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Abstract

Background: Machine learning is a broad term encompassing a number of methods that allow the investigator to
learn from the data. These methods may permit large real-world databases to be more rapidly translated to applica-
tions to inform patient-provider decision making.

Methods: This systematic literature review was conducted to identify published observational research of employed
machine learning to inform decision making at the patient-provider level. The search strategy was implemented

and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study
design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified
version of the Luo checklist.

Results: A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this
review. There were diverse methods, statistical packages and approaches used across identified studies. The most
common methods included decision tree and random forest approaches. Most studies applied internal validation but
only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple
machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of
published studies.

Conclusions: A wide variety of approaches, algorithms, statistical software, and validation strategies were employed
in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure
that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal
and external validation are necessary to be sure that decisions for patient care are being made with the highest
quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning
algorithms.
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Background

Traditional methods of analyzing large real-world data-
bases (big data) and other observational studies are
focused on the outcomes that can inform at the popu-
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predict or provide meaningful evidence at the patient
level is much less well established due to the complex-
ity with which clinical decision making is made and the
variety of factors taken into account by the health care
provider [1, 2]. Using traditional methods that produce
population estimates and measures of variability, it
is very challenging to accurately predict how any one
patient will perform, even when applying findings from
subgroup analyses. The care of patients is nuanced, and
multiple non-linear, interconnected factors must be
taken into account in decision making. When data are
available that are only relevant at the population level,
health care decision making is less informed as to the
optimal course of care for a given patient.

Clinical prediction models are an approach to utiliz-
ing patient-level evidence to help inform healthcare
decision makers about patient care. These models are
also known as prediction rules or prognostic models
and have been used for decades by health care profes-
sionals [3]. Traditionally, these models combine patient
demographic, clinical and treatment characteristics in
the form of a statistical or mathematical model, usu-
ally regression, classification or neural networks, but
deal with a limited number of predictor variables (usu-
ally below 25). The Framingham Heart Study is a classic
example of the use of longitudinal data to build a tradi-
tional decision-making model. Multiple risk calculators
and estimators have been built to predict a patient’s risk
of a variety of cardiovascular outcomes, such as atrial
fibrillation and coronary heart disease [4—6]. In general,
these studies use multivariable regression evaluating
risk factors identified in the literature. Based on these
findings, a scoring system is derived for each factor to
predict the likelihood of an adverse outcome based on a
patient’s score across all risk factors evaluated.

With the advent of more complex data collection
and readily available data sets for patients in routine
clinical care, both sample sizes and potential predictor
variables (such as genomic data) can exceed the tens
of thousands, thus establishing the need for alterna-
tive approaches to rapidly process a large amount of
information. Artificial intelligence (AI), particularly
machine learning methods (a subset of Al), are increas-
ingly being utilized in clinical research for prediction
models, pattern recognition and deep-learning tech-
niques used to combine complex information for exam-
ple genomic and clinical data [7-9]. In the health care
sciences, these methods are applied to replace a human
expert to perform tasks that would otherwise take con-
siderable time and expertise, and likely result in poten-
tial error. The underlying concept is that a machine will
learn by trial and error from the data itself, to make
predictions without having a pre-defined set of rules
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for decision making. Simply, machine learning can sim-
ply be better understood as “learning from data”” [8].

There are two types of learning from the data, unsu-
pervised and supervised. Unsupervised learning is a type
of machine learning algorithm used to draw inferences
from datasets consisting of input data without labelled
responses. The most common unsupervised learning
method is cluster analysis, which is used for explora-
tory data analysis to find hidden patterns or grouping in
data. Supervised learning involves making a prediction
based on a set of pre-specified input and output vari-
ables. There are a number of statistical tools used for
supervised learning. Some examples include traditional
statistical prediction methods like regression models
(e.g. regression splines, projection pursuit regression,
penalized regression) that involve fitting a model to data,
evaluating the fit and estimating parameters that are later
used in a predictive equation. Other tools include tree-
based methods (e.g. classification and regression trees
[CART] and random forests), which successively parti-
tion a data set based on the relationships between pre-
dictor variables and a target (outcome) variable. Other
examples include neural networks, discriminant func-
tions and linear classifiers, support vector classifiers and
machines. Often, predictive tools are built using various
forms of model aggregation (or ensemble learning) that
may combine models based on resampled or re-weighted
data sets. These different types of models can be fitted to
the same data using model averaging.

Classical statistical regression methods used for predic-
tion modeling are well understood in the statistical sci-
ences and the scientific community that employs them.
These methods tend to be transparent and are usually
hypothesis driven but can overlook complex associations
with limited flexibility when a high number of variables
are investigated. In addition, when using classic regres-
sion modeling, choosing the ‘right’ model is not straight-
forward. Non-traditional machine learning algorithms,
and machine learning approaches, may overcome some
of these limitations of classical regression models in this
new era of big data, but are not a complete solution as
they must be considered in the context of the limitations
of data used in the analysis [2].

While machine learning methods can be used for both
population-based models as well as for informed patient-
provider decision making, it is important to note that the
data, model, and outputs used to inform the care of an
individual patient must meet the highest standards of
research quality, as the choice made will likely have an
impact on both the long- and short-term patient out-
comes. While a range of uncertainty can be expected for
population-based estimates, the risk of error for patient
level models must be minimized to ensure quality patient
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care. The risks and concerns of utilizing machine learning
for individual patient decision making have been raised
by ethicists [10]. The risks are not limited to the lack of
transparency, limited data regarding the confidence of
the findings, and the risk of reducing patient autonomy
in choice by relying on data that may foster a more pater-
nalistic model of healthcare. These are all important and
valid concerns, and therefore the role of machine learn-
ing for patient care must meet the highest standards to
ensure that shared, not simply informed, evidence-based
decision making be supported by these methods.

A systematic literature review was published in 2018
that evaluated the statistical methods that have been
used to enable large, real-world databases to be used at
the patient-provider level [11]. Briefly, this study identi-
fied a total of 115 articles that evaluated the use of logis-
tic regression (n=52, 45.2%), Cox regression (n=24,
20.9%), and linear regression (n=17, 14.8%). However,
an interesting observation noted several studies utiliz-
ing novel statistical approaches such as machine learning,
recursive partitioning, and development of mathematical
algorithms to predict patient outcomes. More recently,
publications are emerging describing the use of Indi-
vidualized Treatment Recommendation algorithms and
Outcome Weighted Learning for personalized medicine
using large observational databases [12, 13]. Therefore,
this systematic literature review was designed to fur-
ther pursue this observation to more comprehensively
evaluate the use of machine learning methods to support
patient-provider decision making, and to critically evalu-
ate the strengths and weaknesses of these methods. For
the purposes of this work, data supporting patient-pro-
vider decision making was defined as that which provided
information specifically on a treatment or intervention
choice; while both population-based and risk estimator
data are certainly valuable for patient care and decision
making, this study was designed to evaluate data that
would specifically inform a choice for the patient with the
provider. The overarching goal is to provide evidence of
how large datasets can be used to inform decisions at the
patient level using machine learning-based methods, and
to evaluate the quality of such work to support informed
decision making.

Methods

This study originated from a systematic literature review
that was conducted in MEDLINE and Psychlnfo; a
refreshed search was conducted in September 2020 to
obtain newer publications (Table 1). Eligible studies
were those that analyzed prospective or retrospective
observational data, reported quantitative results, and
described statistical methods specifically applicable to
patient-level decision making. Specifically, patient-level
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decision making referred to studies that provided data for
or against a particular intervention at the patient level,
so that the data could be used to inform decision mak-
ing at the patient-provider level. Studies did not meet this
criterion if only a population-based estimates, mortality
risk predictors, or satisfaction with care were evaluated.
Additionally, studies designed to improve diagnostic tools
and those evaluating health care system quality indica-
tors did not meet the patient-provider decision-making
criterion. Eligible statistical methods for this study were
limited to machine learning-based approaches. Eligibil-
ity was assessed by two reviewers and any discrepancies
were discussed; a third reviewer was available to serve
as a tie breaker in case of different opinions. The final
set of eligible publications were then abstracted into a
Microsoft Excel document. Study quality was evaluated
using a modified Luo scale, which was developed specifi-
cally as a tool to standardize high-quality publication of
machine learning models [14]. A modified version of this
tool was utilized for this study; specifically, the optional
item were removed, and three terms were clarified:
item 6 (define the prediction problem) was redefined as
“define the model,” item 7 (prepare data for model build-
ing) was renamed “model building and validation,” and
item 8 (build the predictive model) was renamed “model
selection” to more succinctly state what was being evalu-
ated under each criterion. Data were abstracted and both
extracted data and the Luo checklist items were reviewed
and verified by a second reviewer to ensure data com-
prehensiveness and quality. In all cases of differences in
eligibility assessment or data entry, the reviewers met
and ensured agreement with the final set of data to be
included in the database for data synthesis, with a third
reviewer utilized as a tie breaker in case of discrepancies.
Data were summarized descriptively and qualitatively,
based on the following categories: publication and study
characteristics; patient characteristics; statistical meth-
odologies used, including statistical software packages;
strengths and weaknesses; and interpretation of findings.

Results

The search strategy was run on September 1, 2020 and
identified a total of 34 publications that utilized machine
learning methods for individual patient-level decision
making (Fig. 1). The most common reason for study
exclusion, as expected, was due to the study not meeting
the patient-level decision making criterion. A summary
of the characteristics of eligible studies and the patient
data are included in Table 2. Most of the real-world data
sources included retrospective databases or designs
(n=27, 79.4%), primarily utilizing electronic health
records. Six analyses utilized prospective cohort studies
and one utilized data from a cross sectional study.
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1 (randomized controlled trial or controlled clinical trial).pt. or randomized.ab

2 Prospective Studies/ or observational trials.mp. or observational research.mp

3 Retrospective Studies/ or retrospective observational.mp. or retrospective database.mp

4 Cross-Sectional Studies/ or cross-sectional.mp

5 (systematic adj2 review).mp

6 lor2or3or4or5

7 *Neoplasms/

8 *Cardiovascular Diseases/

9 *Diabetes Mellitus, Type 1/ or *Diabetes Mellitus, Type 2/ or *Diabetes Mellitus/

10 *Autoimmune Diseases/

11 *Alzheimer Disease/

12 7or8or9or10or11

13 (decision making or decision analysis).mp. or *Decision Making/ or Decision Support Techniques/

14 Physician—Patient Relations/ or Patient-Centered Care/ or patient cent*.mp

15 nomograms.mp. or Nomograms/

16 prediction model* mp

17 Patient Preference/ or discrete choice.mp. or conjoint analysis.mp

18 Decision Support Techniques/ or (decision adj2 tool).mp. or decision aidmp

19 13or14or15or16or17o0r18

20 6and 12and 19

21 limit 20 to (english language and humans and yr="2000 -Current")

22 limit 20 to (english language and humans and yr="2014 -Current")

23 "machine learning"mp. or Machine Learning/ or "Neural Networks (Computer)"/ or Computer
Simulation/ or Algorithms/

24 22 and 23

25 data mining.mp. or Data Mining/ or Medical Informatics/

26 22 and 25

27 24 or 26

28 neural network*.mp. or LTSM.ab. or LTSM.ti. or memory network*.mp

29 28and 6and 19and 19

30 limit 29 to (english language and humans and yr="2014 -Current")

31 27 or 30

General approaches to machine learning

The types of classification or prediction machine learn-
ing algorithms are reported in Table 2. These included
decision tree/random forest analyses (19 studies) [15—
33] and neural networks (19 studies) [24—30, 32, 34—
44]. Other approaches included latent growth mixture
modeling [45], support vector machine classifiers [46],
LASSO regression [47], boosting methods [23], and a
novel Bayesian approach [26, 40, 48]. Within the analyti-
cal approaches to support machine learning, a variety of
methods were used to evaluate model fit, such as Akaike
Information Criterion, Bayesian Information Criterion,
and the Lo-Mendel-Rubin likelihood ratio test [22, 45,
47], and while most studies included the area under the
curve (AUC) of receiver-operator characteristic (ROC)
curves (Table 3), analyses also included sensitivity/speci-
ficity [16, 19, 24, 30, 41-43], positive predictive value
[21, 26, 32, 38, 40—43], and a variety of less common

approaches such as the geometric mean [16], use of
the Matthews correlation coefficient (ranges from -1.0,
completely erroneous information, to+ 1.0, perfect pre-
diction) [46], defining true/false negatives/positives by
means of a confusion matrix [17], calculating the root
mean square error of the predicted versus original out-
come profiles [37], or identifying the model with the best
average performance training and performance cross val-
idation [36].

Statistical software packages

The statistical programs used to perform machine learn-
ing varied widely across these studies, no consistencies
were observed (Table 2). As noted above, one study using
decision tree analysis used Quinlan’s C5.0 decision tree
algorithm [15] while a second used an earlier version
of this program (C4.5) [20]. Other decision tree analy-
ses utilized various versions of R [18, 19, 22, 24, 27, 47],
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Publications utilizing
machine learning from
published 2018 review

N=3

A 4

Final eligible set of

Number of articles identified in
2020 literature search
N=195

A 4

Reasons for exclusion (N=164)

Not quantitative (n=2)

Review article (n=18)

Clinical trial data (n=10)

Not machine learning (N=31)

Not individual decision making (n=102)
Evaluation of existing model (n=1)

!

Publications utilizing

A

publications
N=34

Fig. 1 Prisma diagram of screening and study identification

machine learning
N=31

International Business Machines (IBM) Statistical Pack-
age for the Social Sciences (SPSS) [16, 17, 33, 47], the
Azure Machine Learning Platform [30], or programmed
the model using Python [23, 25, 46]. Artificial neural net-
work analyses used Neural Designer [34] or Statistica
V10 [35]. Six studies did not report the software used for
analysis [21, 31, 32, 37, 41, 42].

Families of machine learning algorithms

Also as summarized in Table 2, more than one third of
all publications (n=13, 38.2%) applied only one family
of machine learning algorithm to model development
[16-20, 34, 37, 41-43, 46, 48]; and only four studies uti-
lized five or more methods [23, 25, 28, 45]. One applied
an ensemble of six different algorithms and the software
was set to run 200 iterations [23], and another ran seven
algorithms [45].

Internal and external validation

Evaluation of study publication quality identified the
most common gap in publications as the lack of exter-
nal validation, which was conducted by only two studies
[15, 20]. Seven studies predefined the success criteria for
model performance [20, 21, 23, 35, 36, 46, 47], and five
studies discussed the generalizability of the model [20,
23, 34, 45, 48]. Six studies [17, 18, 21, 22, 35, 36] dis-
cussed the balance between model accuracy and model
simplicity or interpretability, which was also a criterion of
quality publication in the Luo scale [14]. The items on the
checklist that were least frequently met are presented in

Fig. 2. The complete quality assessment evaluation for
each item in the checKklist is included in Additional file 1:
Table S1.

There were a variety of approaches taken to validate
the models developed (Table 3). Internal validation with
splitting into a testing and validation dataset was per-
formed in all studies. The cohort splitting approach was
conducted in multiple ways, using a 2:1 split [26], 60/40
split [21, 36], a 70/30 split [16, 17, 22, 30, 33, 35], 75/25
split [27, 40], 80/20 split [46], 90/10 split [25, 29], splitting
the data based on site of care [48], a 2/1/1 split for train-
ing, testing and validation [38], and splitting 60/20/20,
where the third group was selected for model selection
purposes prior to validation [34]. Nine studies did not
specifically mention the form of splitting approach used
[15, 18-20, 24, 29, 39, 45, 47], but most of those noted
the use of k fold cross validation. One training set cor-
responded to 90% of the sample [23], whereas a second
study was less clear, as input data were at the observation
level with multiple observations per patient, and 3 of the
15 patients were included in the training set [37]. The
remaining studies did not specifically state splitting the
data into testing and validation samples, but most speci-
fied they performed five-fold cross validation (including
one that generally mentioned cohort splitting) [18, 45] or
ten-fold cross validation strategies [15, 19, 20, 28].

External validation was conducted by only two studies
(5.9%). Hische and colleagues conducted a decision tree
analysis, which was designed to identify patients with
impaired fasting glucose [20]. Their model was developed
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in a cohort study of patients from the Berlin Potsdam
Cohort Study (n=1527) and was found to have a positive
predictive value of 56.2% and a negative predictive value
of 89.1%. The model was then tested on an independent
from the Dresden Cohort (n=1998) with a family history
of type II diabetes. In external validation, positive predic-
tive value was 43.9% and negative predictive value was
90.4% [20]. Toussi and colleagues conducted both inter-
nal and external validation in their decision tree analysis
to evaluate individual physician prescribing behaviors
using a database of 463 patient electronic medical records
[15]. For the internal validation step, the cross-validation
option was used from Quinlan’s C5.0 decision tree learn-
ing algorithm as their study sample was too small to split
into a testing and validation sample, and external valida-
tion was conducted by comparing outcomes to published
treatment guidelines. Unfortunately, they found little
concordance between physician behavior and guidelines
potentially due to the timing of the data not matching
the time period in which guidelines were implemented,
emphasizing the need for a contemporaneous external
control [15].

Handling of missing values

Missing values were addressed in most studies (n=21,
61.8%) in this review, but there were thirteen remaining
studies that did not mention if there were missing data or
how they were handled (Table 3). For those that reported
methods related to missing data, there were a wide vari-
ety of approaches used in real-world datasets. The full
information maximum likelihood method was used for
estimating model parameters in the presence of miss-
ing data for the development of the model by Hertroijs
and colleagues, but patients with missing covariate val-
ues at baseline were excluded from the validation of the
model [45]. Missing covariate values were included in
models as a discrete category [48]. Four studies removed
patients from the model with missing data [46], result-
ing in the loss of 16%-41% of samples in three studies [17,
36, 47]. Missing data from primary outcome variables
were reported among with 59% (men) and 70% (women)
within a study of diabetes [16]. In this study, single impu-
tation was used; for continuous variables CART (IBM
SPSS modeler V14.2.03) and for categorical variables the
authors used the weighted K-Nearest Neighbor approach
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using RapidMiner (V.5) [16]. Other studies reported
exclusion but not specifically the impact on sample size
[29, 31, 38, 44]. Imputation was conducted in a variety of
ways for studies with missing data [22, 25, 28, 33]. Single
imputation was used in the study by Bannister and col-
leagues, but followed by multiple imputation in the final
model to evaluate differences in model parameters [22].
One study imputed with a standard last-imputation-
forward approach [26]. Spline techniques were used to
impute missing data in the training set of one study [37].
Missingness was largely retained as an informative vari-
able, and only variables missing for 85% or more of par-
ticipants were excluded by Alaa et al. [23] while Hearn
et al. used a combination of imputation and exclusion
strategies [40]. Lastly, missing or incomplete data were
imputed using a model-based approach by Toussi et al.
[15] and using an optimal-impute algorithm by Bertsimas
etal. [21].

Strengths and weaknesses noted by authors

Publications summarized the strengths and weaknesses
of the machine learning methods employed. Low com-
plexity and simplicity of machine-based learning mod-
els were noted as strengths of this approach [15, 20].
Machine learning approaches were both powerful and
efficient methods to apply to large datasets [19]. It was
noted that parameters in this study that were significant
at the patient level were included, even if at the broader
population-based level using traditional regression analy-
sis model development they would have not been signifi-
cant and therefore would have been otherwise excluded
using traditional approaches [34]. One publication noted
the value of machine learning being highly dependent on
the model selection strategy and parameter optimization,
and that machine learning in and of itself will not provide
better estimates unless these steps are conducted prop-
erly [23].

Even when properly planned, machine learning
approaches are not without issues that deserve attention
in future studies that employ these techniques. Within
the eligible publications, weaknesses included overfit-
ting the model with the inclusion of too much detail
[15]. Additional limitations are based on the data sources
used for machine learning, such as the lack of availabil-
ity of all desired variables and missing data that can affect
the development and performance of these models [16,
34, 36, 48]. The lack of all relevant variables was noted
as a particular concern for retrospective database stud-
ies, where the investigator is limited to what has been
recorded [26, 28, 29, 38, 40]. Importantly and as observed
in the studies included in this review, the lack of external
validation was stated as a limitation of studies included in
this review [28, 30, 38, 42].
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Limitations can also be on the part of the research
team, as the need for both clinical and statistical exper-
tise in the development and execution of studies using
machine learning-based methodology, and users are
warned against applying these methods blindly [22]. The
importance of the role of clinical and statistical experts in
the research team was noted in one study and highlighted
as a strength of their work [21].

Discussion

This study systematically reviewed and summarized the
methods and approaches used for machine learning as
applied to observational datasets that can inform patient-
provider decision making. Machine learning methods have
been applied much more broadly across observational
studies than in the context of individual decision making,
so the summary of this work does not necessarily apply to
all machine learning-based studies. The focus of this work
is on an area that remains largely unexplored, which is
how to use large datasets in a manner that can inform and
improve patient care in a way that supports shared deci-
sion making with reliable evidence that is applicable to the
individual patient. Multiple publications cite the limita-
tions of using population-based estimates for individual
decisions [49-51]. Specifically, a summary statistic at the
population level does not apply to each person in that
cohort. Population estimates represent a point on a poten-
tially wide distribution, and any one patient could fall any-
where within that distribution and be far from the point
estimate value. On the other extreme, case reports or case
series provide very specific individual-level data, but are
not generalizable to other patients [52]. This review and
summary provides guidance and suggestions of best prac-
tices to improve and hopefully increase the use of these
methods to provide data and models to inform patient-
provider decision making.

It was common for single modeling strategies to be
employed within the identified publications. It has long
been known that single algorithms to estimation can pro-
duce a fair amount of uncertainty and variability [53]. To
overcome this limitation, there is a need for multiple algo-
rithms and multiple iterations of the models to be per-
formed. This, combined with more powerful analytics in
recent years, provides a new standard for machine learning
algorithm choice and development. While in some cases, a
single model may fit the data well and provide an accurate
answer, the certainty of the model can be supported through
novel approaches, such as model averaging [54]. Few stud-
ies in this review combined multiple families of modeling
strategies along with multiple iterations of the models. This
should become a best practice in the future and is recom-
mended as an additional criterion to assess study quality
among machine learning-based modeling [54].
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External validation is critical to ensure model accuracy,
but was rarely conducted in the publications included in
this review. The reasons for this could be many, such as
lack of appropriate datasets or due to the lack of aware-
ness of the importance of external validation [55]. As
model development using machine learning increases,
there is a need for external validation prior to applica-
tion of models in any patient-provider setting. The gen-
eralizability of models is largely unknown without these
data. Publications that did not conduct external valida-
tion also did not note the need for this to be completed,
as generalizability was discussed in only five studies, one
of which had also conducted the external validation. Of
the remaining four studies, the role of generalizability
was noted in terms of the need for future external valida-
tion in only one study [48]. Other reviews that were more
broadly conducted to evaluate machine learning meth-
ods similarly found a low rate of external validation (6.6%
versus 5.9% in this study) [56]. It was shown that there
was lower prediction accuracy by external validation than
simply by cross validation alone. The current review,
with a focus on machine learning to support decision
making at a practical level, suggests external validation is
an important gap that should be filled prior to using these
models for patient-provider decision making.

Luo and others suggest that k-fold validation may be
used with proper stratification of the response variable as
part of the model selection strategy [14, 55]. The studies
identified in this review generally conducted 5- or ten-
fold validation. There is no formal rule for the selection
for the value of k, which is typically based on the size of
the dataset; as k increases, bias will be reduced, but in
turn variance will increase. While the tradeoff has to be
accounted for, k=5-10 has been found to be reasonable
for most study purposes [57].

The evidence from identified publications suggests that
the ethical concerns of lack of transparency and failure to
report confidence in the findings are largely warranted.
These limitations can be addressed through the use of
multiple modeling approaches (to clarify the ‘black box’
nature of these approaches) and by including both exter-
nal and high k-fold validation (to demonstrate the con-
fidence in findings). To ensure these methods are used
in a manner that improves patient care, the expectations
of population-based risk prediction models of the past
are no longer sufficient. It is essential that the right data,
the right set of models, and appropriate validation are
employed to ensure that the resulting data meet stand-
ards for high quality patient care.

This study did not evaluate the quality of the under-
lying real-world data used to develop, test or validate
the algorithms. While not directly part of the evalua-
tion in this review, researchers should be aware that all
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limitations of real-world data sources apply regardless
of the methodology employed. However, when obser-
vational datasets are used for machine learning-based
research, the investigator should be aware of the extent
to which the methods they are using depend on the data
structure and availability, and should evaluate a proposed
data source to ensure it is appropriate for the machine
learning project [45]. Importantly, databases should be
evaluated to fully understand the variables included, as
well as those variables that may have prognostic or pre-
dictive value, but may not be included in the dataset.
The lack of important variables remains a concern with
the use of retrospective databases for machine learning.
The concerns with confounding (particularly unmeas-
ured confounding), bias (including immortal time bias),
and patient selection criteria to be in the database must
also be evaluated [58, 59]. These are factors that should
be considered prior to implementing these methods, and
not always at the forefront of consideration when apply-
ing machine learning approaches. The Luo checklist is a
valuable tool to ensure that any machine-learning study
meets high research standards for patient care, and
importantly includes the evaluation of missing or poten-
tially incorrect data (i.e. outliers) and generalizability
[14]. This should be supplemented by a thorough evalu-
ation of the potential data to inform the modeling work
prior to its implementation, and ensuring that multiple
modeling methods are applied.

Conclusions

This review found a wide variety of approaches, methods,
statistical software and validation strategies that were
employed in the application of machine learning meth-
ods to inform patient-provider decision making. Based
on these findings, there is a need to ensure that multi-
ple modeling approaches are employed in the develop-
ment of machine learning-based models for patient care,
which requires the highest research standards to reliably
support shared evidence-based decision making. Models
should be evaluated with clear criteria for model selec-
tion, and both internal and external validation are needed
prior to applying these models to inform patient care.
Few studies have yet to reach that bar of evidence to
inform patient-provider decision making.
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