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ABSTRACT

Molecular stratification of tumors is essential for
developing personalized therapies. Although patient
stratification strategies have been successful; compu-
tational methods to accurately translate the gene-
signature from high-throughput platform to a clinically
adaptable low-dimensional platform are currently
lacking. Here, we describe PIGExClass (platform-
independent isoform-level gene-expression based
classification-system), a novel computational
approach to derive and then transfer gene-signatures
from one analytical platform to another. We applied
PIGExClass to design a reverse transcriptase-
quantitative polymerase chain reaction (RT-qPCR)
based molecular-subtyping assay for glioblastoma
multiforme (GBM), the most aggressive primary brain
tumors. Unsupervised clustering of TCGA (the Cancer
Genome Altas Consortium) GBM samples, based on
isoform-level gene-expression profiles, recaptured
the four known molecular subgroups but switched
the subtype for 19% of the samples, resulting in
significant (P = 0.0103) survival differences among the
refined subgroups. PIGExClass derived four-class
classifier, which requires only 121 transcript-variants,
assigns GBM patients’ molecular subtype with 92%
accuracy. This classifier was translated to an
RT-qPCR assay and validated in an independent
cohort of 206 GBM samples. Our results demonstrate
the efficacy of PIGExClass in the design of clinically
adaptable molecular subtyping assay and have
implications for developing robust diagnostic assays
for cancer patient stratification.

INTRODUCTION

Molecular understanding of tumor heterogeneity is key to
personalized medicine and effective cancer treatment.
Numerous studies have identified molecularly distinct
cancer subtypes among individual patients of the same
histopathological type by performing high-throughput
gene-expression analysis of the patient tumor samples
(1). Despite numerous studies on gene-expression-based
tumor subgrouping, only few of the gene
signatures derived from high-throughput platforms (e.g.
microarrays) were successfully transitioned to low-content
clinically useful platforms (e.g. reverse transcriptase-
quantitative polymerase chain reaction [RT-qPCR]).
Although the assessment of molecular subtyping
accuracy based on data from a specific analytical
platform (e.g. microarray) has received much attention
in cancer research, extent of variability in classification
accuracy based on gene-expression estimates of same
gene-set from different platforms (e.g. microarray and
RT-qPCR) remains poorly understood. Moreover, most
of the tumor subtyping studies have ignored the complex-
ity of human transcriptome and focused the analyses
mainly on gene-level expression profiles.
Recent genome-wide studies have discovered that

majority of human genes produce multiple transcript-
variants/protein-isoforms, which could be involved
in different functional pathways (2). Moreover, altered
expression of specific isoforms for numerous genes is
linked with cancer and its prognosis, as cancer
cells manipulate regulatory mechanisms to express
specific isoforms that confer drug resistance and survival
advantages (3). For example, cancer-associated alterations
in alternative exons and splicing machinery have
been identified in cancer samples (4–6), suggesting that
specific transcript-variants could be more effective as
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diagnostic and prognostic markers than corresponding
genes. In a recent study, we discovered that majority
of genes associated with neurological diseases expressed
multiple transcripts through alternative promoters by
using integrative NextGen sequencing based experimental
approaches and bioinformatics analysis. We also observed
aberrant use of alternative promoters in medulloblastoma,
a cancer arising in cerebellum (7). Subsequently, we have
demonstrated that cancer cell-lines regardless of their
tissue of origin can be effectively discriminated from
non-cancer cell-lines at isoform-level, but not at gene-
level (8). We, therefore, hypothesize that isoform-level
expression profile analysis would lead to better cancer
patient stratification with prognostic significance.
Moreover, an isoform-level signature would allow us to
identify novel molecular markers and generate a more
robust and clinically translatable assay for cancer patient
stratification.
To address these problems, we designed a plat-

form-independent isoform-level gene-expression based
classification system (PIGExClass) that would allow us
transfer the gene-signature developed on a high-
dimensional platform to a clinically adaptable low-
dimensional platform. Here, we applied this novel
system to Glioblastoma multiforme (GBM) subtyping.
GBM or grade IV gliomas are molecularly heterogeneous
and most lethal of the malignant adult brain tumors. Even
with aggressive combination therapies, the prognosis
remains dismal, with median survival of 15 months after
diagnosis (9). The systematic generation of high through-
put molecular profiling data, by the Cancer Genome Atlas
(TCGA) consortium, has led to the identification of
molecular subgroups for primary GBM (10–12). TCGA
study proposed a GBM classification scheme, based on
gene-level expression profiles of 200 GBM samples,
which identified four molecular subgroups (namely,
neural—N, proneural—PN, mesenchymal—M and
classical—CL), but the derived subgroups did not show
any significant survival and prognostic stratification unless
lower histopathological grade glioma patients were
included (10). The current notion in GBM field is that
younger patients have a good prognosis and mostly
carry G-CIMP phenotype, IDH1 mutation and a gene
expression profile of proneural subgroup. As GBM
occurs mostly in elderly population (median age �60
years) and only a small percentage of primary GBM
patients carry the IDH1 mutation (�10%) and/or
G-CIMP methylation (�9%), these signatures are good
prognostic markers for only a small percentage of
primary GBM patients. Therefore, a more widely
applicable molecular subtyping with improved prognostic
significance would be extremely useful for guiding
treatment. Our subtyping with an isoform-level gene-
signature now reveals a classification of subtypes with
accurate prognostic significance. We translated this
isoform-based classifier to an RT-qPCR based assay
for molecular classification of GBM patients and further
validated the signature on 206 independent samples
from University of Pennsylvania Brian Tumor Tissue
Bank.

MATERIALS AND METHODS

Preprocessing of TCGA exon-array Data

We downloaded the unprocessed Affymetrix Exon-array
datasets for 419 GBM samples and 10 normal brain
samples (control samples) from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga). The transcript
(isoform)-level and gene-level expression estimates were
obtained by the Multi-Mapping Bayesian Gene
eXpression algorithm (13) for Affymetrix whole-transcript
arrays, based on Ensemble database (version 56). The
estimated expression values were then normalized across
the samples, using the locally weighted scatter plot
smoothing (loess) algorithm (14).

Data filtering (selection of most variable isoforms/
transcript variants for sample clustering)

Two filters were applied here. The first filter was applied to
retain only one isoform among highly correlated isoforms
of same gene. Two isoforms of a gene are considered
highly correlated if the Pearson’s correlation coefficient
of isoform-level expressions across the samples is higher
than 0.8. The isoform with highest coefficient of variation
(CV), highest variability across patients, was retained
among the correlated isoforms of a gene. The second
filter was applied to eliminate low-variable isoforms
across the patients. We selected 1600 isoforms with the
highest variability across patients, using CV. Unlike
standard deviation, which is heavily affected by the
mean value of the dataset, CV is a dimensionless
number and a way to penalize the expressions with
overall high expression values.

Identification of GBM subgroups based on isoform-level
expression using consensus non-negative matrix
factorization clustering

We applied consensus non-negative matrix factorization
(NMF) clustering approach to group the samples (15).
NMF analysis was performed on expression matrix of
1600 transcripts and 419 samples using R package
‘NMF’. For rank k=2–7, consensus matrices were
obtained by taking the average of over 50 connectivity
matrices. The stability of the decompositions was
evaluated using a cophenetic correlation coefficient and
visualization of the heat map plot of the consensus clus-
tering matrix as shown in Supplementary Figure S2. As
the NMF finds different solutions for different initial con-
ditions, the factorizations were repeated 100 times using
the previously determined rank and evaluated according
to their factorization approximation error. The factoriza-
tion with the lowest approximation error was retained.
The silhouette width (16) was computed to filter out
expression profiles that were included in a subclass, but
that were not a robust representative of the subclass.

Survival difference between subtypes

Kaplan–Meier survival curves for the four GBM subtypes
are plotted. Log-rank test is applied to test if there is a
difference between the survival curves. The R package
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‘survival’ (http://cran.r-project.org/web/packages/
survival/index.html) was used to do the analysis (17).

Isoform-based signature identification
Differentially expressed transcript-variants and genes
between normal brain and GBM samples were determined
by using the limma method (18).

Basic steps in PIGExClass algorithm

To derive numerically comparable measures of gene
expression between different platforms, and translate the
gene-panel (from the classifier) across platforms, we
developed PIGExClass by combining a novel data-discret-
ization (19) procedure with ‘variable selection’ step, a
randomForest-based variable selection algorithm (20).
The PIGExClass algorithm is available as a set of
scripts at http://bioinformatics.wistar.upenn.edu/PIGEx
Class.
Step 1: Data-discretization step (Normalization procedure
for cross-platform transformation of fold-change data): We
applied data discretization for converting continuous data
values into categorical data (19). Basically, we discretized
the fold-change levels (GBM over normal brain) of each
transcript expression from each platform based on equal
frequency or equal width binning (19) and converted the
continuous fold change data to categorical values (FCCVs
[Fold Change Categorical Values]), using the following
procedure.

(1) For each transcript/gene, sort the samples based on
fold changes (FCs) in ascending order.

(2) Divide sorted vector into a predetermined number of
bins, so that the width of all bins is equal (equal-
width binning) or number of samples in each bin is
equal (equal-frequency binning). The number of
categories (bins) was determined whether finer or
coarser discretization improves the accuracy of the
classification model. Similarly, the choice between
equal-frequency binning or equal-width binning was
made depending on the accuracy of the derived clas-
sification model.

(3) Each fold change value is replaced by an integer
value corresponding to the rank of the bin it falls
into.

Step 2: Variable Selection and Classification Steps: Prior to
building the classification model, we applied a
randomForest-based variable selection algorithm (20) to
select a small set of non-redundant genes or isoforms,
using FCCVs. The variable selection was performed
separately on gene-level or transcript-level fold changes.
By selecting 213 transcripts/isoforms as the most discrim-
inative variables between the four GBM subgroups, we
created a randomForest classifier for subtype prediction
(21,22). The cross-validation analysis of the final selected
classifier was done by out-of-bag [OOB] approach. We
further tested the classifier by dividing the isoform-based
core samples into 3/4th as training-set and 1/4th as test-
set. The classification model generated from the training
set was applied to the test set.

RNA-seq data analysis
The TCGA GBM paired-end RNA-seq aligned bam files,
for a total of 155 patient samples, were downloaded
from https://cghub.ucsc.edu/cghub/data/analysis/download.
A subset (76 datasets) of GBM samples have expression
profiles from both RNA-seq and exon-array platforms.
The RNA-seq bam files were converted to raw fastq files
by Picard tools (http://picard.sourceforge.net/). The
isoform level expression estimates were obtained by
Tophat/Cufflinks pipeline using Ensembl 66 as reference
(23) and expression estimates were normalized by upper
quartile normalization. Two normal brain RNA-seq
samples (used as controls to calculate expression fold-
changes and FCCVs–GBM over normal brain) were down-
loaded from SRA archive (ERR030882 and SRR309262)
and analyzed using the same pipeline as the GBM samples.

Evaluation of the data-mining algorithm on RNA-seq data
We evaluated the transition of the PIGExClass from exon-
array to an independent platform by applying the classifier
(trained on exon-array data) on GBM RNA-seq samples.
Misclassification rate was computed based on 76 GBM
samples overlapped with the isoform-level core samples
and profiled by both exon-array and RNA-seq methods.
We have calculated the Pearson correlation between each
pair of expression signatures (fold changes), before and
after data discretization, for the 76 GBM samples that
were profiled by both exon-array and RNA-seq platforms.

GBM Tissue Specimens
The GBM samples processed for RNA isolation were
obtained from the Human Brain Tumor Tissue bank
(HBTTB) at the University of Pennsylvania. Collection
of brain tumor tissue was approved by the Hospital of
the University of Pennsylvania Institutional Review
Board, with wavier of informed consent for retrospective
review of medical records. Procurement and processing of
GBM tumor tissues from HBTTB was approved by the
Wistar Institute’s Institutional Review Board.

Open array design
To measure the expression of transcripts selected in the
classifier, we designed RT-qPCR assays to be performed
on the high throughput OpenArray platform (Life
Technologies Inc.). Details are provided in the
Supplementary Materials and Methods.

RNA isolation and RT-qPCR analysis
RNA was isolated using Tri Reagent (Sigma Inc.) and
cDNA was synthesized using the high capacity cDNA
reverse transcriptase kit (Applied Biosystems Inc.) accord-
ing to manufacturer’s instructions. Normal brain RNA
was purchased from Agilent Inc. Further details are
provided in Supplementary Materials and Methods.

RESULTS

Extensive isoform-level changes occur in the GBM
transcriptome

Unprocessed exon-array and clinical data for 419 GBM
and 10 normal brain samples were downloaded from the
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TCGA data portal. A subset of 173 samples, marked as
‘core samples’ has been further stratified into four
molecular subgroups (namely, neural—N, proneural—
PN, mesenchymal—M and classical—CL)
(Supplementary Table S1) by a TCGA network study
(10). We analyzed the exon-array data and estimated the
transcript (isoform)-level and gene-level expression values
for a total of 114 930 different transcript-variants that cor-
respond to 35 612 different gene models (Ensembl
database, version 56). Although the comparative statis-
tical analysis between GBM and normal brain at the
gene-level produced 2834 genes as differentially expressed,
similar analysis at the isoform-level revealed that a total of
7313 transcript-variants that correspond to 4215 genes
were significantly altered in GBMs (q� 0.001 and fold-
change �2.0) (Figure 1A).
We observed that the transcript-variants of 44 genes,

primarily associated with cellular assembly and organiza-
tion, frequently showed disjoint patterns of isoform-
expression in GBMs compared with normal brain, with
one isoform being up-regulated and another isoform of
the same gene down-regulated. We compared the
isoform-level exon array expression changes with
changes found by RT-qPCR in GBM samples from
Penn-cohort for 16 different transcripts (Supplementary
Table S2). We found the direction of change to be the
same for 15 of the 16 transcripts, although the magnitude

of the change found by PCR could be either higher or
lower than that found by exon-array. This shows that
the isoform-level expression patterns obtained by
analyzing TCGA exon-array datasets can be validated
across an independent patient-cohort using a different
and less-expensive PCR assay.

Unsupervised clustering of TCGA GBM samples using
isoform-level gene expression profiles recaptured the
TCGA molecular subgroups with improved prognostic
stratification
As we observed significant expression differences for
numerous genes at the isoform-level but not at the
overall gene-level, we investigated whether the isoform-
level transcriptome changes can provide better patient
stratification in terms of overall prognosis and classifica-
tion accuracy, by an integrative computational modeling
and experimental validation approach as outlined in
Figure 1B. Although the TCGA core samples were
divided into one of four subtypes—N, PN, M, and
CL—based on the gene-level expression signature of 840
genes, no statistically significant survival differences were
observed between the subtypes (Supplementary Figure S1)
(10). Unsupervised clustering of 419 GBM samples
identified four major clusters, hereafter called ‘isoform-
based groups’, using the expression of 1600 most
variable transcripts (Supplementary Figure S2). We

Figure 1. Transcriptome analysis at the isoform-level and proposed plan to build an isoform-based GBM subtyping assay. (A) The table shows the
number of up- and down-regulated genes or transcripts identified in the TCGA cohort’s exon-array data. The Venn diagram shows the number of
genes that are misregulated at either the gene-level (yellow) or the isoform-level (blue) alone, and at both levels (green, overlapping region). (B) The
proposed scheme to build a classifier for GBM patient subtyping and translate it to a clinically applicable diagnostic assay.
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identified the four groups as ‘proneural’, ‘mesenchymal’,
‘classical’ and ‘neural’, based on the concordance in
cluster membership calls between our isoform-based
groups and TCGA core sample grouping (10)
(Figure 2A). To prepare homogeneous, isoform-based
groups, we filtered out samples that were not good repre-
sentatives of a subgroup by employing the silhouette
width method (see Materials and Methods). This
resulted in the removal of 77 samples, leading to a final

set of 75 neural, 95 proneural, 85 mesenchymal, and 87
classical GBM samples—for a total of 342 as most repre-
sentative of the four groups, hereafter called ‘isoform-
based core samples’. Among the 169 patients common
to both TCGA and isoform-based core samples
(Figure 2B), 32 samples were assigned to a different
subgroup by our isoform-based signature. The switching
of 19% of the core GBM samples into a different
subgroup resulted in the PN group with statistically
significant better survival (Figure 2C and D). For
example, 1 year survival rate for isoform-based PN
subgroup is 7% greater than that of gene-based PN
subgroup; demonstrating better prognostic grouping by
isoform-based clustering than gene-based clustering.

The PIGExClass algorithm
Having established a prognostic stratification of GBM
samples based on isoform-level gene expression clustering,
we sought to (i) design a universal classification model
that will be independent of the gene expression measuring
platform, and (ii) identify a small subset of genes or
isoforms that are discriminatory between the four sub-
groups. To determine the type of the classification
variable (genes vs. isoforms), we compared the prediction
accuracy of a gene-based versus an isoform-based classi-
fier to correctly call the subtype of a GBM sample, and
found that the isoform-based classifier is better both in
terms of numbers of variables (genes/isoforms) required
and prediction accuracy (Figure 3A). For example, while
the isoform-based randomForest model achieved 90%
accuracy with as few as 50 isoforms as feature variables,
the gene-based model required more than 100 genes as
feature variables for comparable accuracy to the
isoform-based model. We also evaluated the performance
of gene-based classifier vs. isoform-based classifier when
the initial NMF cluster identification was performed using
the gene-level expression (Supplementary Figure S3). Even
in this scenario, an isoform-based classifier had a better
performance than the gene-based classifier. In the final
‘classification’ step, by selecting 213 transcripts/isoforms
as the most discriminative variables between the four
GBM subgroups, a randomForest classifier is built for
subtype prediction.
The accuracy of the final selected classifier based on

cross-validation analysis (OOB approach) is 93.6%. The
classifier was further tested by dividing the isoform-based
core samples into 3/4th as training-set and 1/4th as test-
set. The classification model generated from the training
set was applied to the test set. The results of this additional
testing agreed with those of the OOB approach in 99% of
the sample calls in the test set, confirming that the algo-
rithm effectively distinguishes the four subgroups. We also
compared the error rate with and without discretization
on the training data set and find that the OOB error rate
decreases from 8.6% to 6.4% after discretization, suggest-
ing that data discretization is not only critical for platform
transition but also important for classifier’s accuracy
within the same platform. Genes that reflect molecular
differences between the subgroups were selected among
the 213 isoforms, for example, EGFR, known to be
highly amplified in the CL subgroup (10,24), and MET,

Figure 2. Isoform-level expression-based clustering of GBM patients
from the TCGA cohort shows prognostic differences.
(A) NMF-method-based clustering of 419 GBM patient samples
based on the expression of 1,600 of the most variable transcripts/
isoforms across the patients. Four clusters were formed, and on top,
the distribution of 173 TCGA core samples in each cluster is shown.
The subtypes of the TCGA core samples are color-coded as proneural
(PN) (blue), mesenchymal (M) (red), neural (N) (purple) and classical
(CL) (black). (B) The concordance table shows the comparison of
TCGA’s core sample assignment to four subtypes based on gene-level
(10) and isoform-level expression (isoform-based clustering). (C–D)
Kaplan–Meier survival curve for the overlapping TCGA study core
samples and isoform-based core samples (169 GBM patients) (C) and
the isoform-based core samples from TCGA (342 GBM patients)
(D) belonging to the four subtypes identified above in (A). The statis-
tical significance of the overall plot and that of one-to-one comparison
for each subtype is shown. The P-values have been calculated using the
log-rank test.
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a gene associated with epithelial to mesenchymal transi-
tion (25).

Translation of isoform-level gene panel to clinically
translatable platform and validation of the classifier
As the isoform-based classifier from PIGExClass has
achieved a prediction accuracy of >90% with fewer

numbers of transcripts than the gene-based classifier, we
decided to translate the classifier’s isoform-level gene-
panel (213 transcripts) to an RT-qPCR-based assay.
Because we observed that the accuracy of the
randomForest classifier did not vary significantly
whether we chose as few as 100 isoforms or as many as
213 isoforms in the classification model (Figure 3A, �3%

Figure 3. Development of an isoform/transcript-based classifier and its validation. (A) The OOB error rate was plotted for a gene-based (left) and
isoform-based (right) classifier model, where the x-axis denotes the number of variables or features and the y-axis represents the OOB error rate. The
blue line shows the OOB error rate for 50 features in each model, and the red line depicts the lowest error rate achievable by the two models.
(B) Box-plots of the Pearson correlation coefficients were plotted before and after data discretization using FCCV for sample to sample correlation
based on 76 TCGA GBM samples with both exon-array and RNA-seq expression profiles. (C) The correlation of expression estimates obtained on
two different cohorts of GBM patients on two different platforms. The x-axis represents the mean fold change for 121 transcripts/isoforms based on
exon-array data for isoform-based core samples from TCGA, and the y-axis shows the mean fold change for the same transcripts/isoforms for
Penn-cohort of GBM patients based on RT-qPCR analysis. The equation for the linear relationship and the R2 were calculated after removing the
outliers. (D) Boxplot represents the expression of marker genes for the four different subtypes in Penn-cohort of GBM patients identified by our
PIGExClass based classifier. All fold changes were calculated relative to normal brain tissue and statistical significance was determined by two sample
t-test.
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decrease in accuracy), we selected the 121 most reliable
commercially available TaqMan chemistry-based qPCR
assays, and translated these transcript assays to RT-
qPCR platform (Supplementary Table S3). We retrained
the classifier with 121 transcripts on isoform-based core
samples from TCGA and found a prediction accuracy loss
of only 1.5%.

As a first step, we evaluated the transition of the clas-
sifier from exon-array to an independent platform by
applying on 155 RNA-seq TCGA samples. We found
that the data discretization with equal-frequency binning
gave better classification accuracy than that based on
equal-width binning. We, therefore adopted the data-
discretization with equal frequency binning for data tran-
sition across platforms. Based on 76 GBM samples that
overlapped with the isoform-level core samples and were
profiled by both exon-array and RNA-seq methods, we
found that the classifier made 90% similar sub-type calls
between the two platforms, and achieved 93% prediction
accuracy when compared with the true-class labels
(Supplementary Tables S4 and S5). However, the classi-
fier’s accuracy was only 66% on these 76 GBM samples if
data discretization step was omitted. The stability in the
classification accuracy across the two platforms is primar-
ily due to reduced variability in FCCVs and increased
correlation across platforms (Figure 3B). Therefore, the
classifier trained on discretized fold-change data
provided a platform independent isoform-level gene signa-
ture with a high degree of concordance and prediction
accuracy.

Next, we tested the classifier on the Penn-cohort of 206
samples, by using the RT-qPCR-based assay designed
earlier. First, we analyzed the concordance between the
expression estimates, in terms of fold change relative to
normal, obtained from exon-array and RT-qPCR assays.
We observed similar expression patterns for 14 of the 15
control transcripts between RT-qPCR and exon-array
data analysis (Supplementary Table S6). To evaluate the
data correlation between the two platforms, mean fold
changes of 121 transcripts between the TCGA and Penn-
cohorts were plotted and compared (Figure 3C). The
strong linear relationship between the two datasets indi-
cates that the classifier built on expression data from the
exon-array platform can be translated to RT-qPCR
platform, and isoform-level expression patterns for
GBM patients is comparable across independent cohorts
of patients.

We applied the retrained classifier on the Penn-cohort
to identify each patient’s subtype. Our results indicate that
52 (25.2%), 41 (19.9%), 50 (24.2%) and 63 (30.5%) of
patients belong to PN, N, M and CL groups, respectively
(Supplementary Table S7). We also observed that for 16
(�8%) samples, the difference in the top two probabilities
for subtype assignment is less than 0.05%, which we
defined as ‘low-confidence’. However, for these samples
our classifier can confidently eliminate the assignment to
the other two subtypes. To address the issue of reprodu-
cibility, we independently re-isolated RNA and performed
the RT-qPCR analysis on three patient samples and found
good correlation (r� 0.9) between the two datasets.
Moreover, our PIGExClass based classification algorithm

assigned the samples to the same subtype as before
(Supplementary Table S7). To further validate the assign-
ment of subtypes, we looked at the expression of known
markers for each subtype (26). As expected, we observed
higher expression of the neural marker-GABRA1,
proneural marker-DCX, mesenchymal markers-CHI3L1
and MET, and classical marker-NES in samples belong-
ing to the N, PN, M and CL subtypes, respectively
(Figure 3D). Similar marker expression pattern was
observed for the 155 GBM samples from TCGA that
were subtyped based on RNA–seq data (Supplementary
Figure S4). In conclusion, we have developed an RT-
qPCR-based assay that can reproducibly predict the mo-
lecular subtype of GBM patients based on the relative
expression of only 121 transcripts/isoforms in the tumor
tissue.

Prognostic significance of the stratification in younger
and older GBM patients
The molecular stratification of the TCGA-cohort’s
isoform based core samples by the isoform-based signa-
ture showed that the PN subgroup has significantly better
overall survival than the other three groups (Figure 2D).
We plotted the survival curves for the four predicted
groups of the whole TCGA-cohort (both exon array and
RNA-seq samples) and Penn-cohort after removing the
samples with low confidence calls (Figure 4A). To our
surprise, we did not observe a better overall survival for
the PN group in the Penn-cohort. Instead, we found that
the neural group had a significantly better survival rate
compared with the classical and mesenchymal subtypes
(Figure 4A). This result prompted us to investigate the
characteristic differences between the two cohorts
(Table 1). One striking difference was in the representation
of younger patients (age< 40 years at diagnosis) between
the two cohorts (27); while 12.1% in TCGA-cohort were
younger, only 5.8% were younger in the Penn-cohort. We
found that most of the younger patients in the TCGA-
cohort were classified as PN (35/57), and these patients
had a much longer survival compared with the older PN
patients (Table 1 and Figure 4B). Hence, we decided to
re-plot the survival curves for the TCGA and Penn
cohorts separately for younger (<40 years) and older
patients (�40 years) (Figure 4B and C). Our results
clearly demonstrate that the prognostic significance of
the PN group in terms of survival is valid only for the
younger patients, and among the older patients, the PN
group has the poorest 6-month survival rate in both the
TCGA and Penn cohorts (Table 1).
Based on the results described earlier, our study agrees

with the general consensus that patients who are young
and have a PN subtype tend to have better prognoses (28).
We also found that among the older patients, the PN
subtype confers a poorer prognosis.

DISCUSSION

The complexity of the gene structure in the human genome
and the importance of using alternative splice variants
as molecular signatures towards genomic medicine
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are being increasingly appreciated (29–31). Although
alternative-splicing has long been implicated in cancer,
the diagnostic and prognostic significance of gene-
isoforms has not been systematically evaluated in any
cancer. Although glioblastomas have been classified into
four molecular subgroups based on gene-level expression
profiling, the prognostic value of this stratification is
weak. The application of our PIGExClass algorithm on
the TCGA data shows that isoform-level gene signature
can accurately classify GBM patients into the four mo-
lecular subtypes, using transcript-level gene-expression es-
timates either from exon-array or RNA-seq. To the best of

our knowledge, this is the first isoform-level assay for effi-
cient molecular stratification of cancer. Our isoform-level
analysis leads to a substantially better subtype prediction
model than the models based on gene-level analysis
(10,28,32–36) not only in terms of improved classification
accuracy but also because fewer variables (isoforms) are
required in the final classification model. Because the
clinical value of a laboratory test depends directly on its
reproducibility and comparability, we translated the clas-
sification model (121 transcripts), from high-dimensional
exon-array platform to a highly robust RT-qPCR-based
assay platform, without loss of analytical precision.

Figure 4. Kaplan–Meier survival plots for TCGA and Penn cohort of GBM patients. The overall survival curve for (A) TCGA and Penn-cohort of
GBM patients who were classified into four subtypes by our classifier with high confidence, (B–C) TCGA-cohort of GBM patients (B), and Penn-
cohort (C) divided by age as <40 years and �40 years at time of diagnosis. The statistical significance of each plot is indicated and the P values were
determined by applying the log-rank test.
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One major advantage of our isoform-based subtyping
of the TCGA GBM samples was in survival stratification.
Unlike previous studies (10,32,33), we found statistically
significant better survival for the PN subgroup in the
TCGA-cohort of primary GBM patients without inclu-
sion of lower grade III glioma patients. We also found
that the prognosis of the molecular subgroups varied
with patient’s age. For younger (<40 years) patients, the
survival advantage is for the PN subgroup and this can be
concluded from various studies that report the presence of
G-CIMP phenotype and IDH1 mutation, two prognostic
markers of glioma, in a subset of primary GBM patients
who are young and exhibit proneural subtype gene expres-
sion profile. Moreover, this difference in the PN prognos-
tic value between isoform- and gene-based classification is
not due to unequal representation of younger patients in
the two studies (�16% patients are <40 years in both
studies). However, the lack of a better surviving PN
subgroup among the Penn-cohort is explained by the
underrepresentation of younger patients.

The robustness and accuracy of our classifier is sup-
ported not only by the expression of marker genes for
each subtype but also by the prevalence of various muta-
tions among the patients of subgroups defined by isoform-
based grouping (Supplementary Table S8). It is worth
noting that though certain mutations tend to be associated
with specific subtypes, only a fraction of GBM patients
within each group harbor these mutations, indicating that

mutational analysis is not an effective tool for accurately
classifying GBM subtypes. In agreement with the previous
reports, we found that NF1 mutations are present primar-
ily in the M and N subtypes, and majority of the IDH1-
mutated patients are young (<40 years) and belong to PN
subtype. Similarly, the observation that EGFR mutations,
including the EGFRvIII variant, occurred mostly in the
CL and N subtypes further support our classifier’s
accuracy to identify GBM subtypes.
Though we have developed a robust assay and algo-

rithm for patient stratification, it has few limitations.
One of the major limitations is in the reliability of the
predicted subtype call for low-confidence predictions
(8% of the predictions by PIGExClass are low-
confidence). In case of low-confidence predictions,
PIGExClass assigns the patient sample to two or more
sub-types depending on the closeness of the predicted
probabilities for different sub-types. Another hurdle we
face is in the application of our algorithm on existing
gene expression data for GBM patients. Our approach
requires isoform level expression and most available
gene expression datasets provide gene-level expression
estimates. Furthermore, the accuracy of our method in
predicting the subtype based on RNA-seq data is highly
influenced by the RNA-seq isoform level expression esti-
mation programs.
More importantly, in addition to our classifier’s prog-

nostic value, this diagnostic assay will play an important

Table 1. Distribution of GBM patients in TCGA and Penn cohorts based on age and molecular subtype

Distribution of GBM patients by age

TCGA samples Penn samples

Age group (yrs) <40 40–50 51–60 61–70 >70 <40 40–50 51–60 61–70 >70
Patient (%) 12.1 13.1 26.5 27.3 20.8 5.78 18.42 25.78 25.78 22.1

Distribution of young and older GBM patients among the four subtypes

TCGA samples Penn samples

PN N CL M PN N CL M

Overall 121 99 123 114 46 38 59 47
Age <40 yrs 35 10 4 8 6 1 3 0

Gender
Male 14 5 0 2 4 1 1 0
Female 21 5 4 6 2 0 2 0

Age >40 yrs 86 89 119 106 40 37 56 47

Gender
Male 58 61 71 68 29 17 29 32
Female 28 28 48 38 11 20 27 15

Survival for the older (>40 yrs) GBM patients among the four subtypes

TCGA-cohort (%) Penn-cohort (%)

Survival (mo) 6 12 24 6 12 24
N 63.2 44.8 16 83.8 67.5 29.7
PN 63.5 40 14.1 65 35 12.5
M 67.9 41.5 10.3 70.2 44.6 10.6
CL 71.1 47.4 15.2 76.7 44.6 7.1
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role in selecting treatment strategies for glioblastoma
patients. For example, the signal transducer and activator
of transcription 3 (STAT3) has been linked to the mesen-
chymal subtype (10,37). Findings such as these have
generated interest in the development of targeted inhibi-
tors, in this case for STAT3 (38). However, the eventual
use of such therapies would necessitate knowledge of the
tumor subtype. Additionally, this novel classification
scheme and diagnostic assay can be used for designing
clinical trials to identify targeted therapies for GBM
patients (39,40)
In summary, the isoform-level classifier derived from

PIGExClass provides a quantitative and reproducible
stratification of GBM patients with prognostic signifi-
cance, with the potential to improve precision therapy
and the selection of drugs with subtype-specific efficacy
(41,42). Additionally, this approach can be applied to
other cancer types for molecular classification and identi-
fication of subgroups with better prognostic and diagnos-
tic value.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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