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A B S T R A C T

The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage
to health and global well-being. Currently, there are approximately five million confirmed cases and the novel
virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an
adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis
system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along
with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have
recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated
method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight
pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2,
SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also,
comparative analyses have been made among these models by considering several important factors such as
batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model.
The models have been validated on publicly available chest X-ray images and the best performance is obtained
by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of
more effective CNN based models for early COVID-19 detection.
1. Introduction

The outbreak of Coronavirus Disease 2019 (COVID-19) has put the
globe under tremendous pressure since early December 2019. To date,
more than five million people across the globe have been infected,
and there are approximately three lakhs confirmed death cases as
reported by the World Health Organization (WHO) [1]. It is caused
by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
and the common symptoms of COVID-19 include fever, myalgia, dry
cough, headache, sore throat, and chest pain [2,3] and therefore, it
is considered as a respiratory disease. It can take around 14 days to
show complete symptoms in the infected person. Currently, there is no
explicit treatment or drug available to heal this disease. However, the
utmost common practice used in the diagnosis of COVID-19 is called
Reverse Transcription-Polymerase Chain Reaction (RT-PCR) [4,5]. Re-
cently, it has been found that medical imaging techniques such as
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X-ray and Computed Tomography (CT) play a crucial role in testing
COVID-19 cases [4,6–8]. Since the virus generally causes infection in
the lungs, the chest radiography images (chest X-ray or CT images)
have been widely considered [9] and the interpretation of these images
is manually performed by radiologists to find some visual indicators
for COVID-19 infection. These visual indicators can be served as an
alternative method for the rapid screening of infected patients.

The conventional diagnosis process has become relatively faster but
still causes a high risk for medical staff. Moreover, it is costly and
there exists a limited number of diagnostic test kits. On the other hand,
medical imaging techniques (e.g., X-ray and CT) based screening are
relatively safe, faster, and easily accessible. Compared to CT imaging,
X-ray imaging has been extensively used for COVID-19 screening as it
requires less imaging time, lower cost, and X-ray scanners are widely
available even in rural areas [7,10]. However, the visual inspection
vailable online 19 November 2020
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of X-ray images by radiologists at a larger scale is time-consuming,
cumbersome, and may lead to inaccurate diagnosis due to lack of prior
knowledge about the virus-infected regions. Thus, there is a strong
need for design of automated methods to obtain a faster and accurate
COVID-19 diagnosis. The recent automated methods used contempo-
rary Artificial Intelligence (AI) technologies (mostly Deep Learning
(DL) algorithms) to enhance the power of X-ray imaging and aimed to
reduce the workload of radiologists [4]. The DL models, in particular,
Convolutional Neural Networks (CNN) have shown to be effective than
traditional AI methods and have been widely used for analyzing several
medical images [11–15]. Recently, CNN has been successfully applied
to detect pneumonia in chest X-ray images [16–19].

Recently, studies have been conducted using DL models related to
the diagnosis of COVID-19 through X-ray images. For instance, Ozturk
et al. [20] developed a DL network termed as DarkCovidNet based on
X-ray images for automated COVID-19 diagnosis. The model achieved
a higher accuracy of 87.02% and 98.08% for multi-class (COVID-19,
normal, and pneumonia) and two-class (COVID-19 and normal) cases.
Hemdan et al. [21] developed a COVIDX-Net model considering X-
ray images. Seven different CNN models have been used to train the
COVIDX-Net model and the model is validated on 50 X-ray images
(25 normal and 25 COVID-19 cases). Wang and Wong [22] designed
a deep CNN model referred to as COVID-Net for COVID-19 detection
which obtained a testing accuracy of 92.6%. Apostolopoulos et al. [23]
evaluated a set of existing CNN models for classification of COVID-19
cases and obtained the highest testing accuracy of 93.48% and 98.75%
for three and binary classes. Narin et al. [24] yielded testing accuracy
of 98% on a dataset of 100 images (50 normal and 50 COVID-19
cases) using the ResNet50 model. Sethy and Behera [25] obtained the
features from different pre-trained CNN architectures using chest X-ray
images. The ResNet50 coupled with Support Vector Machine (SVM)
classifier achieved the highest accuracy of 95.38% using 50 samples
(25 normal and 25 COVID-19 cases). Ucar and Korkmaz [26] suggested
a COVIDiagnosis-Net model using SqueezeNet and Bayesian optimizer
to achieve a testing accuracy of 98.3% over three-class classification
cases. Toğaçar et al. [27] designed an automated method for classi-
fication of COVID-19 cases from normal and pneumonia cases using
two DL models (MobileNetV2 and SqueezeNet) and SVM classifier. In
their study, the original dataset was reconstructed using Fuzzy Color
and Stacking techniques prior to the application of DL models. The
features obtained by the DL models were further processed using Social
Mimic Optimization (SMO) algorithm to derive efficient features and
finally SVM was applied on the combined feature set. Recently, Farooq
and Hafeez [28] built a ResNet baed CNN model named as COVID-
ResNet for classification of COVID-19 and three other cases (normal,
bacterial pneumonia and viral pneumonia). They obtained an accuracy
of 96.23% over a publicly available dataset (i.e., COVIDx); however,
only 68 COVID-19 samples were considered in this study. The major
challenge lies while applying DL models is to collect an adequate
number of samples with proper annotations for effective training. The
literature reveals that the earlier models are validated using a fewer
number of samples and the data in most cases are imbalanced. The
pre-trained models adopted for the classification of COVID-19 cases
are not fully investigated empirically. Furthermore, a comprehensive
comparative study among the pre-trained CNN models has not yet
reported. Hence, there exists a scope to perform an empirical study
of different pre-trained CNN models to obtain the best performing
model that can be used as an alternative tool for the rapid diagnosis
of COVID-19.

In this study, we proposed a DL empowered automated COVID-19
screening method using chest X-ray images. Eight most successful pre-
trained CNN models namely VGG-16, AlexNet, GoogleNet, MobileNet-
V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 have been
taken into consideration based on the concept of Transfer Learning
(TL). A comparative analysis has been made among all these models
2

by considering several factors such as batch size, learning rate, number r
of epochs, misclassification rate, and type of optimization techniques,
and finally, the best performing model has been obtained and compared
with the state-of-the-art methods. The models have been validated
using a larger number of chest X-ray images collected from covid-
chestxray-dataset [29] and ChestX-ray8 [30] datasets. To mitigate the
data scarcity and data imbalance problem, a multi-scale offline aug-
mentation technique followed by data balancing and normalization has
been adopted. A comparison of the proposed model with other state-
of-the-art methods has been made in the context of COVID-19 class
sensitivity. The suggested model for COVID-19 diagnosis is easy to
implement, follows an end to end architecture without the need for
manual feature engineering and could assist radiologists for accurate
and stable diagnosis of COVID-19 infection.

The major contributions of this proposed research can be outlined
as follows:

• The effectiveness of the eight most efficient pre-trained deep CNN
models, namely, VGG-16, Inception-V3, ResNet-34, MobileNet-
V2, AlexNet, GoogleNet, ResNet-50, and SqueezeNet have been
compared comprehensively. The impact of several hyper-
parameters such as learning rate, batch size, number of epochs,
and optimization techniques have been studied. Eventually, the
best model is derived that will be useful for the researchers to
design a more efficient CNN based solution for early detection of
COVID-19 infection.

• The data in the publicly available datasets are limited and im-
balanced. To overcome this, we performed multi-operation data
augmentation while balancing the samples for both COVID-19
and normal classes.

The remainder of the paper is structured as follows. Section 2 gives
a description of the samples used for validation of different CNN models
and describes the proposed automated model for COVID-19 detection.
The results and comparisons are presented in Section 3. The concluding
remarks are outlined in Section 4.

2. Materials and method

In this section, we present a detailed description of the proposed
methodology designed for COVID-19 detection and the data used for
the validation of the proposed model.

2.1. Dataset

To validate the proposed method, the chest X-ray images have
been collected from two different sources. The dataset (covid-chestxray-
dataset [29]) prepared by Cohen JP has been used to collect the COVID-
19 X-ray images that considers images from various open sources
and has been updated regularly. While chest X-ray images of normal
category have been collected from a GitHub repository1 which contains
500 images selected from ChestX-ray8 dataset [30] In our experiment,
203 COVID-19 frontal-view chest X-ray images have been selected from
covid-chestxray-dataset. To deal with the data imbalance problem, the
same 203 frontal-view chest X-ray images of healthy lungs have been
randomly selected from [30]. The example of chest X-ray images from
both normal and COVID-19 classes are depicted in Fig. 1. Since the
information about the actual data split was not provided in the datasets,
70% of the data was used for training and remaining 30% for testing
which resulted in 286 images (143 COVID-19 and 143 normal cases)
in the training set and 120 images (60 COVID-19 and 60 normal cases)
in the test set.

1 https://github.com/muhammedtalo/COVID-19/tree/master/X-
ay%20Image%20DataSet/No_findings

https://github.com/muhammedtalo/COVID-19/tree/master/X-ray%20Image%20DataSet/No_findings
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Fig. 1. Samples of frontal-view chest X-ray images from the dataset: (a) COVID-19 case and (b) normal case.
Fig. 2. Overview of the proposed automated COVID-19 diagnosis method using frontal-view chest X-ray images.
2.2. Proposed methodology

The proposed model for automated diagnosis of COVID-19 cases
is illustrated in Fig. 2. The model aims to classify a given chest X-
ray image into normal or COVID-19 category which includes two vital
stages: preprocessing (normalization and augmentation) and classifica-
tion using pre-trained CNN architectures. The description of each stage
is detailed in the subsequent sections.

2.2.1. Preprocessing
This section gives a detailed description of the methods used at the

preprocessing stage.
Normalization Normalization of data is an essential step and is

generally used to maintain numerical stability in the CNN architectures.
With normalization, a CNN model is likely to learn faster and the
gradient descent is more likely to be stable [31]. Therefore, in this
study, the pixel values of the input images have been normalized in
between the range 0–1. The images used in the considered datasets are
gray-scale images and the rescaling was achieved by multiplying 1/255
with the pixel values.

Data Augmentation The CNN models require a vast amount of
data for effective training and have shown to perform better on bigger
datasets [11,13]. However, the available training X-ray images in the
considered dataset is very less (i.e., 286 X-ray images). This has been
a major concern while performing analysis of medical images using DL
algorithms since it is hard to collect medical data. To handle this prob-
lem, data augmentation technique has been widely employed which
helps in expanding the number of images using a set of transformations
while preserving class labels. Augmentation also increases variability
in the images and serves as a regularizer at the dataset level [32]. The
techniques adopted in this study for augmenting the training images
are illustrated in Fig. 3.

The images were augmented using the following techniques: (1)
images were rotated by the angles of 5 degrees clockwise, (2) images
were scaled by a measure of 15%, (3) images were performed hori-
zontal flipping, and (4) images were added Gaussian noise with a zero
3

mean and variance 0.25. It is worth noting that all these techniques
have been applied over the training samples and the example results
of each technique are depicted in Fig. 4. Finally, a larger training set
containing 1430 images was obtained which is 5 times more than the
original training images.

2.2.2. COVID-19 prediction using pre-trained CNN models
The CNN models have been proved to obtain superior results in a

wide range of medical image processing applications. However, train-
ing these models from scratch would be difficult for prediction of
COVID-19 cases due to the limited availability of X-ray samples. The ap-
plication of pre-trained models using the concept of Transfer Learning
(TL) can be useful in such circumstances. In TL, the knowledge gained
by a DL model trained from a large dataset is used to solve a related task
with a comparatively smaller dataset. This helps in eliminating the need
for a large dataset and longer learning time as required by DL methods
that are trained from scratch [11,32,33]. In this study, eight pre-
trained models such as AlexNet [34], VGG-16 [35], GoogleNet [36],
MobileNet-V2 [37], SqueezeNet [38], ResNet-34 [39], ResNet-50 [39],
and Inception-V3 [40] have been used for classification of COVID-
19 from normal cases. These networks have been achieved dramatic
success in a wide range of computer vision and medical image analysis
problems and hence were chosen in this study to distinguish COVID-
19 infection from normal cases. It is worth noting here that these
models were originally trained on a large-scale labeled dataset called
ImageNet [34] and later fine-tuned over the chest X-ray images. The
last layer in these models has been removed and a new Fully Connected
(FC) layer is inserted with an output size of two that represents two
different classes (normal and COVID-19). In these resulted models, only
the final FC layer is trained, whereas other layers are initialized with
pre-trained weights. The hyperparameters play a key role for tuning
these DL models and were kept constant to derive a fair comparison.
The details of the parameter settings are discussed in Section 3.1.

The architectural overview of the pre-trained CNN models is tab-
ulated in Table 1 and the major components of each network are
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Fig. 3. Illustration of different data augmentation techniques used in this study.
Fig. 4. Sample results of data augmentation.
Table 1
Architectural descriptions of the pre-trained CNN models used in this study.

Model Layers Parameters (in million) Input layer size Output layer size

AlexNet 8 60 (224,224,3) (2,1)
VGG-16 16 138 (224,224,3) (2,1)
GoogleNet 22 5 (224,224,3) (2,1)
MobileNet-V2 53 3.4 (224,224,3) (2,1)
SqueezeNet 18 1.25 (224,224,3) (2,1)
ResNet-34 34 21.8 (224,224,3) (2,1)
ResNet-50 50 25.6 (224,224,3) (2,1)
Inception-V3 42 24 (299,299,3) (2,1)

illustrated in Fig. 5. AlexNet comprises of five convolutional layers and
three FC layers and was trained over 1.2 million images from 1000
categories [34]. ReLU activation is used in this network. The first and
second FC layers have 4096 neurons, whereas the final FC layer has
1000 neurons. In VGG-16 network, there is an increased number of
layers i.e., 13 convolutional layers and three FC layers [35]. The filters
in this network are restricted to 3 × 3 with stride and padding of
1. The model was trained over a million images of 1000 categories.
SqueezeNet executes better performance than AlexNet with compar-
atively fewer parameters [38]. It has one convolution layer at the
beginning and the end and has eight fire modules in between. ResNet-
34 is a deep residual network and is designed based on the concept
of residual learning [39]. It consists of one standalone convolution
layer and 16 residual bocks followed by one FC layer. This network
mainly overcomes the degradation problem by introducing residual
connections. ResNet-50 is another variant of ResNet that consists of
4

same number of residual block as with ResNet-34, but, the structure
of residual block is different [39]. ResNet-50 model replaces each two
layer residual block of ResNet-34 with a three layer bottleneck block
that uses 1 × 1 convolutions. GoogleNet is a 22 layer deep architecture
with 5 million parameters which is considerably than the parameters
used in AlexNet and VGG models [36]. The inception module is the
basic building block of this model that helps in processing the data
using multiple filters in parallel. Inception-V3 is a variant of Inception-
V2 and avoids representational bottlenecks [40]. It has more effective
computations by using factorization techniques and achieves a low
error rate as opposed to its earlier variants. This network contains
42 layers with an input image size of 299 × 299. MobileNet-V2 is
designed based on the ideas of MobileNet-V1 that utilize depth wise
separable convolution as efficient building blocks. But, this version
introduces a new layer module that is the inverted residual with
linear bottleneck [37]. It is a small and cost-effective architecture that
helps in achieving high performance with limited resources. It has 19
residual bottleneck layers. The main purpose of this research is to
determine the best performing DL model for COVID-19 screening that
can drive forward researchers for development of more effective AI
based solutions.

3. Experiments and results

This section presents the results obtained from several experiments.
We performed a comprehensive experimental analysis for prediction
of COVID-19 from X-ray images using eight pre-trained CNN mod-
els namely, AlexNet, VGG-16, GoogleNet, MobileNet-V2, Squeezenet,
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Fig. 5. Illustration of the major components of eight pre-trained CNN models. Convolution blocks of different colors indicate filters of different size. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
ResNet-34, ResNet-50 and Inception-V3. We analyzed the impact of
several hyperparameters associated with these models and carried out
a comparative analysis among eight CNN models. Finally, the best
performing model is obtained. We also compared the results with recent
state-of-the-art approaches.
5

3.1. Experimental setup and performance metrics used

The CNN models were evaluated using chest X-ray samples collected
from covid-chestxray-dataset [29] and ChestX-ray8 dataset [30]. The
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Table 2
Details of data splitting with and without augmentation.

Class Original dataset Augmented dataset

Train Test Train Validation Test

COVID-19 143 60 501 214 60
Normal 143 60 501 214 60

Total 286 120 1002 428 120

details of the data splitting used in our study with and without augmen-
tation are shown in Table 2. The augmented samples have been used for
training the model. After performing augmentation on training images,
1430 X-ray images have been obtained which were further divided into
a train and validation set using a splitting ratio of 70% and 30% and
thereby, resulting in 1002 training images and 428 validation images
as shown in Table 2. The validation set has been used to prevent the
model from overfitting and obtain an optimal model.

The input X-ray images were initially resized to 224 × 224 while us-
ing AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-
34, ResNet-50, and to 299 × 299 while using Inception-V3. We imple-
mented our algorithms using PyTorch toolbox. For TL, the batch size
was set as 32. Each model was trained for 50 epochs. The batch size
and number of epochs have been determined empirically. The training
was performed using Adam optimizer and the learning rate has been
empirically decided. The performance of each model was evaluated
based on different metrics like F1-score, Specificity (Spe), Sensitivity
(Sen), Precision (Pre), Accuracy (Acc), and Area Under the ROC Curve
(AUC). These metrics were computed by different parameters of the
confusion matrix such as True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN) [41,42]. The metrics are defined
as follows:

Pre =
𝑛𝑇𝑃

𝑛𝐹𝑃 + 𝑛𝑇𝑃
(1)

Sen =
𝑛𝑇𝑃

𝑛𝐹𝑁 + 𝑛𝑇𝑃
(2)

Spe =
𝑛𝑇𝑁

𝑛𝐹𝑃 + 𝑛𝑇𝑁
(3)

Acc =
𝑛𝑇𝑃 + 𝑛𝑇𝑁

𝑛𝑇𝑁 + 𝑛𝑇𝑃 + 𝑛𝐹𝑁 + 𝑛𝐹𝑃
(4)

1-score = 2 × Precision × Recall
Precision + Recall (5)

In this study, COVID-19 infections and normal cases were con-
sidered as positive and negative cases respectively. Therefore, 𝑛𝑇𝑁
and 𝑛𝑇𝑃 indicate the accurately predicted normal and COVID-19 cases
respectively, whereas 𝑛𝐹𝑁 and 𝑛𝐹𝑃 indicate the inaccurately predicted
normal and COVID-19 cases respectively.

3.2. Results

The training performance in terms of training loss, validation loss
and validation accuracy obtained by different networks at different
epochs are listed in Table 3. Fig. 6 illustrates the training and validation
loss across different iterations for all networks.

We presented the confusion matrices of all eight CNN models on the
test data in Fig. 7. It can be observed that our proposed method with
ResNet-34 and ResNet-50 could able to classify all COVID-19 infection
cases accurately. The ROC curves of all models are depicted in Fig. 8.

The detailed classification results obtained from all networks are
compared in terms of various metrics and are tabulated in Table 4.
It can be seen that the ResNet-34 model achieved the highest perfor-
mance with a precision of 96.77%, specificity of 96.67%, F1-score of
0.9836, accuracy of 98.33%, and AUC of 0.9836. Also, it is noticed
that the obtained sensitivity for COVID-19 class is remarkably higher
(i.e., 100%) for both ResNet models. AlexNet network was found to
be the second-best performer for COVID-19 prediction which obtained
a precision of 96.72%, sensitivity of 98.33%, specificity of 96.67%,
6

F1-score of 0.9752, accuracy of 97.50%, and AUC of 0.9642.
Table 3
Trainings performance of all the proposed models.

Model Epoch Train loss Valid loss Valid accuracy (%)

AlexNet

1 0.8252 0.3738 84.81
. . . . . . . . .

49 0.0143 0.0053 98.73
50 0.0232 0.0043 99.05

VGG-16

1 0.8113 0.3149 84.57
. . . . . . . . .

49 0.1759 0.1859 96.30
50 0.1724 0.1886 96.15

GoogleNet

1 0.4749 0.2396 81.35
. . . . . . . . .

49 0.0020 0.0396 98.27
50 0.0028 0.0477 98.62

MobileNet-V2

1 0.5772 0.2308 90.65
. . . . . . . . .

49 0.0102 0.0243 97.92
50 0.0057 0.0270 97.23

SqueezeNet

1 0.6943 0.2576 90.89
. . . . . . . . .

49 0.0057 0.0298 97.37
50 0.0071 0.0289 97.65

ResNet-34

1 0.8606 0.4616 77.80
. . . . . . . . .

49 0.0019 0.0245 98.68
50 0.0015 0.0270 98.13

ResNet-50

1 0.5923 0.3542 83.84
. . . . . . . . .

49 0.0050 0.0126 98.71
50 0.0035 0.0137 98.78

Inception-V3

1 1.3397 0.6440 69.83
. . . . . . . . .

49 0.3319 0.1395 94.97
50 0.3460 0.1393 95.13

Table 4
Classification results comparison of all eight CNN models.

Model Pre (%) Sen (%) Spe (%) F1-score Acc (%) AUC

ResNet-34 96.77 100.00 96.67 0.9836 98.33 0.9836
ResNet-50 95.24 100.00 95.00 0.9756 97.50 0.9731
GoogleNet 96.67 96.67 96.67 0.9667 96.67 0.9696
VGG-16 95.08 96.67 95.00 0.9587 95.83 0.9487
AlexNet 96.72 98.33 96.67 0.9752 97.50 0.9642
MobileNet-V2 98.24 93.33 98.33 0.9573 95.83 0.9506
Inception-V3 96.36 88.33 96.67 0.9217 92.50 0.9342
SqueezeNet 98.27 95.00 98.33 0.9661 96.67 0.9705

Table 5
Classification performance (in %) comparison among different optimizers.

Model Optimizer Pre (%) Sen (%) Spe (%) F1-score Acc (%)

ResNet-34

SGD 95.00 100.00 95.24 0.9740 97.50
Adadelta 95.00 93.44 94.92 0.9420 94.17
RMSProp 96.67 98.31 96.72 0.9748 97.50
Adam 96.77 100.00 96.67 0.9836 98.33

AlexNet

SGD 98.33 93.65 98.25 0.9593 95.83
Adadelta 91.67 93.22 91.80 0.9240 92.50
RMSProp 95.00 98.28 95.16 0.9661 96.67
Adam 96.72 98.33 96.67 0.9752 97.50

3.2.1. Results comparison with different optimization methods
Adam optimizer [43] has been chosen for performing the training

of all networks. To evaluate the effectiveness, its results were com-
pared with of other efficient optimization methods such as SGD [44],
Adadelta [45], and RMSProp [46]. Table 5 lists the classification results
of different optimizers for two different and best performing CNN
models such as ResNet-34 and AlexNet. The results have been computed
over the test set. It can be seen that Adam optimizer outperforms other

competitive optimization methods.
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Fig. 6. Loss convergence plot obtained for different CNN architectures: (a) ResNet-34, (b) ResNet-50, (c) GoogleNet, (d) VGG-16, (e) AlexNet, (f) MobileNet-V2, (g) Inception-V3,
and (h) SqueezeNet.



Biomedical Signal Processing and Control 64 (2021) 102365S.R. Nayak et al.
Fig. 7. Confusion matrices obtained for different CNN models: (a) ResNet-34, (b) ResNet-50, (c) GoogleNet, (d) VGG-16, (e) AlexNet, (f) MobileNet-V2, (g) Inception-V3, and (h)
SqueezeNet.
.

3.2.2. Optimal learning rate selection

To determine the optimal learning rate for all networks, a graph
has been plotted between different possible learning rates and the
validation loss as shown in Fig. 9. The best learning rate of a model
was chosen based on the minimum loss.

3.2.3. Results comparison with different batch sizes
Batch size is one of the most crucial hyper-parameters for tuning

the DL models. In this experiment, the impact of batch size on testing
accuracy is studied. Table 6 shows the test accuracy of all networks
when trained using different batch sizes such as 8, 16 and 32. It can
be seen that a higher and stable testing performance is obtained for all
network models with batch size 32 and hence, a batch size of 32 has
been chosen in the study.
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Table 6
Testing accuracy (in %) obtained by the CNN models trained with different batch sizes

Model Batch size

8 16 32

ResNet-34 98.33 98.33 98.33
ResNet-50 96.67 97.50 97.50
GoogleNet 95.83 95.83 96.67
VGG-16 96.67 95.83 95.83
AlexNet 96.67 96.67 97.50
MobileNet-V2 95.00 96.67 95.83
Inception-V3 92.50 91.67 92.50
SqueezeNet 96.67 95.83 96.67

3.2.4. Misclassification results analysis

The misclassification samples predicted by two best performing
CNN models: ResNet-34 and AlexNet are depicted in Fig. 10. The
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Table 7
Comparison with state-of-the-art deep learning COVID-19 detection approaches using chest X-ray images.

Reference Method Classes Number of X-ray samples Acc (%)

Hemdan et al. [21] COVIDX-Net COVID-19 50 90.00
Normal C: 25 and N: 25

Narin et al. [24] ResNet-50 COVID-19 100 98.00
Normal C: 50 and N: 50

Sethy and Behera [25] ResNet-50 and SVM COVID-19 50 95.38
Normal C: 25 and N: 25

Toğaçar et al. [27] SqueezeNet and MobileNetV2 COVID-19 458 98.25
SMO and SVM Normal C: 295, N: 65 and P: 98

Pneumonia
Wang and Wong [22] COVID-Net COVID-19 13800 92.60

Normal C: 183, N: – and P: –
Pneumonia

Ucar and Korkmaz [26] Bayes-SqueezeNet COVID-19 5949 98.30
Normal C: 76, N: 1583 and P: 4290
Pneumonia

Farooq and Hafeez [28] COVID-ResNet COVID-19 5941 96.23
Normal C: 68, N: –, BP: –, VP: –
Bacterial pneumonia
Viral pneumonia

Ozturk et al. [20] DarkCovidNet COVID-19 625 98.08
Normal C: 125 and N: 500
COVID-19 1125 87.02
Normal C: 125, N: 500 and P: 500
Pneumonia

Proposed method ResNet-34 COVID-19 406 98.33
Normal C: 203 and N: 203

C: COVID-19, N: Normal, P: Pneumonia, BP: Bacterial pneumonia, VP: Viral pneumonia
Table 8
COVID-19 class performance comparison with the state-of-the-art approaches.

Reference COVID-19 class sensitivity (%)

Hemdan et al. [21] 100.00
Narin et al. [24] 96.00
Sethy and Behera [25] NR
Toğaçar et al. [27] 99.32
Wang and Wong [22] 87.10
Ucar and Korkmaz [26] 100.00
Farooq and Hafeez [28] 100.00
Ozturk et al. [20] 90.65
Proposed method 100.00

NR: Not reported

misclassification was possibly occurred due to the similar imaging
features between the normal and COVID-19 infection cases.

3.3. Comparison with state-of-the-art methods

The results achieved by the best CNN model are compared with the
recently proposed DL methods for automated COVID-19 diagnosis using
chest X-ray images in Table 7. It can be observed that the proposed
method achieved higher performance than the other existing schemes.
Compared to most of the studies (Hemdan et al. [21], Narin et al. [24]
and Sethy and Behera [25]), the proposed study considered a fairly
large number of chest X-ray samples to validate the CNN models.
On the other hand, Toğaçar et al. [27], Ozturk et al. [20], Wang
and Wong [22], Ucar and Korkmaz [26] and Farooq and Hafeez [28]
used comparatively larger datasets to validate their models, but these
datasets led to the class imbalance problem and accommodated less
number of COVID-19 samples in general. But, the dataset used in the
proposed study has equal class distribution for normal and COVID-19
infection cases. In [26], the class imbalance problem was resolved using
offline augmentation technique. Also, it can be noticed that binary clas-
sification was performed in most of the studies; however, multi-class
(mostly three or four) classification was performed in [20,22,26,27]
and [28]. Only the study in [28] considered four classes such as COVID-
19, normal, bacterial pneumonia, and viral pneumonia and an accuracy
9

Fig. 8. ROC curves of eight different CNN models used in this study.

of 96.23% was achieved using a model called COVID-ResNet. However,
the major weakness of this model is that it was validated on very less
number of COVID-19 samples (i.e., 68). To summarize, the multi-class
COVID-19 classification task is more vital and challenging due to the
similar manifestation of COVID-19 with different types of pneumonia.
Therefore, the performance in these cases is comparatively lower and
is yet to be improved. For example, the accuracies obtained in [22]
and [20] are 92.60% and 87.02% respectively.

Furthermore, a performance comparison has been made between
the proposed scheme and existing methods in the context of COVID-
19 class sensitivity and the results are given in Table 8. Wang and
Wong [22] achieved the lowest COVID-19 class sensitivity of 87.10%.
It can be seen that the proposed method achieved 100% COVID-19
class sensitivity. Also, Hemdan et al. [21], Ucar and Korkmaz [26],
and Farooq and Hafeez [28] obtained similar COVID-19 class sensi-
tivity (i.e., 100%). However, the actual test set used in these studies
contained comparatively less number of COVID-19 samples.
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Fig. 9. Plot between learning rate and loss obtained for all models: (a) ResNet-34, (b) ResNet-50, (c) GoogleNet, (d) VGG-16, (e) AlexNet, (f) MobileNet-V2, (g) Inception-V3, and
(h) SqueezeNet.
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Fig. 10. Illustration of misclassification results obtained by two best networks: (a) ResNet-34 and (b) AlexNet.
3.4. Discussion

The study of chest X-ray images for accurate prediction of COVID-19
infection has been attracting remarkable attention since the release of
a dataset developed by Cohen [29]. Thereafter, several attempts have
been made to develop a reliable diagnosis model using DL techniques.
The concept of TL has been extensively used with CNN based networks.
However, most of the earlier methods were evaluated using a limited
amount of data. Further, in some cases, the data are imbalanced.

In this study, we have comprehensively evaluated the effectiveness
of the eight most effective CNN models such as AlexNet, VGG-16,
MobileNet-V2, Squeezenet, ResNet-34, and Inception-V3 for prediction
of COVID-19 infections in X-ray images. Extensive experiments were
conducted on a comparatively large dataset by considering several
factors to determine the best performing model for automated COVID-
19 screening. The COVID-19 X-ray images and normal X-ray images
were taken from two sources [29] and [30] respectively. To handle the
data imbalance issue, the same amount of data was chosen for both the
groups. The experimental results and the detailed comparative analysis
among all methods demonstrated the superiority of ResNet models. We
achieved accuracy and sensitivity of 98.33% and 100.00% with ResNet-
34 network. The model is cost-effective and can aid the radiologists
to verify their decisions. The major purpose of this research to take
faster decisions for quarantine of patients that can ultimately help in
reducing the spread of COVID-19 infection. The major weakness of the
proposed study is that it is validated using a limited amount of COVID-
19 samples. To date, there exists no large dataset publicly available as
11
this is an ongoing and new pandemic. But, in the future, we plan to
validate our approach using large datasets.

4. Conclusion

In this study, a DL based automated method was proposed for
efficient classification of COVID-19 infection cases from normal cases
using chest X-ray images. Several pre-trained CNN architectures using
the concept of TL were studied by considering several crucial factors
and their results over a set of publicly available X-ray samples were
compared. The results indicated that ResNet-34 outperformed other
competitive networks with an accuracy of 98.33% and can hence be
regarded as a potential model for prediction of COVID-19 infection.
The model can be utilized by the radiologists to verify their screening
and thereby, reducing their workload. This study also paves the way
for further development of effective deep CNN models (using residual
connections) for a more accurate diagnosis of COVID-19 infection. The
suggested DL model is developed to earn significant performance for
binary classification (COVID-19 versus normal) and a limited number
of studies have been proposed to date for multi-class classification
(COVID versus pneumonia versus normal). Hence, in future studies,
the effectiveness of the proposed model will be verified for multi-
class classification problem. Further, we plan to explore the use of
optimization algorithms along with the DL models used in this study
to design a more reliable model.
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