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Background. Predicting the risk of poor prognosis of breast cancer is crucial to treating breast cancer. -is study investigated the
prognostic assessment of 10 lipid metabolism-related genes constructed as breast cancer models based on this study.Methods. -e
TCGA database was used to obtain clinical information and expression data of breast cancer patients, and GSEA analysis and
univariate and multivariate Cox proportional risk regression models were performed to identify lipid metabolism genes closely
associated with overall survival (OS) of breast cancer patients and to construct a prognostic risk score model based on lipid
metabolism gene markers. -e Kaplan–Meier method was used to analyze the survival status of patients with high and low-risk
scores, and ROC curves assessed the accuracy of this risk score. Finally, the relationship between this risk score and clinico-
pathological characteristics of BRCA was analyzed in a stratified manner, and the validity of this risk score as an independent
prognostic factor was determined using univariate and multivariate Cox regression analyses. Results. One hundred and forty-four
differentially expressed lipid metabolism-related genes were identified in cancer and paracancerous tissues in BRCA, 21 of which
were associated with overall survival (OS) in BRCA (P< 0.05). Univariate and multivariate Cox analyses revealed that age, grade,
and risk score were independent prognostic factors for BRCA. Multivariate Cox regression analysis further identified APOL4,
NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and RAB2A lipid metabolism-related genes as
independent prognostic markers for BRCA. A prognostic risk score model was developed by labeling lipid metabolism genes with
these 10 genes, and patients with BRCAwith high-risk scores in the model sample had significantly worse OS than those with low-
risk (P< 0.01). -e ROC curve area (AUC) of this risk score model was 0.712. Conclusion. By mining the TCGA database, we
identified 10 lipid metabolism-related genes APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT, MAP2K6,
ZDHHC8, and RAB2A, which are closely related to the prognosis of BRCA patients, and constructed a prognostic risk scoring
system based on 10 lipid metabolism genes tags.

1. Background

According to statistics, in 2020, for the first time, breast
cancer in women will overtake lung cancer as the most
common cancer worldwide [1]. Currently, the main treat-
ments for breast cancer include surgery, chemotherapy,
radiotherapy, and targeted therapy, but all have varying
degrees of side effects that affect the prognosis of patients [1].
-erefore, predicting the risk of poor prognosis in breast
cancer is crucial for breast cancer treatment. Lipids are
widely distributed in cellular organelles and are a crucial part
of all membranes; they form the basic structure of

membranes, signal molecules, and energy sources [2, 3].
-ere is growing evidence that the lipid metabolism is
largely reprogrammed in cancer [4, 5] and that lipid pro-
duction in human cancers is strongly upregulated to meet
the demands of increased membrane biogenesis [6, 7]. Most
types of cancers use lipids and cholesterol to meet their
unlimited energy requirements [8]. Increased lipid uptake,
storage, and lipogenesis have been shown to occur in various
cancers and contribute to rapid tumor growth [9]. Based on
this background, this study used the TCGA database to
obtain clinical information and expression data of breast
cancer patients, identified lipid metabolism genes that are
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closely associated with overall survival (OS) of breast cancer
patients, and constructed a prognostic risk scoring system
based on 10 lipid metabolism gene tags, which provides new
targets for diagnosis and treatment of breast cancer and can
promote human understanding of the pathogenesis of breast
cancer and improve. It can promote human understanding
of the pathogenesis of breast cancer and improve diagnosis
and treatment.

2. Methods

2.1. Collection of Genetic and Clinical Data. Breast cancer
patients’ clinical data and mRNA expression profiles were
downloaded from the TCGA database (https://portal.gdc.
cancer.gov/). -e selection criteria were set as the primary
cancer site was the breast, the project name was TCGA-
BRCA, the expression data type was HTSeq–FPKM, the data
type was a transcript, and the experimental method was
RNA-Seq technology. -is data matrix contains 1109 breast
cancer patients and 113 healthy controls. -e dataset of 8
genes related to the lipid metabolism was downloaded from
the GSEA official website (https://www.gsea-msigdb.org/
gsea/downloads.jsp).

2.2. Gene Set Enrichment Analysis. -e eight downloaded
datasets were enriched and analyzed with GSEA 4.1.0, and
validated lipid metabolism-related gene datasets with
standardized P< 0.05 were screened separately. Lipid
metabolism genes and their expressions were extracted from
these 8 datasets, screened for P< 0.05 differential analysis
using the limma package, and combined the differential gene
expression and survival data.

2.3. Construction of a Prognostic Model for Lipid Metabolism.
Univariate Cox regression analysis was applied to identify
lipid metabolism-related genes associated with overall sur-
vival, and then, multivariate Cox regression was performed
to screen out the prognosis-related lipid metabolism genes
and obtain the hazard ratio (HR). -e screened lipid
metabolism genes were then classified into hazard (HR> 1)
and protective (0<HR< 1) types. A prognostic risk score
model was constructed according to the linear combination
of expression levels, and the regression coefficients obtained
by multivariate Cox regression analysis were weighted with
the following risk parameter formula: risk parameter� 􏽐

(βn× expression of gene n).
Using the survival package in R 4.0.2, a prognostic model

of the lipid metabolism in breast cancer with minimal AIC
value was constructed by multifactorial COX regression, and
the risk values of patients were output.-e survival curves of
the 2 groups were plotted according to the median value
divided into 2 groups of high and low risks, and the risk
curves were plotted using ROC curves to judge the validity of
the model diagnosis.

2.4. Lipid Metabolism-Related Features Are Independent
Prognostic Factors for Breast Cancer. Univariate and

multivariate Cox regression analyses and data stratification
analyses were performed to assess whether risk scores were
independent of clinical characteristics. P< 0.05 was con-
sidered statistically significant.

2.4.1. Mutation and Difference Analysis of Model Gene.
Mutations in model genes were analyzed using the online
network (https://www.cbioportal.org/), and breast cancer
samples were selected from the TCGA dataset to analyze the
frequency and type of mutations in lipid metabolism genes
of tumors in the prognostic model. All steps were performed
according to the cBioPortal instructions.

2.5. StatisticalAnalysis. Using Kaplan–Meier survival curves
and the log-rank method (Log-rank), the accuracy of risk
parameters was estimated. Multivariate Cox analyses were
then performed to test whether risk parameters were in-
dependent of other clinical characteristics, and all statistical
analyses were performed using R 4.0.2, with p< 0.05 being
statistically significant.

3. Results

3.1. Enrichment Analysis of Lipid Metabolism in 0yroid
Carcinoma. -e clinical data and mRNA expression data-
sets of 1109 BRCA patients were obtained from -e Cancer
Genome Atlas (TCGA). After screening 8 datasets, 5 datasets
were finally found to be eligible, and GSEA analysis of 1494
genes involved in lipid metabolic processes revealed that
most of these genes were more active in the tumor samples.
Values (P), where FDR< 0.1 and P< 0.05, were used to
screen eligible gene sets, and FDR was performed for lipid
metabolism gene subset size and multiple hypothesis test
correction (Figure 1). GSEA determined that KEGG_AR-
ACHIDONIC_ACID_METABOLISM, KEGG_ETHER_LI-
PID_METABOLISM, KEGG_GLYCEROLIPID_METABO
LISM, KEGG_GLYCEROPHOSPHOLIPID_METABOLISM,
andWP_LIPID_METABOLISM_PATHWAY are five sets of
lipid metabolism-related genes upregulated in BRCA.

3.2. Lipid Metabolism Genes Related to the Prognosis of
0yroid Carcinoma. Univariate Cox regression analysis was
performed on the expression of lipid metabolism-related
genes in eight genomes in BRCA to identify prognostically
relevant differentially expressed genes for the lipid meta-
bolism. -e data showed that the expression of 21 differ-
entially expressed lipid metabolism-related genes was
associated with OS in patients with BRCA (P< 0.05) (Ta-
ble 1). Next, multivariate Cox regression analysis was per-
formed to identify further 10 lipid metabolism-related genes
APOL4, NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1,
IMMT, MAP2K6, ZDHHC8, and RAB2A as independent
prognostic markers for BRCA, with SLC25A5, DYNLT1, and
HRs for IMMT and RAB2A identified. With HRs greater
than 1 for IMMTand RAB2A, risk phenotypes are with low
patient survival (Table 2).
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Figure 1: Enrichment analysis of lipid metabolism gene set. (a) P� 0.003, KEGG_ARACHIDONIC_ACID_METABOLISM. (b) P� 0.005,
KEGG_ETHER_LIPID_METABOLISM. (c) P� 0.021, KEGG_GLYCEROLIPID_METABOLISM. (d) P� 0.037, KEGG_GLYCER-
OPHOSPHOLIPID_METABOLISM. (e) P� 0.013, WP_LIPID_METABOLISM_PATHWAY.
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3.3. Prognostic Model of Lipid Metabolism in 0yroid
Carcinoma. A prognostic model consisting of APOL4,
NR1H3, SLC25A5, APOL3, OSBPL1A, DYNLT1, IMMT,
MAP2K6, ZDHHC8, and RAB2A was constructed by mul-
tifactorial COX regression based on the risk value�APOL4
expression× 0.9478+NR1H3 expression× 0.9531+ SLC25A5
expression× 1.0018＋APOL3 expression× 0.9698＋OSB-
PL1Aexpression× 0.9553＋DYNLT1expression× 1.0107＋
IMMT expression× 1.0181＋MAP2K6 expression× 0.7772
＋ZDHHC8 expression× 0.9454＋RAB2A expression×

1.0093 and the value was calculated. According to their me-
dian, the patients were then divided into 2 groups of high and
lowrisks,with545breast cancer samples in thehigh-riskgroup
and 545 breast cancer samples in the low-risk group. -e
prognosis of the high and low-risk groups was significantly
different (P< 0.01), as shown by the survival curves
(Figure 2(a)).-e ROC curve showed that the AUC value was
0.712, indicating the model’s predictive value (Figure 2(b)).

3.4. Risk Curve. Risk parameters were calculated for each
patient, and the patients were divided into high and low-risk

groups using the median. -e distribution of patients’ risk
scores (Figure3(a)) and survival status (Figure3(b)) are shown.
In addition, the heat map shows the expression of the 10
mRNAs (Figure 3(c)). As patients’ risk scores increased, the
proportion of patients who died gradually increased, and the
survival time was significantly shortened. Meanwhile,
SLC25A5,DYNLT1,IMMT,andRAB2Awerehighlyexpressed
in the high-risk group.

3.5. Independent Prognostic Analysis of Univariate and
Multivariate. Comparing the prognostic value of risk pa-
rameters with clinicopathological parameters by univariate
andmultifactorial analyses showed that gender was not a good
predictorofprognosis inbreast cancerpatients. Incontrast, the
prognostic model studied here, age, grading, and risk score,
could effectively assess the prognosis of patients with a p value
less than0.01, showingasignificantprognosticvalue(Figure4).

3.6. Mutation and Difference Analysis of Model Gene.
Alterations in 10 risk genes were evaluated by analyzing
996 BRCA samples from the cBioPortal database

Table 1: 21 univariate Cox regression-associated lipid metabolism genes in breast cancer.

Gene HR HR.95L HR.95H Cox P value
APOL4 0.900877879 0.834348061 0.972712697 0.00765844
NR1H3 0.919241179 0.865931412 0.975832881 0.005735271
SLC25A5 1.001960965 1.000317045 1.003607587 0.019370037
APOL3 0.948868181 0.913186198 0.985944408 0.007279521
OSBPL1A 0.959529209 0.923596388 0.996860007 0.03388302
DYNLT1 1.017520083 1.005999394 1.029172708 0.002794158
HSPA9 1.009104615 1.004457297 1.013773434 0.000118927
SLC35A2 1.025997849 1.009627085 1.042634059 0.001763323
ENPP6 0.400790856 0.165340628 0.971529573 0.042980469
IMMT 1.021791143 1.00438895 1.03949485 0.013907542
GBP2 0.980967649 0.967334692 0.994792739 0.007120906
MAP2K6 0.767586959 0.616910246 0.955065576 0.017677113
ZDHHC8 0.910449729 0.845440542 0.980457723 0.013060524
HSPA4 1.010302771 1.001638957 1.019041523 0.019666949
KDELR2 1.005368525 1.001401791 1.009350973 0.007943869
YWHAB 1.005431653 1.002346635 1.008526165 0.000550569
DENND5A 0.948306241 0.899822755 0.999402073 0.047445508
RAB2A 1.01409836 1.00636175 1.021894447 0.000339738
WLS 0.980395937 0.962721035 0.998395337 0.032926553
KDELR1 1.003917855 1.000416053 1.007431914 0.028286843
ZDHHC9 1.032053594 1.012770657 1.051703674 0.001043034

Table 2: 10 multivariate Cox regression-associated lipid metabolism genes in breast cancer.

Id Coefficient HR
APOL4 −0.053646743 0.947766852
NR1H3 −0.048036694 0.953098814
SLC25A5 0.001753325 1.001754863
APOL3 −0.030663112 0.969802232
OSBPL1A −0.045680466 0.95534718
DYNLT1 0.010606609 1.010663058
IMMT 0.017937573 1.018099418
MAP2K6 −0.252082595 0.777180544
ZDHHC8 −0.056161117 0.945386806
RAB2A 0.009273916 1.009317052
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Figure 3: Continued.
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Figure 2: Survival analysis of the lipid metabolism prognostic model with ROC curves.

Contrast Media & Molecular Imaging 5



age

gender

stage

riskScore

<0.001

0.401

<0.001

<0.001

pvalue

1.032 (1.018−1.047)

0.429 (0.060−3.094)

2.112 (1.686−2.645)

1.472 (1.297−1.671)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5 2.0 2.5 3.0

age

gender

stage

riskScore

<0.001

0.874

<0.001

<0.001

1.036 (1.022−1.051)

0.852 (0.119−6.110)

2.193 (1.743−2.760)

1.635 (1.447−1.847)

Hazard ratio
0 1 2 3 4 5 6

pvalue Hazard ratio

Figure 4: Independent prognostic analysis.

APOL4

MAP2K6

OSBPL1A

ZDHHC8

NR1H3

APOL3

SLC25A5

RAB2A

DYNLT1

IMMT

type

type
high
low

2

4

6

8

10

(c)

Figure 3: Risk curve.

6 Contrast Media & Molecular Imaging



Missense Mutation (unknown significance)
Truncating Mutation (unknown significance)

Genetic Alteration
Splice Mutation (unknown significance)
Amplification

Deep Deletion
No alterations

ApoL

0 350aa100 200 300

0

1

# 
A

PO
L4

 M
ut

at
io

ns

S394C

zf-C4 Hormone_recep

0 447aa100 200 300 400

0

5

# 
N

R1
H

3 
M

ut
at

io
ns

Mito_carr Mito_carr Mito_carr

0 298aa100 200

0

1

# 
SL

C2
5A

5 
M

ut
at

io
ns

E104K

ApoL

0 402aa100 200 300

0

5

# 
A

PO
L3

 M
ut

at
io

ns

R637*

Ank_2 An.. Oxysterol_BP

0 950aa200 400 600 800

0

5

# 
O

SB
PL

1A
 M

ut
at

io
ns

APOL4
NR1H3
SLC25A5
APOL3
OSBPL1A
DYNLT1
IMMT
MAP2K6
ZDHHC8
RAB2A

0.4%
0.8%
0.5%
0.6%
1.7%
1.2%
0.9%
6%
1.2%
6%

(a)

Figure 5: Continued.
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(https://cbioportal.org). -e APOL4 gene was altered in 0.4%
of cases, showing amplification mutations and deep deletions.
NR1H3 gene was altered in 0.8% of cases, showing amplifi-
cationmutations, deepdeletions, andmissensemutations.-e
SLC25A5 gene was altered in 0.5% of cases, showing

amplification mutations and deep deletions. APOL3 gene was
altered in0.6%ofcases, showingamplificationmutations,deep
deletions, and missense mutations. -e DYNLT1 gene was
altered in 1.2% of cases, showing amplification mutations and
deep deletions. -e IMMTgene was altered in 0.9% of cases,
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Figure 5: Mutations in prognostic model genes.
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Figure 6: Continued.
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Figure 6: Differential analysis of prognostic model genes.
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Figure 7: Continued.
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showing amplification mutations, deep deletions, truncation,
and missense mutations. -e ZDHHC8 gene was altered in
1.2% of cases with amplification mutations, deep deletions,
truncation mutations, and missense mutations, and the
MAP2K6 and RAB2A genes were altered in 6% of cases with
amplification mutations and missense mutations (Figure 5).

-e expression of APOL4, NR1H3, SLC25A5, APOL3,
OSBPL1A, DYNLT1, IMMT, MAP2K6, ZDHHC8, and
RAB2A was upregulated in both normal and tumor samples.
P value for APOL3, MAP2K6, RAB2A, and ZDHHC8 was
less than 0.05, a significant difference; DYNLT1, IMMT,
NR1H3, OSBPL1A, and SLC25A5 had a P value less than
0.001, and the difference was highly significant (Figure 6).

3.7. Model Validation of Survival Curves for Clinical Char-
acteristics and Clinical Subgroups. Both univariate and
multivariate Cox regression analyses of OS revealed several

clinicopathological parameters that predict BRCA survival,
including age, grade, and risk score. We then validated these
findings using Kaplan–Meier survival curves, which showed
consistent results with age (Figure 7(a)), stage (Figure 7(c)),
T-stage (Figure 7(d)), N-stage (Figure 7(e)), and M-stage
(Figure 7(f)) being associated with poor prognosis. -ese
results further confirm the reliability of the analysis.

Several clinical characteristics were evaluated by
Kaplan–Meier analysis using log-rank tests to assess the
predictive ability of BC patients. -e results showed that the
survival curve was not affected by the age >65 group
(Figure 8(a)), and the prognosis of patients in the male
subgroup with high-risk scores was not significant and could
not be used to predict the prognosis of patients with BRCA
(Figures 8(c) and 8(d)). However, when we divided BRCA
patients into different subgroups according to TNM, the risk
parameter could no longer be used as theM1 subgroup alone
(Figure 8(l)), suggesting that this risk parameter is
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Figure 7: Relationship between risk score distribution and clinical parameters.
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Figure 8: Continued.
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influenced by TNM staging BRCA patients, which needs to
be further explored.

4. Conclusions

-is study focused on assessing the prognosis of breast
cancer by a model constructed from genes related to the lipid
metabolism. It was shown that univariate and multifactorial
Cox analyses showed that age, grade, and risk score were
independent prognostic factors for BRCA, and the study was
statistically significant. -e results showed that DYNLT1,
IMMT, RAB2A, and SLC25A5 were unfavorable factors for
breast cancer prognosis in the lipid metabolic pathway.
APOL3,APOL4,NR1H3,OSBPL1A,MAP2K6, andZDHHC8
were protective genes for breast cancer prognosis.

It is well known that APOL3-controlled NCS-1 promotes
cancer cell motility, metastatic spread, and survival. -e
reduction of π (4) P observed in human breast cancer, where
Golgi π (4) P is a regulator of cell adhesion and invasive cell
migration [10, 11]. APOL1Δ and APOL3KO foot cells can be
responsible for this metastatic phenotype. APOLs are sus-
pected to be involved in various cancers, including cervical,
ovarian, breast, thyroid, bladder, prostate, and colorectal
cancers [12–15]. It is known that NR1H3 is involved in
various metabolic functions such as cholesterol, fatty acid
and glucose homeostasis, and steroidogenesis. -e main
physiological functions of NR1H3 are maintenance of
cholesterol levels, lipoprotein metabolism, and lipid syn-
thesis, and at high cholesterol levels, NR1H3 is a major
transcriptional regulator involved in lipid metabolism gene
synthesis [16–18]. Oxygen sterol binding protein-related
protein 1 (OSBPL1A) is an intracellular lipid receptor and
a member of the oxygen sterol binding protein (OSBP)
family [19]. -e familial loss-of-function mutation in
OSBPL1A affects the first step of the reverse cholesterol
transport process and is associated with a low HDL-C
phenotype, suggesting that rare mutations in the OSBPL

gene may contribute to dyslipidemia [20]. MAP2K6 is in-
volved in various physiological and pathological processes,
such as cell growth, development, division, and in-
flammatory responses. In recent years, it has been found that
MAP2K6 may be associated with tumorigenesis and pro-
gression [21]. MAP2K6 may be involved in human tu-
morigenesis and progression and may be considered a new
diagnostic or prognostic biomarker for cancer [22, 23].
Previous studies have shown that MAP2K6 plays a vital role
in cell cycle regulation, transcription, and apoptosis. Parray
et al. [15] found significantly higher expression of MAP2K6
in esophageal, gastric, and colon cancers than in controls
using protein blotting and immunofluorescence assays, and
overexpression of MAP2K6 suggests a role in human can-
cers. It may be a novel diagnostic or prognostic biomarker in
these cancers [24–28]. DHHC8 is localized in mitochondria
and is involved in mitochondrial-regulated apoptosis [29].
DYNLT1 is an integral 14KDa protein subunit of the large
microtubule-based cytoplasmic dynein complex [30]. Wei
et al. [31] hypothesized that DYNLT1 is associated with
apoptosis regulation [31]. In addition, DYNLT1 was pre-
viously considered an interaction partner of REIC/Dkk-3,
inducing apoptosis through its role as a tumor suppressor in
various cancer cell lines [32]. IMMT is a mitochondrial
protein that affects the morphological structure and has
a putative impact on mitochondrial function. Although
there is little knowledge about the function of IMMT, al-
terations in this marker have been reported in association
with different diseases, including Down syndrome, diabetic
cardiomyopathy, and Parkinson’s disease [33–37].

-is study constructs a prognostic risk score model
based on lipid metabolism gene labeling and validates it by
survival analysis, ROC curve plotting, risk function as-
sessment, and independent prognostic analysis. We found
that DYNLT1, IMMT, RAB2A, and SLC25A5 were tumor
biomarkers to assess the prognosis of BRCA patients, and all
of them were high-risk genes, and the parameters indicated
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Figure 8: Kaplan–Meier curves to assess the prognostic value of risk parameters in patients grouped by clinical characteristics.

14 Contrast Media & Molecular Imaging



that 4 genes would make the prognosis of BRCA poorer.
-ese results provide new ideas and approaches for de-
veloping drugs targeting the energy metabolism of BRCA
cells and for the clinical treatment of BRCA.
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