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Abstract
In the United States, Alzheimer’s disease (AD) is the most common cause of dementia, accompanied by substantial economic and
emotional costs. During 2015, more than 15 million family members who provided care to AD patients had an estimated total
cost of 221 billion dollars. Recent studies have shown that elevated total plasma levels of homocysteine (tHcy), a condition known
as hyperhomocysteinemia (HHcy), is a risk factor for AD. HHcy is associated with cognitive decline, brain atrophy, and dementia;
enhances the vulnerability of neurons to oxidative injury; and damages the blood–brain barrier. Many therapeutic supplements
containing vitamin B12 and folate have been studied to help decrease tHcy to a certain degree. However, a therapeutic
cocktail approach with 5-methyltetrahydrofolate, methyl B12, betaine, and N-acetylcysteine (NAC) have not been studied.
This novel approach may help target multiple pathways simultaneously to decrease tHcy and its toxicity substantially.
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Introduction

Alzheimer’s disease (AD) is the most common form of demen-

tia that consists of decline in memory, language, and problem-

solving skills. AD accounts for more than 50% of all clinically

diagnosed dementia.1 People in the final stages of AD are bed

bound and require constant care, ultimately leading to death.2

By 2050, a new case of AD is expected to occur every 33 s,

causing nearly 1 million new AD cases per year. The patho-

physiology of AD involves neurons being damaged or

destroyed.2 After many years of research, studies have shown

that elevated homocysteine (Hcy) is a major risk factor. Hcy

promotes excitotoxicity and gives rise to neuronal DNA dam-

age and apoptosis, thereby affecting short-term memory and

learning. It has become clear that elevated levels of Hcy elicit

neuronal death, including hippocampal and cortical neurons.1,3

Cross-sectional magnetic resonance imaging (MRI) studies

describe a similar correlation between high Hcy levels and

cerebral atrophy. The increased level of tHcy predicts the rate

of shrinkage of the medial temporal lobe in patients with AD.4

Hyperhomocysteinemia
(HHcy)/Oxidative Stress

HHcy is an elevation in blood levels of Hcy, a sulfur-

containing nonproteinogenic amino acid.5 Hcy is derived

from the hydrolysis of S-adenosyl Hcy during methionine

(Met) metabolism.6 Although Hcy is a normal metabolite,

Hcy excess is a risk factor for cognitive impairment and

dementia.7 HHcy has been associated with various adverse

health conditions including thrombosis, neuropsychiatric ill-

ness, fractures, and cardiovascular disease.8 While the serum

level of Hcy in healthy adults ranges from 5 to 10 mM, mild

Hcy ranges from 15 to 20 mM but can rise up to 500 mM, and

major symptoms have been shown to include neurodegenera-

tive pathologies such as dementia, Parkinson’s disease (PD),

and AD.9 Reports show that older adults with HHcy have

more regional brain atrophy and reduced volumes of medial
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orbitofrontal cortices. In addition, they have thinner cortical

gray matter on MRI.10

Hcy is an excitatory amino acid that enhances the vulner-

ability of neurons to oxidative injury. Oxidative stress has

been implicated in the disease progression of AD and PD.

Oxidative stress is the cause of unregulated production of

reactive oxygen species (ROS). ROS can initiate neuronal

cell death, causing neurodegeneration. For example, highly

reactive hydroxyl radical is considered one of the ROS that

can subsequently lead to lipid peroxidation, protein oxida-

tion, and protein aggregation.11–16 The brain is especially

susceptible to oxidative stress because of its relatively low

antioxidant enzymes.17 In addition, elevated total Hcy has an

increased risk for other disease, such as vascular diseases

and dementia.18

Furthermore, Hcy acts as a glutamate agonist on the

N-methyl-D-aspartate (NMDA) receptor. Overstimulation

of this receptor results in an increased level of cytoplasmic

calcium and higher production of free radicals and leads to

apoptosis.19–21 Intracerebroventricular injections of Hcy in

rats have induced lipid peroxidation, severe oxidative stress,

neuroinflammation, and cognitive impairment.22 HHcy also

affects the microvasculature and the blood–brain barrier

(BBB), which is more stringently controlled in the cortex.

The microcirculation of the brain is more susceptible to dis-

ruption by HHcy, which causes increased expression of

matrix metalloproteinases (MMPs). In the heterozygous

cystathionine-b-synthase (CBS) knockout mouse model, the

resulting HHcy increased brain permeability in relation to

increased MMP activity, extracellular matrix degradation,

vascular inflammation, and endothelial dysfunction.22

Several proinflammatory agents, such as endotoxins, cyto-

kines, and other oxidative stress factors, upregulate MMP

activity in astrocytes in vitro.22 The accumulation of toxic

free radicals plays a key role in BBB disruption via the

increased activity of MMPs.

N-Acetylcysteine (NAC)

Glutathione (GSH) is a major endogenous antioxidant.

Several studies have implicated GSH redox imbalance in

AD and PD. Both animal models and humans with these

disorders have demonstrated altered levels of GSH and

oxidized GSH (GSSG), a decreased ratio of GSH/GSSG,

and/or impaired expressions or activities of GSH-related

enzymes in the brain.12,13,23

GSH deficiency is associated with many pathological

conditions. However, administering NAC, a cysteine pro-

drug, helps increase intracellular GSH levels. NAC supplies

the cysteine necessary for GSH synthesis.23–25 In particular,

NAC increases the GSH levels in the brain and alleviates

oxidative stress-associated damage.26 GSH has been impli-

cated in the protection of brain cells against ROS.27 Indeed,

NAC is a remarkably active agent that has provided people

with relief in a variety of clinical settings.28 For example,

NAC reduces the duration of attacks of chronic obstructive

pulmonary disease; helps treat human immunodeficiency

virus; improves neuropsychiatric disorders; and offers anti-

oxidant, anti-inflammatory, mucolytic, and hepatoprotective

benefits.29–31 NAC itself is an amino-acid L-cysteine deriva-

tive; evidence supports that administering NAC helps reduce

oxidative damage in AD.32 Oral NAC administration

increases cerebral spinal fluid (CSF) NAC concentrations,

with the highest total NAC concentration of 10.1 + 0.8 mM.33

GSH is depleted in the early stages of PD, and deficiency

has been demonstrated to perpetuate oxidative stress, mito-

chondrial dysfunction, and cell death.34 In the brain, GSH

depletion exacerbates oxidative stress, which is a pathogen-

esis of aging-related neurodegenerative diseases. Cysteine is

used to produce GSH.35,36 Research indicates that cysteine

uptake by excitatory amino acid carrier (EAAC1) is impor-

tant for neuronal antioxidant function. A previous study

showed that mice lacking EAAC1�/� show increased neu-

ronal oxidative stress.37 However, this changed when oral

NAC treatment was initiated. In EAAC1�/� mice, a model

of PD, NAC substantially reduced loss of dopaminergic neu-

rons in the substantia nigra pars compacta,38 demonstrating

that NAC acts independently from the EAAC1 to cross the

neuronal membrane. Other research demonstrated that in

patients with major depressive disorder, supplementation

with NAC increased the NAC metabolite levels in the ante-

rior cingulate cortex detected by proton magnetic spectro-

scopy, suggesting that NAC initiates its effects in the brain

region.39 Thus, NAC administration into the body may help

reduce the cytotoxicity caused by ROS generation. Further-

more, NAC may improve endothelial function through its

antioxidant properties, which may attenuate Hcy-induced

oxidative stress. NAC is well tolerated by most patients, with

only mild gastrointestinal symptoms such as flatulence and

diarrhea.24,39 These studies indicate that NAC can potentially

alleviate oxidative stress caused by HHcy. In addition, other

pathways are available for detoxifying Hcy further.

Hcy Trans-sulfuration and Remethylation

Hcy is detoxified in the cells via 2 pathways: trans-

sulfuration and remethylation. With an excess cellular Hcy

level, trans-sulfuration converts Hcy into cystathionine with

the support of CBS. Cystathionine is then converted into

cysteine by cystathionine g-lyase.9,40 Mutations in genes

involved in Hcy metabolism, including CBS, can lead to

an increase in tHcy levels. Previous human tissue culture

research has demonstrated that Hcy concentration is

increased when Hcy metabolism is hindered by mutations

in the CBS gene. CBS-deficient (�/�) mice have 40-fold

higher total plasma Hcy levels.41–43

The remethylation pathway consists of Hcy being

remethylated back to Met. Hcy is recycled to Met by 2

enzymes, Met synthase (MS) and betaine-Hcy methyltrans-

ferase (BHMT). For both enzymes, the Hcy serves as an

acceptor of methyl groups for the maintenance of essential

S-adenosyl-met-dependent transmethylation reactions. MS
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converts 5-methyltetrahydrofolate (5-MTHF), derived from

folic acid, into tetrahydrofolate using vitamin B12 as a

cofactor. Researchers have developed a genotype mouse

model with methyltetrahydrofolate reductase (MTHFR�/�)

deficiency and demonstrated that these mice have impaired

memory.44,45

The most common genetic abnormality for Hcy metabo-

lism is a substitution at nucleotide 677 (C677T) of MTHFR.

With this genetic mutation, MTHFR activity will decrease

by 50%. In the Western countries, 9% to 17% of the popu-

lation was homozygous for this mutation and 30% to 41%
was heterozygous.11,45,46 Homozygosity and heterozygosity

for the C677T mutation are the most common MTHFR var-

iants and have been associated with high Hcy. Research has

shown that the C677T variant and plasma Hcy levels are

significant predictors of reduced regional brain volumes in

older adults. With decreased MTHFR, which is the rate-

limiting enzyme in the methyl cycle, the level of 5-MTHF

production also decreases. 5-MTHF is a predominant form

of folate. 5-MTHF together with vitamin B12 is required for

the conversion of Hcy to Met by this pathway.10,47 Hcy can

also obtain a methyl group from betaine, catalyzed by

BHMT.48,49 BHMT-dependent remethylation of Hcy occurs

primarily in the liver, kidneys, and lens. The central nervous

system lacks BHMT and is therefore dependent on folate and

the vitamin B12 pathway for the conversion of Hcy into Met

(Figure 1), suggesting enhanced vulnerability of the brain to

HHcy. The regulation of BHMT has been shown to affect

Hcy concentrations in plasma.5,50

The MS and BHMT pathways of Hcy remethylation are

considered areas of interest for research when applying

the therapeutic cocktail approach to decrease Hcy levels and

its toxicity. Folic acid, vitamin B12, or betaine (trimethyl-

glycine) can influence the Met-Hcy cycle and thus enhance

the conversion of Hcy into Met.50 Betaine has at least 5

different beneficial mechanisms for AD. First, betaine sup-

plementation (6 g/d for 12 wk) decreased fasting plasma Hcy

by 9% in obese men and women.51 Second, betaine can

hinder the short- and long-term memory impairment induced

by Hcy. Memory function examinations such as Y-maze and

step-down-type passive avoidance test were used as mea-

surements. Third, betaine can inhibit the Hcy-induced matrix

matrix metalloproteinase-9 (MMP-9) activity in the frontal

cortex, helping to prevent BBB damage.52 Fourth, betaine

can reduce hyperphosphorylation of tau protein, as hyperpho-

sphorylation of tau protein causes neural fiber entanglement,

leading to neurodegeneration.53 Fifth, betaine treatment

restores expressions of synaptic proteins needed for synaptic

plasticity, which are vital to learning and memory.54 These

factual statements make betaine a promising novel strategy to

add in a therapeutic cocktail.

Methylcobalamin

Insufficient amounts of folate and vitamin B12 limit

the conversion of Hcy into Met, influencing the Hcy level.55

A vegetarian diet may cause deficiency in vitamin B12,

since this vitamin is found only in foods of animal origin.

Figure 1. The metabolic interactions between 5-methyltetrahydrofolate (5-MTHF), methylcobalamin (methyl-B12), N-acetylcysteine
(NAC), and betaine are shown targeting multiple pathways.
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Moreover, acquired B12 deficiencies can result from parietal

cell and intrinsic factor antibodies (pernicious anemia),

malabsorption, age-related gut atrophy, or gastrectomy.56

Vitamin B treatment alleviates HHcy by 31.7% compared

with placebo. In effect, this was accompanied by a reduction

in the rate of brain atrophy of almost 30%. The prevalence of

vitamin B12 deficiency increases with age. Studies have

shown that there is a strong association between low B12

levels and risk of dementia. B12 is nontoxic, inexpensive,

and well tolerated.4,56,57

This study involved a clinical case of an 83-yr-old female

with a Mini–Mental State Examination score of 14, demon-

strating a moderate degree of cognitive impairment. The

study showed that 10,000 mg of hydroxocobalamin had no

effect on reversing dementia. However, another therapeutic

trail of 3,000 mg methylcobalamin and 1,200 mg folic acid

daily was given.57 Within 2 wk, the patient’s cognition

improved slowly and normal behaviors returned. After 2 mo

of methylcobalamin and folic acid, the patient’s Mini–Mental

State Examination score was back to 29. The patient was

able to resume most of her previous activities and social

life.57 The patient’s cognitive impairment improved with

methylcobalamin and folic acid.57 The cause of relapse during

supplementation with hydroxocobalamin is likely an inability

to convert hydroxocobalamin into the metabolically active

form of methylcobalamin.57 Methylcobalamin ultimately

enters the MS pathway. Hcy accepts a methyl group from

methylcobalamin to be transformed into Met. Methylcobala-

min is considered a substance that is biologically active at the

cellular level.58 This key point makes methylcobalamin a

more suitable choice to use in the therapeutic cocktail.

Conclusion

AD is the most common cause of dementia in the United

States and costs billions of dollars in health care. A substan-

tial amount of research has demonstrated that HHcy leads to

cellular oxidative stress and is considered a risk factor for

developing AD. HHcy overstimulates NMDA and a-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors,

resulting in increased levels of cytoplasmic calcium, higher

production of free radicals, and activation of caspases, lead-

ing to cellular death. The accumulation of these toxic free

radicals plays a major role in BBB disruption through the

increased activity of MMPs. However, NAC can restore

intracellular GSH levels in the brain, reducing these free

radical toxicities. Oral NAC does produce an increase in

NAC concentration in the CSF.33 NAC also has shown many

other benefits in a variety of clinical settings.

Other alternative therapeutic approaches, such as activat-

ing the Hcy remethylation pathway, should also be consid-

ered for reducing oxidative stress. Both 5-MTHF and methyl

B12 are important additives for treating Hhcy, via the

remethylation pathway. Clinical evidence has shown that

using methylcobalamin can improve a patient’s Mini–Men-

tal State Examination, and the patients are able to resume

their normal daily activities. In addition, patients who have

the MTHFR gene C677T variant will have a decrease in

MTHFR enzyme activity, which ultimately decreases 5-

MTHF production.11,45 Therefore, adding 5-MTHF is bene-

ficial. MS depends upon methyl B12 and 5-MTHF in the

remethylation pathway. In addition, Hcy is recycled to Met

through BHMT. Betaine supplementation has been shown to

decrease fasting plasma Hcy, improve memory, decrease

MMP activity, and decrease tau hyperphosphorylation.51–53

All 5-MTHF, methylB12, NAC, and betaine are available

separately as OTC dietary supplements. Therefore, one

should be able to make a therapeutic cocktail with 5-

MTHF, methyl B12, NAC, and betaine for AD treatment.

It will be more convenient for patients to have a cocktail

treatment rather than taking 4 different supplements. While

NAC helps alleviate oxidative stress, 5-MTHF, methyl B12,

and betaine can decrease Hcy concentration at the remethy-

lation pathway. This combination of therapeutic cocktail can

potentially help AD pathophysiology by targeting multiple

areas simultaneously.
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