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The world is currently facing the COVID-19 pandemic, for which mild symptoms include fever and dry cough.
In severe cases, it could lead to pneumonia and ultimately death in some instances. Moreover, the causative
pathogen is highly contagious and there are no drugs or vaccines for it yet. The pathogen, SARS-CoV-2, is one
of the human coronaviruses which was identified to infect humans first in December 2019. SARS-CoV-2
shares evolutionary relationship to other highly pathogenic viruses such as Severe Acute Respiratory Syn-
drome (SARS) and Middle East respiratory syndrome (MERS). We have exploited this similarity to model a
target non-structural protein, NSP1, since it is implicated in the regulation of host gene expression by the virus
and hijacking of host machinery. We next interrogated the capacity to repurpose around 2300 FDA-approved
drugs and more than 3,00,000 small molecules of natural origin towards drug identification through virtual
screening and molecular dynamics. Interestingly, we observed simple molecules like lactose, previously known
anti-virals and few secondary metabolites of plants as promising hits. These herbal plants are already practiced
in Ayurveda over centuries to treat respiratory problems and inflammation. Disclaimer: we would not like to
recommend uptake of these small molecules for suspect COVID patients until it is approved by competent
national or international authorities.

Keywords. Anti-virals; drug design; herbal plants; repurposing drugs; SARS-CoV-2

Abbreviations: NSP1, Non-structural protein 1; SARS-CoV2, Severe acute respiratory syndrome
coronavirus 2

1. Introduction

Coronavirus (CoV) belongs to the family Coronaviri-
dae and the order Nidovirales (sharing with Ar-
teriviridae and Roniviridae). Coronaviruses are
enveloped, long positive-sense single-stranded RNA

viruses, which are best known for causing mild to
severe respiratory and enteric infection among a vast
range of hosts (Masters 2006). These are further divi-
ded into 4 groups/genera named as Alphacoronavirus
(a-CoV), Betacoronavirus (b-CoV), Gammacoron-
avirus (c-CoV) and Deltacoronavirus (d-CoV), based
on sequence similarities and antigenic cross-reactivity.
Human-CoV belongs to group I and group II of Beta-
coronavirus. HCoV-OC43, HCoV-229E, SARS and
MERS are some examples of Human-CoV, out of
which SARS and MERS are highly pathogenic in
nature (Masters 2006; Narayanan et al. 2015).
Recently, a new pathogenic Human-CoV strain known
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as SARS-CoV2, spreading the COVID-19 infection,
has emerged by December 2019 with Wuhan of Hubei
province in China as the epicenter (Wu et al. 2020a, b).
The origin of this virus is still under investigation but
has been speculated as a zoonotic shift from bat to
human. It has been shown that human ACE2 has a high
predicted affinity than ACE2 from other species (Pi-
plani et al. 2020). The outbreak of COVID-19 has
spread across the globe and has taken the shape of a
pandemic (Novel Coronavirus (2019-nCoV) situation
reports, World Health Organization). America, Russia,
United Kingdom, India, Italy, Spain, and France are
among worst-hit countries. As of 14 June 2020, this has
infected 7,891, 289 individuals and has caused more
than 432,746 fatalities across the globe (Johns Hopkins
Coronavirus Resource Center; Worldmeter. https://
www.worldometers.info/coronavirus/; Novel Coron-
avirus (2019-nCoV) situation reports - World Health
Organization). At present, there are no drugs or vac-
cines available against this, and patients are treated
according to symptoms shown by them. Remdisivir
(drug originally designed to treat Ebola), Colchicine
(Deftereos et al. 2020), Chloroquine and Hydroxy-
chloroquine (an antimalarial drug), Kevsara (an
arthritis drug) and few other antiviral drugs are being
considered for treatment. But they do not directly make
use of the virome of SARS-CoV2 (Wang et al. 2020)
(https://www.nasdaq.com/articles/8-experimental-corona
virus-treatments-to-watch-2020-03-31). Multiple vaccine
trial has been going on worldwide, among which
Bacillus Calmette Guerine (BCG) live attenuated vac-
cine and AZD1222 are in phase 2/3 of the clinical trials.
(https://www.raps.org/news-and-articles/news-articles/
2020/3/covid-19-vaccine-tracker)
The first genome of the COVID-19 strain was

sequenced by Wu et al. (2020b) from a 41-year-old
man and was found to be closely similar to SARS-CoV.
The structural component of the virus consists of four
proteins: Spike (S), Membrane (M), Envelope (E) and
Nucleocapsid (N) protein respectively. S protein is
critical for viral infection as it enables host-pathogen
interaction and mediated viral entry into the host cell.
M protein is a multipass transmembrane protein, a
major constituent of virion envelope, and known to
provide its shape. E protein, unlike the name, suggests
it is a minor constituent of the envelope and 80–120 aa
in length. N protein as the name suggests forms helical
nucleocapsid of virion (Masters 2006).
The 50-end of the genome encodes two open reading

frames, ORF1a and ORF1b, respectively, which code
for all non-structural proteins (NSP1-16) (Masters
2006; Narayanan et al. 2015). These proteins are

essential for viral replication as well as infection,
whereas the function of some is yet to be identified.
Among these non-structural proteins within the CoV
family, some are conserved in sequence, whereas oth-
ers are highly diverged in nature. NSP1 (non-structural
protein 1) is one of such diverged proteins which is
encoded by ORF1a and varied in amino-acid length
among CoV-groups (Narayanan et al. 2015). COVID-
19 NSP1 consists of 180 and shows sequence similarity
with SARS protein (Elbe and Buckland-Merrett 2017;
Wu et al. 2020a). Despite differences in amino acid
sequence and length, it has shown to be functionally
highly conserved (Narayanan et al. 2015; Shen et al.
2019). SARS-CoV NSP1 is most well-studied amongst
the viruses of the coronavirus family. NSP1 has shown
to act as a virulence factor (Huang et al. 2011; Nar-
ayanan et al. 2015; Zst et al. 2007) and mutation in this
protein results in the production of attenuated virus
in vitro and in vivo (Zst et al. 2007). NSP1 deploys two
strategies to inhibit host cell expression viz. Inhibition
of host translation and Induction of host mRNA
degradation. It inhibits host translation by forming a
complex with 40s ribosome subunit, which prevents
the formation of active polysome. Complex formation
with 40s subunit also shown to inhibit its translational
ability (Kamitani et al. 2009). It further affects host cell
gene expression by inducing host mRNA degradation
in a template-specific manner. Term template-specific
does not imply its association with protein sequence
but relates to the ability to specifically degrade capped
host mRNA (Huang et al. 2011; Kamitani et al.
2006, 2009; Narayanan et al. 2008; Tanaka et al. 2012)
as compared to SARS-mRNA (Kamitani et al. 2006).
mRNA is hypothesized to get cleaved by unknown host
endonuclease since NSP1 does not possess any
endonucleolytic activity. Other than these, NSP1 is
shown to cause chemokine dysregulation which cor-
relates with high inflammation in severe patients (Law
et al. 2007; Channappanavar and Perlman 2017; Wong
et al. 2004). It suppresses innate immune response by
degrading IFN-beta mRNA (Tanaka et al. 2012) and
affecting antiviral signaling (Jauregui et al. 2013).
Yeast-two hybrid assays have shown NSP1 to interact
with multiple host proteins (Pfefferle et al. 2011).
N-terminal region is shown to be important in immune
response dysregulation (mutation studies) (Jauregui
et al. 2013) and protecting viral RNA (R124, present in
our dock site) (Tanaka et al. 2012). The C-terminal
region is critical of transcriptional inhibition of host
mRNA (Narayanan et al. 2015; Tanaka et al. 2012).
In this study, COVID-19 NSP1 is the target protein

and we hypothesized that the inhibition of NSP1 can
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potentially attenuate the virus and suppress adverse
immune-pathology caused by it. We have generated a
homology model of the NSP1 and used this model to
carry out virtual screening to identify potential inhibi-
tors and lead compounds. Our searches are directed
within the database of FDA-approved drugs (DRUG-
BANK) and those which are derived from molecules of
natural origin (SUPERNATURALDB). Finally, we
performed MD simulation to ensure that there are
indeed stable protein-ligand interactions when the
system is visualized to undergo limited conformational
freedom. We find several anti-viral compounds, few
secondary metabolites of plant origin and simple
compounds (like lactose) to retain the high potential to
act as NSP1 inhibitors.

2. Methods

2.1 Sequence retrieval and analysis

The full repository of COVID-19 protein sequences
was downloaded from NCBI (Brister et al. 2015;
Hatcher et al. 2017). Wuhan-Hu-1 strain [Accession
number: NC_045512] was among the first to be
sequenced from Wuhan of Hubei province. Hence this
is considered as the ‘reference genome’ in this study.
NSP1 protein sequences were extracted, incomplete
sequences were removed and curated sequences were
then passed to SNP analyzer (utility in ViPR Database)
to understand variation among the NSP1 sequences
(Pickett et al. 2012). A similar analysis had been done
for the Indian sequences. To understand evolutionary
pressure on NSP1 protein Shannon entropy (Shannon
1948) per residue has been calculated using a python
script. A set of key residues, important in suppressing
host gene expression and antiviral signaling were
identified. A mutation study done by another group
(Jauregui et al. 2013) was used as a reference.

2.2 Homology modelling

NSP1 protein sequence [Accession number:
YP_009725297] was retrieved from NCBI for
Homology modelling. Blastp (Camacho et al. 2009)
was used to search for the nearest structural homologue
in Protein Data Bank (PDB) (Berman et al. 2003) to
serve as a template for modelling. Segments of NSP1
sequence, where the association with the template was
unknown, were removed. Modeller 9.12 (Eswar et al.
2006) was used for Homology modelling. Homology

models were first filtered according to DOPE score.
Top 3 predicted models were then subjected to struc-
ture validations (by using SAVES 5.0 (Laskowski et al.
1993) (https://servicesn.mbi.ucla.edu/SAVES/) and
ProSA server (Wiederstein and Sippl 2007)). Based on
DOPE score, Ramachandran plot and ProSA profile,
the best predicted model was selected for virtual
screening.

2.3 Virtual screening of inhibitors

FDA-approved drugs and Super Natural II database
(database of natural products) were used for docking
purposes. FDA-approved drugs were downloaded in
SDF format (Standard Delay Format) from Drug-bank
(Wishart et al. 2018) whereas supernatural compounds
were obtained from supernatural database (Banerjee
et al. 2015).

2.3.1 Ligand and protein preparation: Downloaded
compounds were prepared for screening using Ligprep
module in Schrodinger (Schrödinger Release 2019-4:
LigPrep, Schrödinger, LLC, New York, NY, 2019). For
FDA-approved drugs OPLS3e force field, targeted pH
7.4 ?/-0.0, retain specified chiralities and 1 structure
per ligand was specified during ligand preparation. For
supernatural database we had specified pH range from
6.0 to 8.0 with maximum 32 structure per ligand. This
was performed to scan and produce broad chemical and
structural diversity from each molecule.
Protein was prepared for docking by using Protein-

preparation wizard (Sastry et al. 2013) in Maestro
Schrodinger (Schrödinger Release 2019-4: Maestro,
Schrödinger, LLC, New York, NY, 2019.)

2.3.2 Docking site prediction: SiteMap (Halgren 2007;
Halgren 2009) was used to predict the potential drug-
able deep and shallow sites on the target protein. The
site with high S-score, as well as D-score, was selected
for ligand docking.

2.3.3 Receptor grid generation: Receptor-grid around
docking region on the protein was generated using
receptor-grid generation module in Glide, Residues
from top predicted deep and shallow sites were speci-
fied and rotatable bonds across the site (if any) were
checked during grid generation.

2.3.4 Protein–ligand docking: Using the glide docking
module, a library of prepared ligands and protein with
prepared receptor binding grid were docked. First,

Computational search for potential COVID-19 drugs Page 3 of 18 100

https://servicesn.mbi.ucla.edu/SAVES/


High-throughput virtual screening (HTVS) was per-
formed. This narrowed down the list of potential
ligands and the top 10 percent from this were then
screened with Standard Precision (SP) mode. Finally,
10 percent of hits obtained from SP were passed to
Extra precision (XP). Selection of top 10 percent
compounds were done based on top dock score and
binding energy (Friesner et al. 2004; Friesner et al.
2006; Halgren et al. 2004) (Schrödinger Release
2019-4: Glide, Schrödinger, LLC, New York, NY,
2019.)
Binding energy was calculated using MM-GBSA

(Molecular Mechanics energies combined with the
Generalized Born and Surface Area continuum solva-
tion) tool of Schrodinger.

2.4 MD simulations

The conformer of protein–ligand complex, emerging
from XP docking, was assembled using system builder
and subject to Molecular Dynamics using the Desmond
package of Schrodinger (Bowers et al. 2006). For
water, the TIP4P model was specified and orthorhom-
bic box shape was used having a buffer distance of 10
Å. Box volume was minimized. The system was neu-
tralized and 150 mM salt (NaCl) was added. The output
of the system builder was used for MD. The default
relaxation protocol was used to relax the solvated
system followed by production MD run for 20
nanoseconds (ns). The relaxation protocol involves
energy minimization steps using the steepest descent
method with a maximum of 2000 steps. The energy
minimization was done with solute being restrained
using 50 kcal/mol/Å force constant on all solute atoms
and without restraints. Energy minimization was fol-
lowed by short MD simulation steps which involve (1)
Simulation for 12 picoseconds at 10 K in NVT
ensemble using Berendsen thermostat with restrained
non-hydrogen solute atoms, (2) Simulation for 12
picoseconds at 10 K and 1 atmospheric pressure in
NPT ensemble using Berendsen thermostat and
Berendsen barostat with restrained non-hydrogen
solute atoms, (3) Simulation for 24 picoseconds at
300 K and 1 atmospheric pressure in NPT ensemble
using Berendsen thermostat and Berendsen barostat
with restrained non-hydrogen solute atoms, (4) Simu-
lation for 24 picoseconds at 300 K and 1 atmospheric
pressure in NPT ensemble using Berendsen thermostat
and Berendsen barostat without restraints. After relax-
ation, production MD was run in NPT ensemble using
OPLS 2003 force field (Harder et al. 2016). For

simulations, default parameters of RESPA integrator
(Humphreys et al. 1994) (2 femtoseconds time step for
bonded and near non-bonded interactions while 6
femtoseconds for far non-bonded interactions) were
used. The temperature and pressure were kept at 300K
and 1 bar using the Nose-Hoover chain method (Mar-
tyna et al. 1992) and the Martyna-Tobias-Klein method
(Martyna et al. 1994) respectively. The production MD
was run for 20 nanoseconds.

2.5 Simulation analysis

MD simulation analysis was performed using the
Simulation interaction diagram (SID) module of the
Desmond package. The entire range of simulation time
was considered for all analyses. RMSD is calculated
for each frame by aligning the complex to the protein
backbone of the reference frame. Significantly higher
values of ‘Lig fit Prot’ than protein RMSD signifies the
diffusion of ligand away from its initial binding site.
Lig fit lig RMSD is calculated by aligning the ligand on
the reference ligand conformation and it indicates the
internal fluctuation of the ligand. Along with RMSD,
the RMSF (Root Mean Square Fluctuation) was also
assessed for each MD run. Protein RMSF shows the
fluctuation of protein residues, highlights secondary
structure (Pink: a helix; Blue: b strand) and ligand
interacting residues marked by green vertical lines.
Protein-ligand interactions were also monitored
throughout the simulation time. Different types of
protein-ligand interactions measured. are H-bond,
Hydrophobic interaction, ionic interaction and water
bridges. Hydrophobic interaction also includes P-Ca-
tion and P-P interactions. The normalized stacked bar
charts suggest the fraction of simulation time for which
interaction is maintained over the course of the simu-
lation trajectory: for example, a value of 0.6 implies
that a specific interaction is maintained for 60% of the
simulation time. If a protein residue makes multiple
interactions of the same type with ligand then values
more than 1.0 are possible.

2.6 ADME prediction

ADME: ‘absorption, distribution, metabolism, and
excretion’ properties for selected compounds from
supernatural database has been done using Qikprop
tool of Schrodinger suite. A star is assigned if the value
of the query compound falls beyond the 95% range of
similar values for known drugs. Therefore, a greater
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number of stars indicates less drug-likeliness of the
compound.

3. Results

3.1 Sequence Analysis identified COVID-19 NSP1
to be conserved

Around 10,000 complete NSP1 sequences of SARS-
CoV2 were available in the public domain (NCBI as of
14 June 2020) and downloaded. Out of these, 6383
were sequences deposited from USA, 1829 from
Australia, 446 from India and196 from Greece. Within
India, 202 were sequences deposited from Ahmedabad,
40 from Vadodara and 26 from Gandhinagar. Analysis
of Indian sequences between two time points, 15 May
2020 and 10 June 2020, clearly shows NSP1 to be
evolving. In the dataset of 15th May, only one residue
mutation (S135N) was observed. However, in the
dataset corresponding to the second time point, three
additional residues were found to be mutated (V38F,
D147E, V167A (supplementary figure 1). Mutation
analysis of the entire set of around 10,000 sequences
shows mutation at multiple residues. Shannon entropy
is found to be close to 0 for most of the residues (with a
maximum \0.2). This indicates NSP1 is not under
huge selection pressure and can be considered as highly
conserved till now. In the absence of the available
structure of NSP1 of SARS-CoV2, we included SARS
NSP1 as a template for modeling. The major reason for
this assumption is 100% query coverage and 84.44%
sequence similarity of SARS-CoV2 NSP1 with SARS
NSP1 (figure 1a). We performed an extensive literature
survey to identify a set of key residues, important in

suppressing host gene expression and antiviral signal-
ing which are shown in figure 1b. Most of the residues
among this set are found to be conserved between
COVID and SARS NSP1.

3.2 Model for virtual screening generated
by homology modelling

Blastp search of COVID-19 NSP1 sequence with PDB
database enabled to identify 2hsx as the best template
(with 68% query coverage and 86% identity). N- and
C-terminal overhangs in SARS CoV-2 NSP1 have not
been considered for modelling. Amino acid variations
and key residues, important for function, are marked on
the alignment (figure 1). Predicted models, derived
using Modeller 9.22, were sorted according to the
DOPE score and the top three models were validated
using ProSA and SAVES5.0 sever. The best model
from the above was chosen for virtual screening
(figure 2a).

3.3 List of potent inhibitors are identified
by in silico screening of FDA-approved drugs
and Supernatural Database compounds

Three deep and five shallow ligand binding sites could
be recognized on the surface of COVD19-NSP1 pro-
tein. Sites were ranked according to their ability to bind
various ligands which were depicted as SITEMAP site
score and D-Score (please see Methods). We selected
Site 1 with a site score of 0.927 and D-score 0.791
among deep sites and site 3 with site score 0.883 and
D-score 1.012 among shallow sites for ligand docking

Figure 1. Sequence analysis COVID-19 (Wuhan-Hu-1) Nsp1. Represents alignment between Wuhan-Hu-1 Nsp1 and
SARS Nsp1 protein sequence. Red highlights consensus sequences whereas Blue highlights difference in amino-acid
sequence. Important residues shown to play role in affecting host gene expression and anti-viral signaling are highlighted in
green and pink color. Green highlighting similar residues whereas Pink highlighting residues which are different in COVID-
19.
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(figure 2a). These sites also contain functionally
important residues (figure 1) which showed their bio-
logical importance. Selected sites were then used to
generate a receptor grid for molecular docking.
Molecular docking for each site was carried out using a
glide dock program with generated libraries of 2413
FDA-approved drugs and 3,25,287 natural compounds,
respectively. The top hits from FDA-approved drug
library were ranked according to their XP and
MMGBSA scores. We have also considered ligands
with well-known anti-viral and anti-inflammatory
properties, along with top-ranked ones (entries 15–17
in table 1). The final list of compounds was taken
further for the MD simulation run (table 1). The top
hits from Supernatural Database compounds were
ranked according to their MMGBSA score and were
further selected for MD simulation runs. List of top
hits, selected based on either binding energy or mode
of action, for both deep and shallow binding sites are
shown in table 1.

3.4 MD simulation of protein–ligand complexes

The best compounds from docking analysis were fur-
ther subjected to 20 ns of MD simulation to assess the
stability of protein–ligand complex. The interactions
between protein and ligand were designated as stable if

there was less structural variations and a high per-
centage of hydrogen bonds or hydrophobic interactions
with various residues of the protein at the docked site
throughout the course of the simulations. Among the
FDA-approved drugs docked at the deep site, Esculin is
an example of stable complexes, while Zinc-gluconate
is an example of an unstable complex. Figure 3a and
supplementary figure 2a show the interaction of
Esculin with NSP1 in the docking pose, where Esculin
interacts mainly with Arg62, Ser63, Ala68 and His72.
MD simulation of NSP1-deep-Esculin complex for 20
ns revealed the stability of the complex as assessed by
the RMSD (root mean square deviation) plot. Residues
in the secondary structure are expected to have fewer
fluctuations than residues in the loop regions and the
trend is followed for NSP1 which shows high RMSF
between residues 62-76 which form a loop and also
interact with Esculin (supplementary figure 2b). Arg62,
Ser63, Ala68 and His72 (major interacting residues in
the docking pose) interact mainly through H-bond
interactions with Esculin. Met74 was also found to
interact with Esculin mainly through H-bond (fig-
ure 3b). Few other residues interact with Esculin, but
with less amount of simulation time. Further details of
these interactions are provided in supplementary fig-
ure 2c and d.
Results of similarly detailed analysis for all the

ligands, as in table 1, are provided in Supplementary

Figure 2. Model of COVID-19 (Wuhan-Hu-1) Nsp1 with Deep and shallow binding site predicted by SiteMap:
(a) COVID-19 Nsp1 model derived using Modeller 9.22, using 2hsx as a template. Red dot represents Shallow binding site
consisting region of alpha-helix and beta-sheets. Blue dots represent deep binding site present in mostly loop region.
(b) Residues present in deep and shallow binding site respectively. Residue numbers are as per the structural model (Residue
1 of structure is residue 12 in the sequence)
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figures S1–S35. Other promising lead compounds,
among the FDA-approved ligands docked at the deep
site of NSP1, are Cidofovir (supplementary figure 3),
Remdesivir (the drug under investigatory group; sup-
plementary figure 17), Brivudine (supplementary fig-
ure 16) and Edoxudine (supplementary figure 14). In
the case of FDA-approved drugs docked at the shallow
site, acarbose was found to be the most stable ligand. It
interacts mainly with Arg32, Leu77 and Asn115
through H-bond and water bridge interactions (sup-
plementary figure 31).
Amongst compounds from SuperNatural database

docked at the deep binding site of NSP1, SN00003849
interacts mainly with Arg62, Arg66, Ala68, Gly71,
His72 and Met74 (figure 4a). Further, the NSp1-
SN00003849 complex was found to be stable, as
suggested by RMSD plot of 20ns MD simulation
(supplementary figure 25a). Residues interacting with
SN00003849 are similar to that of Esculin (supple-
mentary figure 25b). These include Arg62, Arg66,
Gly71, His72 and Met74 interacting mainly through
H-bond and water bridge interactions (figure 4b).
Arg61, Gly71 and Met74 interact with the same atom
of SN00003849 for more than 80% of simulation time
(supplementary figure 25c). At any point during the
simulation, the minimum number of contacts between
SN00003849 and NSP1 is more than four, suggesting
the strong interaction at the binding site (supplemen-
tary figure 25d). SN00003849 also has the highest
binding energy as per MM-GBSA calculation (table 1).
SN00003849 is structurally similar to terpene/steroid
and can be classified as proto and pseudo alkaloids.
SN00003832 and SN00216190 also form a
stable complex with NSP1 at the deep site (supple-
mentary figures 29 and 30).
For shallow binding sites, none of the compounds in

supernaturaldb form complex that are as stable as that
for the deep binding site. Natural compounds (entries
18, 19, 32 and 33) are derived from herbal plants, well-
known to treat coughs and viral fevers. Another FDA-
approved compound is Glycyrrhizic acid which was
ranked a bit lower for the deep site, as well as the
shallow binding site during docking. The MD simula-
tion was run for deep as well as shallow site complex
of NSP1 with Glycyrrhizic acid. Glycyrrhizic acid
bound at the shallow site interacts mainly with Arg32,
Lys36, Arg113 and Asn115 in the docked pose
(figure 5a).
The MD simulation of 20 ns suggested that the

complex is stable as per RMSD plot (supplementary
figure 24a). NSP1-rmsf plot indicates that the few
residues of a helix along with residues at the N andT
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C-termini are also involved in an interaction with
Glycyrrhizic acid (supplementary figure 24b). Major
interacting residues of NSP1 are the same as those in
the docking pose (figure 5b). Atom wise interactions of
Glycyrrhizic acid with NSP1 has been shown in fig-
ure 24c. Similar to SN00003849, Glycyrrhizic acid
also maintains at least 4 contacts with NSP1 over the
entire course of simulation time (figure 24d). Gly-
cyrrhizic acid bound at the deep site is not stable (-
supplementary figure 23). Interestingly, Glycyrrhizic
acid is from the plant Mulethi or Liquorice (also
referred to as Yashtimadhura (Glycyrrhiza glabra),
which is a natural herb for cough and has expectorant
properties. It can also reduce infection of the upper

respiratory tract. It may reduce throat irritation and
helps cases of a chronic cough.
The ADME related properties for compounds like

Gingerenone, Shogaol and SN00103215 follow Lip-
inski’s rule of five, while others violate either one or 3
of the 4 rules of Lipinski’s rule of five (supplementary
table 1). Qikprop also summarizes the drug-likeness of
compounds by comparing the properties of query
compounds with known drugs. Gingerenone, Shogaol
and SN00103215 are observed to not retain any star
(please see Methods) suggesting strong drug-likeliness
of these compounds. The water solubility, a key
parameter required for absorption and distribution of
the compounds, ranges from - 5.101 to 0.261 and it

Figure 3. Docking and MD simulation results for NSP1-deep-Esculin. (a) Esculin-NSP1 interactions after XP docking. (b)
Interaction types and Interacting residues of NSP1 with Esculin over simulation time. Normalized stacked bars indicate the
fraction of simulation time for which a particular type of interaction was maintained. Values more than 1.0 suggest that the
residue forms multiple interactions of the same subtype with ligand (Esculin).

Figure 4. Docking and MD simulation results for NSP1-deep-SN00003849. (a) SN00003849-NSP1 interactions after XP
docking. (b) Interaction types and Interacting residues of NSP1 with SN00003849 over simulation time. Normalized stacked
bars indicate the fraction of simulation time for which a particular type of interaction was maintained. Values more than 1.0
suggest that the residue forms multiple interactions of the same subtype with ligand (SN00003849).
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falls within the acceptable range. Cell permeability is
important for metabolism and it was found that most of
the compounds have poorly predicted cell permeability.
However, the cell permeability predictions are for non-
active transport. Gingerenone and Shogaol also show a
high percentage of oral absorption (supplementary
table 1).

4. Discussion

COVID-19 outbreak has turned into a pandemic, which
makes the identification of new target molecules,
repurposing of drugs and designing vaccine an immi-
nent necessity. Since the outbreak, many studies have
been conducted along these lines (Chakraborti et al.
2020; Gordon et al. 2020; Narayanan and Nair 2020;
Wu et al. 2020a) (Manfredonia et al. 2020; Quimque
et al. 2020). We used NSP1 protein as our target pro-
tein. It shows 86 % identity with SARS NSP1. A model
of COVID-19 NSP1 was made using SARS NSP1 as a
template. Please note: During the submission process
for this manuscript, the structure of NSP1 with the
ribosome has been solved by another group (Thoms
et al. 2020). This is not published yet, nor any mention
of PDB id submissions. This preprint showed the role
of NSP1 in translational shutdown and innate immune
evasion). Understanding the genetic diversity of a viral
gene is key in understanding evolutionary pressure and
add one more dimension to virtual screening (Kasib-
hatla et al. 2020; Somasundaram et al. 2020). NSP1 is
evolving with key residues being conserved. Virtual
screening, against NSP1 protein, suggests a list of
FDA-approved drugs and natural compounds against

the deep and shallow binding site on NSP1. Deep and
shallow binding sites include functionally important
residues such as H81, H83, R124 and R43, K47, E91,
R124, K125 respectively (AR Jauregui et al. 2013).
R124 has shown to be important for NSP1 to interact
with viral mRNA 50-UTR region which prevents viral
mRNA from NSP1 mediated mRNA degradation
(Kamitani et al. 2006) (Note: Residue number in
modelled structure starts with 12th residue of the
sequence). Docking and MMGBSA scores suggest the
binding potential of these compounds towards NSP1.
Further, MD simulation of the selected compounds in
complex with NSP1 ensures that some of these hits
form stable interactions with NSP1.
Esculin, Cidofovir, Edoxudine, Brivudine and

Remdesivir were found to form a stable complex with
NSP1, among FDA-approved drugs binding at deep
site of NSP1. Esculin is a glucoside and naturally
occurs in barley, horse chestnut, etc. It is given to
improve capillary permeability and fragility and has
been reported to inhibit collagenase and hyaluronidase
enzymes. This molecule has been shown to have
antioxidant and anti-inflammatory activity (Wishart
et al. 2018). This suggests the ability of esculin to not
only inhibit NSP1 activity but also being effective
against secondary symptoms such as inflammation.
Cidofovir is a known anti-viral agent against CMV
infection and acts via inhibition of CMV DNA Poly-
merase. Edoxudine is a deoxy-thymidine analog shown
to be effective against herpes simplex virus type 1 and
type 2. It acts as a competitive inhibitor of viral DNA
polymerase in its phosphorylated form. Edoxudine is
initially phosphorylated by viral thymidine kinas and it
is specifically incorporated in viral DNA. Edoxudine

Figure 5. Docking and MD simulation results for NSP1-shallow-Glycyrrhizic acid. (a) Glycyrrhizic acid-NSP1 interactions
after XP docking. (b) Interaction types and Interacting residues of NSP1 with Glycyrrhizic acid over simulation time.
Normalized stacked bars indicate the fraction of simulation time for which a particular type of interaction was maintained.
Values more than 1.0 suggest that the residue forms multiple interactions of the same subtype with ligand (Glycyrrhizic acid).
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has been discontinued. Brivudine is an organic com-
pound and a pyrimidine 20-deoxyribonucleosides ana-
log. This is used in the treatment of herpes zoster,
results from reactivation of varicella-zoster virus.
Remdesivir is proposed as a potential antiviral drug
against Ebola (Wishart et al. 2018). However, this
molecule appears within the Investigational group of
DRUGBANK. It is an adenosine-triphosphate analog
and has shown effectivity against coronaviruses. A
recent publication on COVD-19 treatment, shows it to
be a potential drug along with chloroquinone (Wang
et al. 2020). Remdesivir is an RNA polymerase inhi-
bitor. Hence our study suggests an additional mecha-
nism of action for this drug. An interesting and
unexpected molecule among this list is lactose. Lactose
is a disaccharide of glucose and galactose and used as
nutrient supplement. Derivatives of lactose, 30-sialyl-
lactose have been shown to have broad-spectrum
neutralization activity against avian influenza viruses in
chickens (Pandey et al. 2018). Further investigation is
necessary to check the anti-viral property of lactose
against coronavirus.
Acarbose, Iopromide and Glycyrrhizic Acid form

stable interactions with the shallow binding site of
NSP1. Acarbose is an alpha-glucosidase inhibitor and
administered to patients with non-insulin-dependent
diabetes mellitus (Wishart et al. 2018). As the death
rate among COVD-19 patients with diabetes is high,
the anti-diabetic nature of acarbose can be highly
useful in the treatment regime. Iopromide is a contrast
agent, used in radiographic studies. Glycyrrhizic acid is
a plant product obtained form Mulethi or Liquorice
(also referred as Yashtimadhura (Glycyrrhiza glabra)).
It has been shown to have anti-inflammatory, anti-di-
abetic, anti-oxidant, anti-tumor and anti-viral properties
(Ming and Yin 2013). These properties suggest Gly-
cyrrhizic acid to be of high importance in COVID-19
treatment.
We next pursued virtual screening against supernat-

uraldb – a database of 3,25,287 natural small molecules
(giving rise to 5,03,604 confirmations). Virtual
screening for the shallow site also predicted natural
products with high medicinal value such as Gin-
gerenone A (SN00156190) and Shogaol
(SN00002189), but with lower docking score (table 1).
Gingerenone A has anti-obesity, anti-inflammatory and
antibiotic properties (Rampogu et al. 2018; Suk et al.
2017), whereas Shogaol is anticancer, anti-oxidant,
antimicrobial, anti-inflammatory anti-allergic and
antibiotic in nature (Rampogu et al. 2018; Semwal
et al. 2015). MD simulation was not performed for the
above two because of their lower rank but can be tested

further. Molecules like Galangin, Gingerenone and
Shaogaol are reported in high quantities in the medic-
inal plant, Sitharathai (Alpinia Officinarum; a form of
ginger, also referred as ‘Kulanjan’ (Chen et al. 2019)
which has been used for bronchial infections, as a
carminative and recently recognized for its antiviral
properties (Pillai and Young 2017). Extracts from
herbal plants provide a host of secondary metabolites
which could have a combinatorial effect to reduce the
viral load, once consumed in the proper manner.
Other hits from supernaturaldb include compounds

SN00003849, SN00003832 and SN00216190, which
were found to have stable interactions with the deep
binding site of NSP1 as suggested by docking and MD
simulation. Therefore, along with FDA-approved drugs
which will constitute the treatment by repurposing,
these new natural compounds can also be tested for
their activity against COVID-19.

5. Conclusion

Virtual screening helps in the identification of novel drug
candidates and repurposing of known drugs. The current
pandemic caused by SARS-Cov2. In order to assist in the
development of a cure, we have targeted NSP1 protein of
this virus and screened known drugs and natural com-
pounds against it. In this effort, we have identified known
antiviral compounds like Remdesivir and Edoxudine.
Other drugs, like Esculin and Acarbose which are not
antiviral, but are used as anti-inflammatory and antidia-
betic (respectively) were also identified. These FDA-ap-
proved drugs can be considered as potential candidates
for drug repurposing. Natural compounds like Gly-
cyrrhizic acid (entry 19 in table 1) from Liquorice and
Galangan, Gingeronone and Shogaol (entries 18, 32 and
33 in table 1) from Sitharathai, were also found to be
interacting with NSP1. These compounds can be con-
sidered as novel drug candidates against COVID-19. We
find these results to be encouraging and hopefully useful
immediately to the community and follow-up validation
by other researchers.
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