an index combining chromosomes 

from both human (hg19) and mouse (mm10). For the A549 experiment, we used human 

genome build hg19.

The single cell sam files were first converted into alignment tsv file using sam2tsv function 

in jvarkit69. Next, for each single cell alignment file, mutations matching the background 

SNPs were filtered out. For background SNP reference of A549 cells, we downloaded the 

paired-end bulk RNA-seq data for A549 cells from ENCODE37 (sampled name: 

ENCFF542FVG, ENCFF538ZTA, ENCFF214JEZ, ENCFF629LOL, ENCFF149CJD, 

ENCFF006WNO, ENCFF828WTU, ENCFF380VGD). Each paired-end fastq files were first 

adaptor-clipped using trim_galore/0.4.170 with default settings, aligned to human hg19 

genome build with STAR/v2.5.2b68. Unmapped and multiple mapped reads were removed 

by samtools/v1.371. Duplicated reads were filtered out by MarkDuplicates function in 

picard/1.10572. De-duplicated reads from all samples were combined and sorted with 

samtools/v1.371. Background SNPs were called by mpileup function in samtools/v1.371 and 

mpileup2snp function in VarScan/2.3.9 73. For HEK293T and NIH/3T3 test experiment, a 

background SNP reference was generated in a similar pipeline above, with the aggregated 

single cell sam data from control condition (no 4sU labeling and no IAA treatment 

condition).

For each single cell alignment file, all mutations with quality score <= 13 were removed. 

Mutations at both ends of each read were mostly due to sequencing errors, and thus also 

were filtered out. Mutations mapping to the background SNP reference were filtered out. For 

each read, we checked if there are T > C mutations for sense strand or A > G mutations for 

antisense strand, and labeled these mutated reads as newly synthesized.

Each cell was characterized by two digital gene expression matrixes from the full 

sequencing data and newly synthesized RNA data as described above. Genes with 

expression in equal or less than 5 cells were filtered out. Cells with fewer than 2,000 UMIs 

or more than 80,000 UMIs were discarded. Cells with doublet score > 0.2 by doublet 

analysis pipeline Scrublet/0.274 were removed.

The dimensionality of the data was first reduced with PCA (after selecting the top 2,000 

genes with highest variance) on digital gene expression matrix on either full gene expression 

data or the newly synthesized gene expression data by Monocle 3/alpha2,75. The top 10 PCs 

Cao et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2020 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were selected for dimensionality reduction analysis with uniform manifold approximation 

and projection (UMAP/0.3.2), a recently proposed algorithm based on Riemannian geometry 

and algebraic topology to perform dimension reduction and data visualization33. For joint 

analysis, we combined top 10 PCs calculated on the whole transcriptome and top 10 PCs on 

the newly synthesized transcriptome for each single cell before dimension reduction with 

UMAP. Cell clusters were done via densityPeak algorithm implemented in Monocle 3/

alpha2,75. We first performed UMAP analysis on joint information of all processed cells, and 

identified an outlier cluster (724 out of 7,404 cells). These cells were marked by high level 

expression of GATA3, a marker of differentiated cells45, and were filtered out before 

downstream analysis.

Linking transcription factors (TFs) to their regulated genes

We sought to identify links between TFs and their regulated genes based on expression 

covariance. Cells with more than 10,000 UMIs detected, and genes (including TFs) with 

newly synthesis reads detected in more than 10% of all cells were selected. On average, 

these TFs are detected as expressed in ~58% of cells. Of note, a small number of TFs with 

high expression overall but low expression within newly synthesized reads were filtered out 

at this step (14 TFs with expression in >50% of cells; 75 of TFs with expression in >20% of 

cells, filtered consequent to this). The full gene expression and newly synthesized gene 

count per cell were normalized by cell-specific library size factors computed on the full gene 

expression matrix by estimateSizeFactors in Monocle 3/alpha2,75, log transformed, centered, 

then scaled by scale() function in R. For each gene detected, a LASSO regression model was 

constructed with package glmnet/v.2.076 to predict the normalized expression levels, based 

on the normalized expression of 853 TFs annotated in the “motifAnnotations_hgnc” data 

from package RcisTarget/v1.2.138, by fitting the following model:

Gi = β0 + βtTi

where Gi is the adjusted gene expression value for gene i. It is calculated by the newly 

synthesized mRNA count for each cell, normalized by cell specific size factor (SGi) estimate 

by estimateSizeFactors in Monocle 3/alpha2,75 on the full expression matrix of each cell, and 

log transformed:

Gi = ln(
gi

SGi
+ 0 . 1)

To simplify downstream comparison between genes, we standardize the response Gi prior to 

fitting the model for each gene i with the scale() function in R.

Similar with Gi, Ti is the adjusted TF expression value for each cell. It is calculated by the 

full TF expression count for each cell, normalized by cell specific size factor (SGi) estimate 

by estimateSizeFactors in Monocle 3/alpha2,75 on the full expression matrix of each cell, and 

log transformed:
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Ti = ln(
ti

SGi
+ 0 . 1)

Prior to fitting, Ti is standardized with the scale() function in R.

Although negative correlations between a TF’s expression and a gene’s new synthesis rate 

could reflect the activity of a transcriptional repressor, we felt that the more likely 

explanation for negative links reported by glmnet was mutually exclusive patterns of cell-

state specific expression and TF activity. Thus during prediction, we excluded TFs with 

negatively correlated expression with a potential target gene’s synthesis rate, and also low 

regression coefficient (<= 0.03) links. We identified a total of 6,103 links between TFs and 

regulated genes. A modified strategy without filtering negatively correlated TF-gene 

synthesis rate pairs identified 47 additional repressive TF-gene links between 9 TFs and 46 

genes (Supplementary Table 2).

Our approach aims to identify TFs that may regulate each gene, by finding the subset that 

can be used to predict its expression in a regression model. However, a TF with expression 

correlated with a gene’s expression does not definitively mean that it is directly regulating 

that gene. To identify putatively direct targets within this set, we intersected the links with 

TFs profiled in ENCODE ChIP-seq experiments37. Out of the 6,103 links between TFs and 

genes by LASSO regression, 1,086 links have TFs characterized in ENCODE. 807 of these 

1,086 links were validated by target TF binding sites near gene promoters from ENCODE77, 

a 4.3-fold enrichment relative to background expectation (odds ratio for validation = 2.89 for 

links identified in LASSO regression vs. 0.67 for background, p-value < 2.2e-16, two-sided 

Fisher’s Exact test). Only gene sets with significant enrichment of the correct TF ChIP-seq 

binding sites were retained (two-sided Fisher’s Exact test, FDR of 5%), and further pruned 

to remove indirect target genes without TF binding data support. Ultimately, 591 links were 

retained by this approach.

To expand the set of validated TF-gene links, we further applied package SCENIC38, a 

pipeline to construct gene regulatory networks based on the enrichment of target TF motifs 

in the 10 kb window around genes’ promoters. Each co-expression module identified by 

LASSO regression was analyzed using cis-regulatory motif analysis using RcisTarget/

v1.2.138. Only modules with significant motif enrichment of the correct TF regulator were 

retained, and pruned to remove indirect target genes without motif support. We filtered the 

TF-gene links by three correlation coefficient thresholds (0.3, 0.4 and 0.5), and combined all 

links validated by RcisTarget38. In total, there were 509 links validated this motif-based 

approach.

Combining both approaches, we identified a total of 986 TF-gene regulatory links by the 

covariance between TF expression and gene synthesis rate, validated by DNA binding data 

or motif analysis. To evaluate the possibility that the links were artifacts of regularized 

regression, we permuted the order of single cell TF expression (Ti) and performed the same 

analyses. No links were identified after this permutation.
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Applying a similar strategy to all mRNA (rather than only newly synthesized mRNA) 

revealed 2,108 TF-gene links, with 532 identified by both approaches. The 448 TF-gene 

links uniquely identified by analysis of newly synthesized mRNA exhibited higher 

correlations between TF expression and newly synthesized mRNA than all mRNA (mean 

Spearman’s correlation of 0.19 vs. 0.16, respectively; p-value = 5.3e-8, two-sided Wilcoxon 

rank sum test). The TF-gene links identified exclusively by analysis of all mRNAs 

corresponded lower mRNA synthesis rates for linked genes (mean UMI count, normalized 

by size factor for newly synthesised mRNA: 1.20 for genes with links by newly synthesized 

mRNAs vs 0.97 for genes with links identified solely through analysis of all mRNAs; p-

value < 2.2e-16, two-sided Wilcoxon rank sum test).

Ordering cells based on the activity of functional TF modules

To calculate TF “activity” in each cell, newly synthesized UMI counts for genes linked to 

each of the 27 TFs were scaled by library size, log-transformed, aggregated and then 

mapped to Z-scores. As TFs with highly correlated or anti-correlated activity suggest they 

may function in linked biological processes, we calculated the absolute Pearson’s correlation 

coefficient between each pair of TF activity, and based on this we clustered TFs by ward.d2 

clustering method in package pheatmap/1.0.1278. Five functional TF modules were 

identified and annotated based on their functions.

To characterize the dynamics of cells in relation to potentially independent cellular 

processes, cells were ordered by the activity of cell cycle related TFs (TF module 1) or GR 

activity related TFs (TF module 3) with UMAP33(metric = “cosine”, n_neighbors = 30, 

min_dist = 0.01). The cell cycle progression trajectory were validated by cell cycle gene 

markers in Seurat/2.3.435. Three cell cycle phases were identified by densityPeak algorithm 

implemented in Monocle 3/alpha2,75, on the UMAP coordinates ordered by cell cycle TF 

modules. As each main cell cycle phase still showed variable TF activity and cell cycle 

marker expression, we segmented each phase to early/middle/late states by k-means 

clustering (k = 3), and recovered a total of nine cell cycle states. Three GR response states 

were identified by densityPeak algorithm implemented in Monocle 3/alpha2,75.

Past transcriptome state recovery from sci-fate

To infer the past transcriptome state (i.e. the cell state before 4sU labeling commenced), we 

assume mRNA half-lives are consistent across different DEX treatment durations. This 

assumption is further validated by self-consistency check later. Under this assumption, the 

partly degraded bulk transcriptome before the 2 hour 4sU labeling should be the same 

between no DEX and 2 hour DEX treated cells. Thus, for any given gene, differences in 

whole transcriptomes (bulk) between these time points should be equal to differences in the 

newly synthesized transcriptomes (bulk), corrected by technique’s detection rate:

A0ℎ ∕ S0ℎ − (N0ℎ ∕ S0ℎ) ∕ α = A2ℎ ∕ S2ℎ − (N2ℎ ∕ S2ℎ) ∕ α

A0h is the aggregated UMI count for all cells in no DEX treatment group; S0h is the library 

size (total UMI count of cells) at no DEX treatment; N0h is the aggregated newly 

synthesized UMI count for all cells in no DEX treatment group; A2h is the aggregated UMI 
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count for all cells in 2 hour DEX treatment group; S2h is the library size (total UMI count of 

cells) in 2 hour DEX treatment group; N2h is the aggregated newly synthesized UMI count 

for all cells in 2 hour DEX treatment group; α is the detection rate for each gene in sci-fate. 

As cells from different time points were profiled in the same experiment and the UMI counts 

detected per cell were similar across conditions (Supplementary Fig. 2ab), we assume the 

same overall RNA amount in the 0h and 2h samples, and normalize the aggregated gene 

count reads by total counts of each time point. For experiments where this assumption may 

not stand, spike-in standards could be used to control for differences in the overall amount of 

mRNA between conditions. In theory, one detection rate can be calculated for each gene. 

However, for genes with minor differences of newly synthesis rate between two conditions, 

the estimated α is dominated by noise. We thus selected genes showing higher differences in 

normalized newly synthesis rate between two conditions: we first tested a series of threshold 

for gene filtering and calculated the α for each gene. We then plotted the relationship 

between threshold and the ratio of genes with out-range α values (< 0 or > 1). We selected 

the threshold that was at the knee point of the plot, resulting in 186 genes selected 

(Supplementary Fig. 5a). The differences in newly synthesized mRNA of these genes highly 

correlates with the differences in mRNA expression level (Pearson’s r = 0.93, 

Supplementary Fig. 5b), suggesting the new RNA detection rate is stable across genes 

(Supplementary Fig. 5c). Here we use the median detection rate across 186 selected genes in 

order to estimateα.

We next computed the mRNA degradation rate across each 2 hour interval. As the A549 cell 

population can be regarded stable without external perturbation, for 2 hour DEX treated 

cells, its past state (before 2 hour 4sU labeling) should be the same as the 0 hour DEX 

treated cells. Expanding on this logic, the past state (before 4sU labeling) for T = 

0/2/4/6/8/10 hour DEX treated cells should be similar to the profiled T = 0/0/2/4/6/8 hour 

cells, respectively:

At1 ∕ St1 − (Nt1 ∕ St1) ∕ α = At0 ∕ St0 ∗ β

At1 is the aggregated UMI count for all cells in t1; St1 is is the library size (the total UMI 

count of cells) at t1; Nt1 is the aggregated newly synthesized UMI count for all cells at t1; α 
is the estimated detection rate of sci-fate; At0 is the aggregated UMI count for all cells in t0; 

St0 is the library size (the total UMI count of cells) at t0; β is 1 - gene specific degradation 

rate between t0 and t1, and is related with the mRNA half life γ by:

β = 1 − (1 ∕ 2) (t1 − t0) ∕ γ

The β was calculated for each of 14,587 genes across each 2 hour interval of DEX treatment. 

As the self-consistency check mentioned above, the gene degradation rates are highly 

correlated across different DEX treatment times (Supplementary Fig. 5g). We therefore used 

the average degradation rate for each gene for downstream analysis.

With the overall sci-fate detection rate as well as per-gene degradation rates estimated, the 

past transcriptome state of each cell can be estimated by:
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at1 − nt1 ∕ α = at0 ∗ β

αt1 is the single cell UMI count in t1; nt1 is the single cell newly synthesized UMI count at 

t1; α is the detection rate for each gene in sci-fate. Here we use the median detection rate 

across 186 selected genes as its estimates; β is 1 - gene specific degradation rate between t0 

and t1. at0 is the estimated single cell transcriptome in a past time point t0, with all negative 

values (15.6% of values on average) converted to 0.

The detection rate (α) of the newly synthesised transcriptome is experiment-specific and 

mainly depends on the 4sU labeling concentration. Generally, a lower 4sU concentration 

will lead to a lower 4sU incorporation rate to newly synthesised mRNA, which will reduce 

the detection rate of newly synthesised transcripts. Additionally, the length of sequencing 

reads may affect the detection rate, as discussed above. In the case of our experiments and as 

noted above, we used relatively long reads (on average, 75 bp of transcript-derived sequence 

obtained per read) to potentially increase detection rate. We also designed the experiments 

such that all treatment conditions shares the same 4sU treatment concentration and 

incubation time in the same cell type. Furthermore, all cells were sequenced in the same 

sequencing run, such that all conditions are expected to share a similar α. For sci-fate 

experiments with different labeling conditions or sequencing settings, the αwould need to be 

re-estimated for each part of the experiment. Of note, our simplifying assumption that gene-

specific degradation rates are constant across our DEX time course might not be a good 

choice in other systems. Specifically, in systems where the gene-specific degradation rates 

are expected or observed to substantially vary over time, these should be estimated for each 

time interval separately.

Linkage analysis to build single cell state trajectory

The goal of what we call here “linkage analysis” is to associate each cell with parent and 

child cells at different time points, i.e. single cell state trajectories. Our approach is based on 

a fact that the past transcriptome states (before 2 hour 4sU labeling) of cells at t1 should 

share the same cell population distribution with the profiled transcriptome states of cells at 

t0 (2 hours earlier than t1), assuming there is no cell apoptosis. We thus applied a published 

manifold alignment strategy to identify common cell states between two data sets, based on 

common sources of variation35. As a result, whole transcriptomes from t0 cells and 

recovered past transcriptomes from t1 cells are aligned in the same UMAP space. This 

analysis is based on an assumption that for intermediate time points, we are oversampling 

the space of physiologically distinct states in this time course. Violation of this and other 

assumptions can be detected by outliers during alignment of the two data sets. For each cell 

A from t1, we selected its nearest neighbor in t0 as its parent state in the alignment UMAP 

space. Similarly, for each cell from t0, we selected its nearest neighbor in t1 as its child cell 

state. Of note, the link is not necessary to be bi-directional: the parent state of one cell may 

be linked to a different child cell. After the parent and child states were identified for each 

cell (except cells at the start and end time points), we then extend each cell trajectory by 

searching for the linked parent cell of each cell's parent, and similarly the linked child cell of 

each cell's child. Thus each single cell can be characterized by a single cell state transition 
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path across all six time points spanning 10 hours. As multiple cells (>50) are profiled for 

each of the 27 defined cell state, stochastic cell state transition processes can also potentially 

be captured.

Dimensionality reduction and clustering analysis

For dimensionality reduction on single cell transcriptomes, the top 5 PCs for full 

transcriptomes and top 5 PCs for newly synthesized transcriptomes were selected for each 

state, and combined in temporal order along single cell state trajectory for UMAP analysis. 

Main cell trajectory types were identified by density peak clustering algorithm79.

With cell state proportion at the beginning time point (0 hour treatment) and cell state 

transition probabilities estimated from the data, we first predicted the cell state distribution 

after 2 hours, assuming the cell state transitions in DEX treatment are cell-autonomous, 

time-independent, Markovian processes. Similarly, the cell state distribution at later time 

points can be predicted from the cell state distribution 2 hours before.

For RNA velocity analysis of these same data, single cell spliced/unspliced expression 

matrices were generated using the command line interface of velocyto/v.0.1732 with the 

default run_smartseq2 mode on single cell bam files. Cell transition direction inference were 

performed with an optimized scalable RNA velocity analysis toolkit scVelo/v.0.1.17 and 

scanpy/v.1.4.1 with default settings32,80. For integrating treatment time information into the 

RNA velocity analysis of the 0h and 2h timepoints, we prohibited transitions of cells within 

0h, and instead selected the future state as the cell at the 2h time point with the highest 

transition probability.

Cell state instability and cell state distance calculations

We defined cell state instability as the proportion of cells in a given state ‘moving’ to any 

other state at the next time point. To calculate cell state distances, we first sampled equal 

number (n = 50) of cells from each state, and separately aggregated the full transcriptome 

and newly synthesized transcriptome of sampled cells of that state (i.e. in this ‘joint 

transcriptome’, each gene is represented by two columns, one for the whole transcriptome 

and one for the newly synthesized transcriptome). The cell state distance is calculated as the 

Pearson's correlation coefficient between the joint transcriptomes of two different states.

Data Availability

The data generated by this study can be downloaded in raw and processed forms from the 

NCBI Gene Expression Omnibus (GSE131351).

Code Availability

Scripts for processing sci-fate sequencing were written in python and R with code available 

at https://github.com/JunyueC/sci-fate_analysis.
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Fig. 1. Sci-fate enables joint profiling of whole and newly synthesized transcriptomes.
(a) The sci-fate workflow. Key steps are outlined in text. (b) Experimental scheme. A549 

cells were treated with dexamethasone for varying amounts of time ranging from 0 to 10 hrs. 

Cells from all treatment conditions were labeled with 4sU two hours before harvest for sci-

fate. (c) Violin plot showing the fraction of 4sU labeled reads per cell for each of the six 

treatment conditions. Cell number n = 1,054 (0h), 1,049 (2h), 949 (4h), 1,262 (6h), 1,041 

(8h), and 1,325 (10h). For all violin plots in this figure: thick lines in the middle, medians; 

upper and lower box edges, first and third quartiles, respectively; whiskers, 1.5 times the 

interquartile range; circles, outliers. (d) Violin plot showing the fraction of 4sU labeled reads 

per cell (n = 6,680), split out by the subsets that map to exons vs. introns. (e) UMAP 

visualization of A549 cells (n = 6,680) based on their whole transcriptomes (left), newly 

synthesized transcriptomes (middle) or with joint analysis, i.e. combining the top PCs from 

each (right). (f) Same as left and right of panel e, respectively, but colored by cluster id from 

UMAP based on whole transcriptomes. (g) Same as right of panel e, but colored by 

normalized expression of G2/M marker genes by their overall expression levels (left) or their 

levels of newly synthesized transcripts (right). UMI counts for these genes are scaled by 

library size, log-transformed, aggregated and then mapped to Z-scores.
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Fig. 2. Characterizing TF modules driving concurrent, dynamic gene regulatory processes in 
populations of single cells.
(a) Schematic of approach used to identify links between TFs and their regulated genes. (b) 

Heatmap showing the absolute Pearson’s correlation coefficient between the activities of 

pairs of TFs (Cell number n = 6,680). (c) UMAP visualization of A549 cells (n = 6,680) 

based on the activity of cell cycle-related TF module, colored by levels of newly synthesized 

mRNA corresponding to S phase markers (top left), G2/M phase markers (top right), and 

E2F1 activity (bottom left). Bottom right panel is colored by pseudotime based on point 

position on the principal curve estimated by princurve package65. (d) Same as panel c, but 

colored according to nine cell cycle states defined by unsupervised clustering analysis. In 

broad terms, cell cycle states 1-3 correspond to G1 phase, 4-6 to S phase, and 7-9 to G2/M 

phase. (e) Scatter plot showing the changes in the fraction of newly synthesized mRNA in 

each cell (n = 6,680) along cell cycle progression. The red line is the smoothed curve 

estimated by the geom_smooth function66. (f) Similar to panel e, but showing smoothed 

activity of selected TF modules as a function of cell cycle pseudotime. (g) UMAP 

visualization of A549 cells (n = 6,680) based on the activity of GR response-related TF 

module, colored by DEX treatment time (left), CEBPB or FOXO1 activity (middle panels), 

or cluster id from unsupervised clustering (right). Throughout figure, to calculate TF module 

Cao et al. Page 24

Nat Biotechnol. Author manuscript; available in PMC 2020 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity, newly synthesized UMI counts for genes linked to module-assigned TFs are scaled 

by library size, log-transformed, aggregated and then mapped to Z-scores.
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Fig. 3. Inferring single cell transcriptional dynamics with sci-fate.
(a) Schematic of approach for linking cells based on estimated past transcriptional states to 

reconstruct single cell transition trajectories. (b) 3D plot of all cells (cell number n = 6,680). 

The x and y coordinates correspond to the joint information UMAP space shown in the 

rightmost panel of Fig. 1e. The z coordinate as well as colors correspond to DEX treatment 

time. Linked parent and child cells are connected with grey lines. (c) Schematic comparing 

conventional scRNA-seq and sci-fate for cell trajectory analysis. (d) Similar to panel b, 

except the x and y coordinates correspond to the UMAP space based on the single cell 

transition trajectories across the six time points (cell number n = 6,680). (e-f) Barplots 

showing the contributions of the 3 GR response states (e) and the 9 different cell cycle states 

(f) to each of three cell trajectory clusters.
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Fig. 4. Constructing a state transition network for GR response and cell cycle.
(a) Cell state transition network. The nodes are 27 cell states characterized by combinations 

of cell cycle and GR activation states. The links represents frequent cell state transition 

trajectories (transition proportion > 10%) between cell states. This threshold for defining a 

link corresponds to approximately two standard deviations from the mean transition 

proportion calculated after permuting cell transition links (n = 729). (b) The x and y 

coordinates correspond to the joint information UMAP space shown in the rightmost panel 

of Fig. 1e, colored by DEX treatment time (top) or inferred cell cycle state (bottom). Grey 

lines represent inferred cell state transition links between parent and child cells (left: cell 

state transition links starting from cells at the S phase and no GR activation stage (Link 

number n = 433); right: cell state transition links starting from cells at G2/M phase and no 

GR activation stage (Link number n = 365)). Black arrows show main cell state transition 

directions. (c) Scatter plot showing the relationship between transition distance (Pearson’s 

distance) and transition proportion (n = 729), together with the red LOESS smoothed line by 

ggplot266. (d) 3D plot showing the cell state stability landscape. X-axis represents GR 

response states (from no to low to high activation state). Y-axis represents the cell cycle 

states ordered from G1 to G2/M. Z-axis represents cell state instability, defined as the 

proportion of cells inferred to be moving out of a given state between time points.
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