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Simple Summary: Achieving pathological complete response (pCR) to neoadjuvant chemotherapy
(NAC) in breast cancer (BC) is crucial, as pCR is a surrogate marker for survival. However, only
10–30% of patients achieve it. It is therefore essential to develop tools that enable to accurately predict
response. Recently, different studies have demonstrated the feasibility of applying machine learning
approaches to non-invasively predict pCR before NAC administration from magnetic resonance
imaging (MRI) data. Some of those models are based on radiomics, an emerging field that allows the
automated extraction of clinically relevant information from radiologic images. However, the research
is still at an early stage and further data are needed. Here, we determine whether the combination
of imaging data (radiomic features and perfusion/diffusion imaging biomarkers) extracted from
multiparametric MRIs and clinical variables can improve pCR prediction to NAC compared to
models only including imaging or clinical data, potentially avoiding unnecessary treatment and
delays to surgery.

Abstract: Background: Most breast cancer (BC) patients fail to achieve pathological complete response
(pCR) after neoadjuvant chemotherapy (NAC). The aim of this study was to evaluate whether
imaging features (perfusion/diffusion imaging biomarkers + radiomic features) extracted from pre-
treatment multiparametric (mp)MRIs were able to predict, alone or in combination with clinical
data, pCR to NAC. Methods: Patients with stage II-III BC receiving NAC and undergoing breast
mpMRI were retrospectively evaluated. Imaging features were extracted from mpMRIs performed
before NAC. Three different machine learning models based on imaging features, clinical data or
imaging features + clinical data were trained to predict pCR. Confusion matrices and performance
metrics were obtained to assess model performance. Statistical analyses were conducted to evaluate
differences between responders and non-responders. Results: Fifty-eight patients (median [range]
age, 52 [45–58] years) were included, of whom 12 showed pCR. The combined model improved pCR
prediction compared to clinical and imaging models, yielding 91.5% of accuracy with no false positive
cases and only 17% false negative results. Changes in different parameters between responders and
non-responders suggested a possible increase in vascularity and reduced tumour heterogeneity in
patients with pCR, with the percentile 25th of time-to-peak (TTP), a classical perfusion parameter,
being able to discriminate both groups in a 75% of the cases. Conclusions: A combination of mpMRI-
derived imaging features and clinical variables was able to successfully predict pCR to NAC. Specific
patient profiles according to tumour vascularity and heterogeneity might explain pCR differences,
where TTP could emerge as a putative surrogate marker for pCR.
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1. Introduction

Globally, breast cancer (BC) is the most commonly diagnosed cancer and the most
common cause of cancer death among women [1]. In the management of BC, neoadjuvant
chemotherapy (NAC) has been well established for patients with large breast tumours,
high-risk breast tumours and locally advanced tumours, including those initially ineligi-
ble for surgery [2]. Although different NAC regimens exist, anthracyclines followed by
taxanes are widely used chemotherapeutic agents, as they have been demonstrated to
significantly increase the rate of pathological complete response (pCR) [3,4]. Additionally,
targeted monoclonal antibody therapies against tumour biological properties—such as the
expression of the human epidermal growth factor receptor 2 (HER2)—have progressively
been incorporated into standard regimens, becoming an additional option that is generally
well-tolerated [5,6].

NAC provides clear benefits to patients, including the reduction in tumour size, which
facilitates surgical resectability, as well as the increase in breast-conserving surgery rates [7].
It also enables an objective evaluation of treatment efficacy, allowing therapy changes if
desirable responses are not achieved [7]. Indeed, NAC has become a useful setting for
the assessment of new anticancer therapies, with pCR arising as a surrogate endpoint for
treatment efficacy [8]. Additionally, pCR has consistently been associated with improved
clinical outcomes, including overall survival (OS), event-free survival (EFS) and disease-free
survival (DFS), at least when pCR is defined as ypT0 ypN0 (absence of invasive cancer and
ductal carcinoma in situ [DCIS] in the breast and axillary nodes) or ypT0/is ypN0 (absence
of invasive cancer in the breast and axillary nodes, irrespective of DCIS) [9–11]. As a result,
it has been accepted as a valuable prognostic factor for BC patients [12–14]. However,
only a small fraction of patients who receive NAC will achieve pCR (10–30%) [15,16].
Consequently, predicting pCR before NAC administration is of utmost importance to
appropriately stratify patients and to avoid unnecessary chemotherapy toxicity in non-
responders, while paving the way for a more personalised treatment strategy.

Among the imaging techniques for BC, magnetic resonance imaging (MRI) has been
proven to be the most accurate for measuring treatment response based on the change of
tumour size or volume [17]. Several studies have reported the utility of different imaging
biomarkers derived from dynamic contrast enhanced (DCE)-MRI in the prediction of
early response [18–20], while others have pointed out to the apparent diffusion coefficient
(ADC) measured using diffusion weighted imaging (DWI) as a surrogate biomarker for both
diagnosis and response assessment [21–23]. It also seems clear that the combination of DCE-
MR imaging with DWI performs better than either method alone in predicting treatment
response to NAC [24,25]. In addition, in recent years, mounting evidence suggests that
radiomics might become a useful method to assess pCR to NAC in patients with BC [26,27].
Radiomics is a high-throughput quantitative imaging analysis method which extracts a
large number of features from medical images [28]. These features are hypothesised to
capture underlying information related to the structural heterogeneity and habitats of the
entire breast tumour [29,30], allowing the establishment of correlations with clinical or
biological endpoints and the building of predictive models by using machine learning
tools [31]. However, despite some promising results having been obtained with both
MRI-derived parameters and with radiomics, further research is needed to identify robust
imaging biomarkers with reduced interobserver variability that allow to predict treatment
response to NAC effectively.

The objective of this study was to investigate whether imaging features (perfu-
sion/diffusion imaging biomarkers and radiomic features) extracted from pre-treatment
multiparametric (mp)MRI images could non-invasively predict, alone or in combination
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with clinical variables and by applying machine learning tools, pCR to NAC in patients
with BC.

2. Materials and Methods
2.1. Study Design and Patient Population

This was a retrospective single-centre observational study conducted in accordance
with the Declaration of Helsinki and approved by the Institutional Review Board of ethics
committee from Castellón Provincial Hospital (Castellón de la Plana, Spain).

Patients with biopsy-proven BC who underwent NAC with or without monoclonal
antibody treatment followed by surgery between 1 January 2018 and 31 December 2019
were selected if the following inclusion criteria were met: (a) presenting stage II-III BC;
(b) having received NAC with no prior therapy; (c) available pre-treatment standard-
of-care breast mpMRIs. Exclusion criteria included incomplete or imaging artifacts at
mpMRI examination.

2.2. Definition of Pathological Complete Response

The prognostic impact of pCR depends on its definition, which has not yet been stan-
dardised [32]. In this study, pCR was defined as the absence of residual invasive carcinoma
in the complete resected breast specimen on haematoxylin and eosin evaluation and in all
sampled regional lymph nodes following the completion of NAC (pT0 or ypTis and ypN0),
although the presence of residual ductal carcinoma in situ was accepted. This definition has
been widely used in the literature, as in the studies conducted by the Collaborative Trials
in Neoadjuvant Breast Cancer (CTNeoBC) [9] and the MD Anderson [33]. Additionally, it
has demonstrated to best discriminate between patients with favourable and unfavourable
outcomes [32,34].

In this study, patients showing pCR will be also referred as “responders” opposite to
those not showing pCR who will be referred as “non-responders”.

2.3. MRI Acquisition

The MRI protocol included multi-slice T1- and T2-weighted fast spin–echo sequences
in axial orientation, short time inversion recovery (STIR) sequences, DWI sequences, and
DCE sequences. Images were acquired in a Siemens 1.5T MRI unit (Magnetom Avanto fit,
Siemens Healthineers, Erlangen, Germany) with the patient lying in a prone position and
by using a dedicated breast radiofrequency coil with 18-channel (Breast 18-type).

For DCE series, high-spatial resolution three-dimensional T1-weighted imaging was
performed by using a 3D gradient-echo sequence (TE = 2.5 ms, TR = 5.9 ms, flip angle = 25◦,
isotropic voxel size of 1.2 mm, field of view of 320 mm). A total of six dynamics were
acquired with a temporal resolution of 40 s. Total DCE sequence duration was of 7 min
42 s, including preparation pulses. The contrast media used was Gadovist® (Gadobutrol,
0.1 mmol/mL, Bayer AG, Berlin, Germany), administered by the antecubital vein through
automatic injector at a dose of 0.1 mmol/Kg with a flow rate of 3 mL/s, followed by 25 mL
of physiological saline (OptiStar Elite® Mallinckrodt Pharmaceuticals, Liebel-Flarsheim
Company, Cincinnati, OH, USA). Contrast injection was started 20 s after the end of the first
dynamic. DWI images were acquired by an echo–planar imaging sequence (TE = 84 ms,
TR = 6900 ms, pixel size of 1.9 mm, slice thickness of 5 mm, b-values of 0, 150, 400, and
1000 s2/mm).

2.4. Lesion Segmentation

Three-dimensional delineation of the tumour was carried out on pre-treatment DCE
sequences after digital subtraction by a radiologist from a Breast Unit with more than
10 years of experience.
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2.5. Imaging Feature Analysis

The segmented tumoral regions were characterised by diffusion and perfusion pa-
rameters extracted from DWI and DCE sequences, that provided information about tu-
mour cellularity and vascularisation, respectively. The following imaging biomarkers
were extracted:

• DCE:

o Initial Area under the Curve at 60 seconds (iAUC60) [mM]: area under the
concentration curve increment 60 s after the start of contrast administration;

o Initial slope: represents the initial ascending slope of the concentration curve
once the contrast begins to enter the analysed region;

o Peak [mM]: maximum value of the concentration curve;
o Time-to-peak (TTP) [s]: time to reach the maximum value of the curve.

• DWI:

o ADC [mm2/s]: Diffusion was quantified using a Gaussian mono exponential
diffusion model to obtain;

o Diffusion Coefficient (D) [mm2/s]: Pure diffusion coefficient derived from
bi-exponential model of intra-voxel incoherent motions (IVIM);

o Perfusion Coefficient (D*) [mm2/s]: Fast diffusion coefficient derived from
bi-exponential model of intra-voxel incoherent motions (IVIM);

o Vascular fraction (f) [%]: Percentage of the voxel diffusion signal corresponding
to fast diffusion.

Since the analysis of diffusion and perfusion biomarkers was performed by a voxel-
by-voxel approach in the tumoral region, different statistic metrics were calculated for each
of the biomarkers (mean, median, standard deviation, 25th percentile, and 75th percentile).

Subsequently, radiomics features were extracted from tumour region on the ADC
and iAUC60 maps to characterise lesion heterogeneity. First-order and second-order
features were extracted from the image histogram and by the use of different second-order
transformations, consisting of gray-level co-occurrence matrix (GLCM), gray-level run
length matrix (GLRLM), gray-level size-zone matrix (GLSZM), or neighbourhood gray-
tone difference matrix (NGTDM), as can be found in the paper of the Image Biomarker
Standardisation Initiative (IBSI) [35].

The results were analysed in two ways. First, statistical tests for each parameter were
carried out to explore whether imaging features (DCE-MRI and DWI-MRI quantitative
imaging biomarkers and radiomic features) exhibited statistically significant differences
when comparing patients with pCR versus non-responders. In a second step, we explored
whether imaging features were sufficient to produce a gain in pCR prediction when com-
bined with clinical data and compared to clinical or imaging data alone, the ultimate goal
of this work. To this aim, we trained different machine learning models.

2.6. Predictive Model

The objective of the predictive model was to anticipate pCR to NAC based on the
analysis of the data obtained from their pre-treatment MRI sequences. This model was
based on an artificial intelligence classifier; a machine learning algorithm that automatically
orders or categorises data into one or more of a set of “classes”. A process of data curation
followed by a homogenisation of the groups was previously required in order to avoid
unbalanced categories. This was followed by a two-step feature selection process, in which
reproducible, informative, and non-redundant variables were selected. Thus, in a first step,
variables with extremely low variance values (≤0.1) were eliminated. In a second step, for
variables exhibiting correlation > 0.8, only those with the highest variance were kept.

The following machine learning classifiers were trained and validated:

• K-Nearest Neighbour (K-NN): stores all training data and classifies a new data point
according to the class of the majority of its k nearest neighbours in the given dataset.
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To obtain the nearest neighbours for each data, K-NN uses a measure to compute the
distance between pairs of data items [36];

• Decision Tree (DT): organises the knowledge extracted from data in a recursive hier-
archical structure composed of nodes and branches. Each internal node represents
an attribute and is associated to a test relevant for data classification. Leaf nodes of
the tree correspond to classes. Branches represent each of the possible results of the
applied tests. A new example can be classified following the nodes and branches
accordingly until a leaf node is reached [36];

• Random Forest (RF): a method consisting of combinations of tree predictors. Each tree
votes for its preferred class and the most voted class gives the final prediction [36];

• Adaptive Boosting (AdaBoost): an ensemble learning method in which a number of
weak learners are combined together to form a strong learner. This method focuses
on training upon misclassified observations. It alters the distribution of the training
dataset to increase weights on sample observations that are difficult to classify [37];

• Gradient Boosting (GBoost): an ensemble learning method in which a number of weak
learners are combined together to form a strong learner. This approach trains learners
based upon minimising the loss function of a learner (i.e., training on the residuals of
the model) [38];

• Gaussian Naïve Bayes (GNB): probabilistic classifier based on the Bayes theorem for
conditional probabilities. It builds a function, to be optimised, using a narrow (naïve)
assumption that all attributes in a dataset are independent. It follows Gaussian normal
distribution and supports continuous data [36];

• Linear Discriminant Analysis (LDA): a common technique used for dimensionality
reduction and classification. LDA provides class separability by drawing a decision
region between the different classes. LDA tries to maximize the ratio of the between-
class variance and the within-class variance. LDA assumes the feature covariance
matrices of both classes are the same [39];

• Quadratic Discriminant Analysis (QDA): a generative model that uses a quadratic
decision surface to separate measurements of two or more classes of objects or events.
It is a variant of the LDA [39];

• Multi-Layer Perceptron (MLP): a neural network algorithm that learns the relation-
ships between linear and non-linear data. It consists of three different layers in which
neurons are trained with the back propagation learning algorithm [40];

• Logistic Regression (LR): statistical models in which a logistic curve is fitted to the
dataset, modelling the probability of occurrence of a class. The first step in LR consists
of building a logit variable, containing the natural log of the odds of the class occurring
or not. A maximum likelihood estimation algorithm is then applied to estimate the
probabilities [36].

The leave-one-out cross-validation method was applied to train classifiers and test
their performance. This procedure consists of selecting all cases but one to train the
algorithm and then, using the one left out for validations. This process was repeated n
times equal to the total number of cases, leaving out a different case to test on each time.
By the end, each training example was left out as a test example once.

To evaluate whether imaging variables produced a gain in pCR prediction compared
to clinical data, three different machine learning models were trained with: (1) imag-
ing features (DCE-MRI and DWI-MRI imaging biomarkers + mpMRI-derived radiomic
features); (2) clinical data (age at diagnosis (under or over 40 years), menopausal status
(premenopausal or not), TNM clinical stage at diagnosis (stage II or stage III), and histo-
logical grade in the diagnostic biopsy measured with the Nottingham Histologic Score
(grade III or grade I–II)); (3) imaging features + clinical data. Confusion matrices and
different metrics (accuracy, sensitivity, specificity, and error rate) were obtained to evaluate
model performance.
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2.7. Statistical Analysis

All statistical analyses were performed in SPSS (IBM Corp., Armonk, NY, USA). A
Student’s t-test was used to find possible differences in the imaging features extracted from
pre-treatment MRIs between patients showing pCR and non-responders. A p-value less
than 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics

Out of the 83 patients diagnosed with stage II–III BC treated with NAC followed by
surgery during the study period, only 58 met the inclusion criteria and were ultimately
included. The median (range) age of the patients was 52 years (45–58 years). Main patient
characteristics are summarised in Table 1.

Table 1. Patient characteristics at baseline and treatment received.

Characteristic Patients(N = 58)
n (%)

Premenopausal 23 (40)
Clinical TNM stage

IIA 19 (32)
IIB 10 (18)

IIIA 9 (16)
IIIB 13 (22)
IIIC 7 (12)

Histology
Ductal 52 (90)
Others 6 (10)

Associated DISC 20 (34)
Nottingham Histologic Score (Grade II) 37 (64)
Lymphovascular invasion 18 (30)
Molecular subtype

Luminal A 15 (26)
Luminal B 9 (15)

HER2+ 23 (40)
Triple-negative 11 (19)

Neoadjuvant chemotherapy
ddAC + paclitaxel weekly 35 (60)

ddAC + paclitaxel + CBDCA AUC2 8 (14)
NAC with trastuzumab + pertuzumab 19 (32)

Clinical trial with trastuzumab + pertuzumab 4 (7)
Conservative surgery 26 (45)
Negative margins 57 (99)
Residual tumour
No 17 (29)
Yes 41 (71)

I 31 (54)
II 5 (8)
III 5 (8)

Systemic adjuvant treatment
Adjuvant chemotherapy 10 (18)

Adjuvant hormone therapy 34 (59)
Adjuvant trastuzumab 23 (40)

Adjuvant radiation therapy 52 (90)
AC = doxorubicin/cyclophosphamide; AUC = area under the curve; CBDCA = carboplatin; dd = dose-dense.

At diagnosis, 40% women were premenopausal and 68% had operable BC not amenable
to conservative surgery. Most patients (32%) presented clinical TNM stage IIA BC. Invasive
ductal carcinoma was the most frequent histological type (90%). Regarding the molecular



Cancers 2022, 14, 3508 7 of 15

subtype, luminal tumours were more prevalent (42%), followed by HER2+ (40%) and
triple-negative tumours (18%). The median ki67 expression was 30% (range = 5–80%).

With respect to the NAC regimen administered, the majority of patients (60%) received
AC (adriamycin 60 mg/m2, cyclophosphamide 600 mg/m2) once every 14 days for four
cycles followed by paclitaxel 80 mg/m2 weekly for 12 cycles). The remaining 40% received
other NAC regimens with trastuzumab and/or pertuzumab. The dose adjustment of the
NAC treatment was required in 32% of the patients. After the treatment, pCR was achieved
in 21% of the patients (Table 2).

Table 2. Response assessment after neoadjuvant treatment.

Type of Response n (%)

Clinical response
SD 15 (26)
PR 24 (42)
CR 19 (32)

Radiological response
SD 7 (12)
PR 25 (44)
CR 25 (44)

pCR (ypT0/is ypN0)
Yes 12 (21)
No 46 (79)

CR = complete response; HER2 = human epidermal growth factor receptor 2; PR = partial response;
pCR = pathological complete response; SD = stable disease.

3.2. Feature Analysis

A total of 251 imaging characteristics were extracted from pre-treatment mpMRI scans.
A first exploratory analysis was conducted in the whole sample population (N = 58) in
order to evaluate putative differences between responders and non-responders. Out of
the 251 (Supplementary Table S1), statistically significant differences were found in four
imaging features (Table 3).

Table 3. Results of the imaging feature analysis according to the presence or absence of patho-
logical complete response. Only statistically significant results are presented (p < 0.05). “ADC”
prefix in ADC_glcm_ClusterShade indicates the type of sequence (diffusion) that textural feature was
extracted from.

Imaging Feature Mean (SD) p-Value

TTP p25 (s)
No pCR 237.67 (79.20)

0.004pCR 187.47 (51.27)
meanTTP (s)

No pCR 302.40 (56.67)
0.026pCR 260.52 (46.61)

D_star_std (mm2/s)
No pCR 0.007 (0.002)

0.012pCR 0.006 (0.002)
ADC_glcm_ClusterShade
(signal intensity; absolute value)

No pCR −5140.14 (3644.81)
0.035pCR −2542.84 (2607.65)

D_star_std = standard deviation of perfusion-related diffusion coefficient; pCR = pathological complete response;
TTP = time-to-peak; TTP p25 = 25th percentile of time-to-peak; SD, standard deviation.

These variables included one diffusion parameter (the standard deviation of perfusion-
related diffusion coefficient, henceforth D_star_std), one perfusion parameter (the 25th



Cancers 2022, 14, 3508 8 of 15

percentile and the mean of time-to-peak (TTP), henceforth TTP p25 and mean TTP, re-
spectively) and one radiomic feature extracted from DWI-MRI images (Cluster Shade,
henceforth ADC_glcm_ClusterShade). However, as observed in Figure 1, only TTP p25,
whose mean value was significantly lower in patients showing pCR and retained a high
discriminative ability, being able to differentiate responders from non-responders in 75%
of the cases. In line with TTP p25 results, mean TTP was also significantly lower in pa-
tients with pCR. On the other hand, D_star_std decreased, while ADC_glcm_ClusterShade
increased in responders compared to non-responders (Table 3 and Figure 1).
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Figure 1. Box-and-whisker plots comparing imaging feature values between patients showing
pathological complete response and non-responders.

Only statistically significant results are presented (p < 0.05). “ADC” prefix in
ADC_glcm_ClusterShade indicates the type of sequence (diffusion) that textural feature
was extracted from. D_star_std = standard deviation of perfusion-related diffusion coeffi-
cient; pCR = pathological complete response; TTP = time-to-peak; TTP p25 = 25th percentile
of time-to-peak.

3.3. Predictive Model

As explained in methodology Section 2.6, an initial data processing was required to
build the predictive models. Firstly, since our database included only 12 patients showing
pCR, and to avoid overfitting models towards the predominant class, data were balanced
by randomly selecting 12 non-responder cases for our analysis. As a result, 24 patients
(12 achieving pCR and 12 not achieving pCR) were included to train models. Secondly,
through a two-step feature selection process, highly correlated variables and those with
low variance values were eliminated. As a result, 38 imaging features were finally selected
(Figure 2).

Three different prediction models were developed based on imaging parameters (DCE-
MRI and DWI-MRI imaging biomarkers + radiomic features), clinical variables, and the
combination of both. Additionally, for each of the models, 10 different machine learning
classifiers were tested.
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Our results demonstrate that, when only imaging parameters were used, QDA was the
classifier yielding the highest accuracy (87.5%) (Figure 3A). In the case of models trained
with clinical variables only, GNB yielded the best results, with 62.5% accuracy (Figure 3B).
Finally, QDA was also the best classifier in terms of accuracy when both imaging and
clinical variables were considered (91.5%) (Figure 3C).
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Figure 3. Accuracy values (left) for each of the tested classifiers and confusion matrices (right)
corresponding to models trained with (A) imaging features (diffusion/perfusion MRI parameters
+ radiomic features), (B) clinical variables, and (C) imaging data + clinical variables. Classifiers
achieving the highest accuracy values for each model are highlighted in green. AdaBoost = Adaptive
Boosting; DT = Decision Tree; FN = false negative; FP = false positive; GBoost = Gradient Boosting;
GNB = Gaussian Naive Bayes; K-NN = K-Nearest Neighbour; LDA = Linear Discriminant Analysis;
LG = Logistic Regression; MLP = Multi-Layer Perceptron; QDA = Quadratic Discriminant Analysis;
TN = true negative; TP = true positive.



Cancers 2022, 14, 3508 10 of 15

Confusion matrices also confirmed clinical + imaging feature model as the one provid-
ing the lowest rate of false negative results (17% vs. 25% in the model trained with imaging
features and 42% in the model trained with clinical variables) with no false positive cases
(Figure 3).

Finally, the performance of the models according to the input data was evaluated.
As shown in Table 4, higher specificity, sensitivity, and accuracy, as well as lower error
rates were achieved when imaging data and clinical variables were included in the predic-
tive model.

Table 4. Performance metrics of the different predictive models. Only metrics for the classifier
providing the best results for each of the models are detailed.

Performance
Predictive Models Imaging Data QDA

Classifier
Clinical Data GNB

Classifier
Imaging + Clinical

DataQDA Classifier

Sensitivity 100% 63% 100%
Specificity 80% 61.5% 85.5%
Error rate 12.5% 37.5% 8.5%
Accuracy 87.5% 62.5% 91.5%

GNB = Gaussian Naive Bayes; QDA = Quadratic Discriminant Analysis.

4. Discussion

Response to NAC is one of the most powerful surrogate markers to predict BC prog-
nosis [9], as pCR has been associated with improved EFS and OS [32,41]. Our study was
designed to investigate the potential of a combined set of classic perfusion/diffusion MRI
biomarkers and radiomic features (referred as imaging data) obtained from pre-treatment
images for the prediction of pCR. Our results evidence that incorporating both imaging
data and clinical factors into the model facilitates the non-invasive prediction of pCR.
This model performed better than those built with only imaging or clinical data, with
high accuracy (91.5%) and low error rate (8.5%), providing an effective tool for clinical
decision-making.

Several studies have focused on building machine learning models to predict pCR
based on imaging features alone or in combination with clinical variables [27,42–48]. The
methodology used in these studies was highly variable, with some of them focused on
diffusion/perfusion MRI parameters solely [44,45] and some others exclusively focused on
radiomic features extracted from either DCE-MRI sequences [27,42,43] or mpMRI [47,48].
Despite this variability, overall, machine learning models showed good performance in
predicting pCR. Additionally, and as confirmed by a meta-analysis recently published [49],
pCR prediction by radiomics was more precise when clinical information was included
in the model. In our study, we followed a broad approach by firstly, extracting radiomic
features from mpMRI without neglecting the importance of diffusion/perfusion MRI
parameters that were also evaluated, and secondly, by including clinical variables in our
predictive model. Our results demonstrate that the combination of diffusion/perfusion
MRI biomarkers and radiomic features along with clinical variables was able to predict
pCR with high accuracy, confirming the need for complete prediction models based on a
wide range of both imaging and clinical data.

Our statistical analysis revealed significant differences in four distinct variables when
comparing patients showing pCR vs. non-responders, including one diffusion parameter,
one perfusion parameter and one radiomic feature. Among those, the perfusion parameter
TTP p25 was particularly interesting as it was able to discriminate both groups in 75% of
the cases. As for mean TTP, TTP p25 was significantly shorter in patients achieving pCR.
TTP is a semi-quantitative DCE-MRI-derived parameter that represents the time in which
the contrast agent reaches the peak volume [50], proving useful information about how
fast the contrast is delivered, and consequently, about tumour vascularity. Indeed, in BC
it has been reported that an initial rapid and delayed washout pattern with short TTP
may be suggestive of a highly cellular tumour with a relatively small amount of intersti-
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tium, where the tumour supplying the vessel is highly permeable [50,51]. Thus, based on
our results, we hypothesise that patients showing pCR would be those initially present-
ing hypervascular tumours, with more accessible vessels to receive chemotherapy agents
and consequently, to facilitate therapeutic response. Similar vascular changes and their
relation to NAC response have been previously suggested in BC by other authors [52].
Although DWI-MRI parameters may also provide useful information on tumour vasculari-
sation [53], our results only revealed differences between responders and non-responders
in one diffusion parameter, D_star_std, a variable representing the standard deviation of
Dstar and consequently, difficult to interpret. However, it should be noted that, despite
this coefficient representing incoherent microcirculation [54], which has been considered
proportional to average blood velocity and capillary segment length [55], it seems not to be
reliable, showing poor reproducibility [54,56,57]. Additionally, Dstar and other diffusion
information only show moderate correlation with pharmacokinetic parameters obtained
from DCE-MRI in breasts [58]; an additional reason why vascular changes in patients with
pCR could not be reflected in changes in DWI parameters in our study.

Finally, our statistical analysis also showed a significant increase in Adc_glcm_ClusterShade,
a radiomic feature representing the skewness and uniformity of the GLCM. GLCM is
a statistical matrix that has been extensively used in texture analysis [59], a methodol-
ogy that provides an objective, quantitative assessment of tumour heterogeneity [60]. It
has been postulated that texture analysis could provide physicians with additional infor-
mation to increase the accuracy of prediction of an individual response before NAC is
started [61,62]. In our series, more negative Adc_glcm_ClusterShade values were obtained
in non-responders. Although not significant, similar results were obtained in a study
assessing chemotherapy response in BC through texture analysis, in which the authors
concluded that a lack of response, and consequently a poorer prognosis, was related to a
higher tumour heterogeneity [63].

In summary, our statistical analysis results might suggest that those patients presenting
with highly vascularised homogeneous tumours would be more prone to achieve pCR, and
therefore, would be ideal candidates to receive NAC.

However, this study has also some limitations. Firstly, it was a single-centre study
and its application to data/patients from other institutions should be further explored.
Secondly, given the need for a balanced dataset, the final sample used for machine learning
models was small. Finally, we are aware that the presence of different tumour subtypes
may be affecting the outcomes. Regrettably, because of the small sample size, we were
unable to run independent analyses for each of the different subtypes. Additionally, it is
worth mentioning that this information, as well as some other relevant clinical information,
such as the histology type, was not available when predictive models were developed
and consequently, we were unable to include it in the models. Despite its unquestionable
relevance in assessing patients’ pCR, we would like to highlight the valuable contribution
of the imaging features to the predictive model, which even in combination with the
limited clinical information available, were able to improve the performance of models
trained only with clinical data or with imaging features. As this is a first proof-of-principle
study, we hope to address all these limitations in future studies. Despite them, this work
provides valuable insights about pCR prediction in the daily clinical setting. As a result,
it contributes to generate real-world evidence, a relevant type of clinical evidence which
is drawing ever-increasing attention in the pharmaceutical industry and drug regulatory
authorities all over the world.

5. Conclusions

In conclusion, a machine learning model, including mpMRI-derived diffusion/perfusion
parameters, radiomic features, as well as clinical data obtained in the real-world setting,
was able to improve the pre-treatment prediction of pCR to NAC compared to models that
only included imaging or clinical data. Pre-treatment differences in specific mpMRI-derived
parameters between responders and non-responders might suggest an increased tumour
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vascularity and decreased heterogeneity in those showing pCR, where TTP p25 could
potentially emerge as a surrogate imaging biomarker for pCR. Further studies are needed
to elucidate the predictive value of this parameter, to identify other potential imaging
biomarkers, as well as to confirm the added predictive value of imaging features over
clinical data in bigger and more complete patient cohorts.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers14143508/s1, Table S1. Imaging feature analysis
results. P-values from t-Student test results are provided. “ADC” and “iAUC” prefixes before textural
features indicate the type of sequence (diffusion and perfusion. respectively) those parameters were
extracted from.
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