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Abstract: Weight bearing whole-leg radiograph (WLR) is essential to assess lower limb alignment
such as weight bearing line (WBL) ratio. The purpose of this study was to develop a deep learning
(DL) model that predicts the WBL ratio using knee standing AP alone. Total of 3997 knee AP & WLRs
were used. WBL ratio was used for labeling and analysis of prediction accuracy. The WBL ratio was
divided into seven categories (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6). After training, performance of the DL
model was evaluated. Final performance was evaluated using 386 subjects as a test set. Cumulative
score (CS) within error range 0.1 was set with showing maximum CS in the validation set (95% CI,
0.924–0.970). In the test set, mean absolute error was 0.054 (95% CI, 0.048–0.061) and CS was 0.951
(95% CI, 0.924–0.970). Developed DL algorithm could predict the WBL ratio on knee standing AP
alone with comparable accuracy as the degree primary physician can assess the alignment. It can be
the basis for developing an automated lower limb alignment assessment tool that can be used easily
and cost-effectively in primary clinics.

Keywords: knee; osteoarthritis; deep learning; alignment; weight bearing line

1. Introduction

Osteoarthritis (OA), characterized by the degeneration of joints, is the single most
common cause of disability in the elderly [1]. The disease burden of knee OA is quite high;
OA ranked the eleventh burden of disease measured by the years lost due to disability
(YLD) and knee OA accounts for approximately 85% of the burden [2,3]. OA can develop
due to wear and tear on any joint, and the joints that bear our weight such as the knee joint
are more susceptible [4]. In the knee joint, the medial compartment is the most commonly
affected, and accompanying varus malalignment that serves as an important risk factor of
development and progression of the disease with vicious cycle [5–7]. Since varus malalign-
ment increases the load on the medial compartment, the knee joint with severe medial OA
is inevitably more vulnerable to progression of varus malalignment [7–9]. Therefore, for
diagnosing and follow-up of the knee OA patients, assessment of the alignment is essential.

To assess lower limb alignment, several radiologic parameters are commonly used,
and all of which are measured using weight bearing whole-leg radiograph (WLR) such as
hip-knee-ankle angle, mechanical axis, and weight bearing line (WBL) ratio [10–12]. Among
those parameters, the WBL ratio is commonly used for the assessment of the direction of
the biomechanical force exerted through the lower limbs in the standing position [9,12]. In
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addition, the WBL ratio can be used for preoperative planning and postoperative follow-up
assessment in alignment correction surgery [10,11,13,14]. However, measuring the WBL
ratio is cumbersome in primary clinics because specialized equipment and cost-demanding
software are needed to obtain weight bearing WLR [15,16]. Therefore, there have been
several studies on whether information about alignment can be obtained with a simple
standing knee radiograph only [9,17].

Machine learning, a kind of artificial intelligence method that can learn complex
relationships or patterns from empirical data, can produce mathematical models linking
several covariates (e.g., radiologic image data in pixels) to some target variable of interest
(e.g., radiologic parameters) [18–20]. Recently, the convolutional neural network (CNN),
one of the deep learning (DL) algorithms, a subset of machine learning, has shown ground-
breaking results in image recognition and classification in the medical field [18–21]. Among
orthopedic studies related to the knee joint, many of them using CNN were for predicting
the OA stage, however, to the best of our knowledge, there has been little study for the
prediction of the alignment [21,22].

It would be generally used in primary clinics easily and cost-effectively if there is a
DL model that can automatically assess the alignment of the lower limb with a simple knee
standing AP alone to some extent. Therefore, this study was performed to assess lower
limb alignment by predicting the WBL ratio using a simple standing knee anterposterior
(AP) radiograph alone by adding DL. The purpose of this study was to develop a DL model
that predicts the WBL ratio using knee standing AP alone. The hypothesis of this study was
that developed DL model would be able to predict the WBL ratio using knee standing AP
radiograph alone up to degree that primary physicians can use in the alignment assessment
without WLRs.

2. Materials and Methods
2.1. Dataset

From March 2003 to May 2018, a total of 72,258 patients suffering from knee pain
and who subsequently underwent standing knee AP radiographs were searched by the
clinical data warehouse in our hospital. Among them, 2763 patients (4% of standing knee
AP acquisition) who acquired weight bearing WLR were included. The exclusion criteria
are as follows: (1) children with remaining growth plates; (2) previous joint replacement
surgery (hip or knee or ankle joint); (3) previous alignment correction surgery; (4) patients
with deformity due to previous trauma or congenital diseases. After excluding patients
that meet the exclusion criteria, finally 2001 patients with 3997 knee AP radiographs were
randomly selected using stratified random sampling [23]. To avoid cluster effect between
multiple radiographs in a single patient, only the initial knee AP radiograph was used.

Images whose radiographs were taken after 2017 were used as test sets in order to
split the dataset. Images whose radiographs were taken before 2017 were subjected to
stratified random sampling at a ratio of 9:1 in proportion to the distribution of WBL ratio,
and used as the training set and validation set, respectively.

2.2. WBL Ratio Measurement and Labeling

WBL ratio was measured using the weight bearing WLR of all 2001 patients with
3997 knees for labeling of the training set and analysis of prediction accuracy in the valida-
tion and test set. The WBL was drawn from the center of the femoral head to the center
of the superior articular surface of the talus. The WBL ratio was calculated as the ratio of
the crossing point of the mechanical axis, from the medial edge of the tibial plateau to the
entire width of the tibial plateau (with the medial tibial edge at 0 and the lateral tibial edge
at 1, Figure 1) [24]. The calculated WBL ratio, which is a continuous variable, was rounded
to the first decimal place and divided by 0.1 to reconstruct a total of seven categories (0, 0.1,
0.2, 0.3, 0.4, 0.5, and 0.6). Since the number of samples with a WBL ratio less than 0 or more
than 0.6 was not large enough, they were included in the 0 and 0.6 categories, respectively.
All the measurements were reviewed at 6-week intervals by two blinded independent
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observers. After then, all anonymized Digital Imaging and Communications in Medicine
(DICOM) files of standing knee AP radiograph of the enrolled patients were downloaded
from the picture archiving and communication system (PACS) and used. All radiographs
were labeled according to the previously categorized WBL ratio.

Figure 1. Radiographs showing measurement method of weight bearing line (WBL) ratio. The WBL
is detected by drawing a line from the center of the femoral head to the middle point of the proximal
talar joint surface. The WBL ratio is calculated as the horizontal distance from the WBL to the medial
edge of the tibial plateau (B), divided by the width of the tibial plateau (A), hence B/A.

2.3. Image Preprocessing

PyDicom library (version 1.3.0) was used for the preprocessing of DICOM images.
The right or left knee was cropped respectively in a knee radiograph that included both
knees. The cropped size was 36 × 20 cm2, and it was resized to 360 × 200 pixels using
bilinear interpolation. The images of the training set were applied with shift augmentation
and left and right flipping in order to improve the performance of the algorithm.

2.4. DL Algorithm

We developed a deep learning algorithm based on the TensorFlow library (version 1.12)
on a Linux operating system (Ubuntu 16.04) with CUDA/cuDNN (version 9.0 and 7.6, re-
spectively) installed. The graphic processing unit used to train the algorithm was an Nvidia
Geforce GTX Titan Xp. The CNN we designed was constructed based on the residual block
to which squeeze-and-excitation attention (SE-ResNet block) was applied [25,26]. CNN
was composed by stacking six SE-ResNet blocks, and Log-Sum-Exp pooling, full connected
layer, and Softmax activation functions were sequentially applied to the last Se-ResNet
block (Figure 2) [27]. As a result of calculating Softmax function, the probability of WBL
ratio (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) was calculated. The output of the CNN we developed
was a discrete probability distribution corresponding to seven WBL ratio intervals, and
the WBL ratio of the test image was predicted as the mean of this distribution [28]. WBL
ratio was predicted by rounding the mean of distribution to one decimal place. Xavier
initialization was applied as the initial weight of CNN [29]. During the training procedure,
the learning rate, decay rate, and decay steps were set to 0.001, 0.94, and 5000, respectively.
The mini-batch size was set to 4. Cross-entropy was considered as the objective function,
and mean loss and variance loss were added along with cross-entropy to correct ambiguity
of the WBL ratio [28]. RMSProp optimizer was used as the optimizer to minimize the
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objective function [30]. To prevent overfitting of the CNN, L2 regularization was applied
to the weights.

Figure 2. The constructed architecture of the deep learning algorithm. The algorithm was composed
by stacking 6 SE-ResNet blocks, and Log-Sum-Exp pooling, full connected layer, and Softmax
activation functions were sequentially applied the last Se-ResNet block.

Gradient-weighted class activation mapping (Grad-CAM) was used to find out which
part of the CNN predicted the WBL ratio [31]. Grad-CAM provides a coarse localization
map highlighting important regions in the image for predicting the concept of the devel-
oped CNN models [31]. Grad-CAM was calculated as a linear combination between the
gradient of the layer immediately before Log-Sum-Exp pooling and the corresponding
layer. Rectified linear unit (ReLU) activation was applied to the linear combination to
highlight the positive effects on each WBL ratio. Grad-CAM corresponding to seven WBL
ratio intervals was calculated respectively, and it was confirmed which region was sensitive
to the input image.

2.5. Statistical Analysis

All statistical analyses were performed using R statistical software, version 3.6.3 (The
R Foundation for Statistical Computing, Vienna, Austria). The data were presented as
means and standard deviations for continuous variables. One-way analysis of variance
was performed to compare the quantitative variables (i.e., age, body mass index (BMI),
and WBL ratio). Pearson chi-squared test or Fisher’s exact test were used to comparing the
qualitative variables (i.e., gender). p-value < 0.05 were considered statistically significant.

Mean absolute error (MAE) and cumulative score (CS) was used as a measure to find
out how well our CNN fits the WBL ratio [28]. MAE is defined as the mean absolute error be-
tween the estimated WBL ratio and ground-truth WBL ratio, MAE = 1

N ∑N
i=1|ŷi − yi|, with
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ŷi: estimated WBL ratio of ith data, yi: ground-truth WBL ratio of ith data. CS measures the

WBL ratio estimation accuracy given a tolerance of absolute error, CS(j) =
Ne≤j

N × 100%,
Ne≤j: number of data on which WBL grade estimation makes an absolute error no higher
than j. MAE is a measure to indicate the difference between the actual measured WBL
ratio and the WBL ratio predicted by CNN. The error range j should be determined when
calculating CS. CS means the ratio of the data whose WBL ratio predicted by CNN among
the entire dataset is within the error range j with respect to the actually measured WBL
ratio. If j is 0.0, CS has the same meaning as accuracy. When j is 0.1 and 0.0, CS was denoted
as CS (0.1) and CS (0.0) and measured for predicted WBL ratio.

3. Results

The final inclusion of baseline characteristics of patients and distribution of labels in
training, validation, and test sets is summarized in Table 1. Age, gender, and BMI were not
significantly different between each dataset. However, the WBL ratio of the test dataset
showed significantly higher than other datasets (p < 0.001). We selected the weight at which
CS (0.1) was the maximum in the validation set during training process and then applied it
to the test set. The final model evaluation was performed on 386 subjects.

Table 1. Baseline characteristics.

Training Set Validation Set Test Set Total p-Value

Age (year) 64.8 ± 9.22 64.3 ± 9.41 65.1 ± 9.02 64.8 ± 12.8 0.449
Gender (M/F) 573/2676 61/301 82/304 716/3281 0.186
BMI (kg/m2) 25.6 ± 3.17 25.7 ± 2.49 25.4 ± 2.42 25.6 ± 3.10 0.284

WBL ratio 0.32 ± 0.16 0.32 ± 0.17 0.35 ± 0.14 0.32 ± 0.16 <0.001 *
0.0 148 16 4 168
0.1 307 34 24 365
0.2 595 66 56 717
0.3 859 96 108 1063
0.4 754 84 113 951
0.5 392 44 52 488
0.6 194 22 29 245

Total 3249 362 386 3997
Values are presented as number or mean± standard deviation. WBL, weight bearing line; *, statistically significant.

In the validation image set, MAE was 0.054 (95% CI, 0.048–0.061) and CS was 0.953
(95% CI, 0.924–0.970) within error range 0.1 and the CS was 0.511 (95% CI, 0.458–0.564)
within error range 0.0. In the test set of image data, MAE was 0.054 (95% CI, 0.048–0.061)
and CS was 0.951 (95% CI, 0.924–0.970) within error range 0.1 and the CS was 0.526 (95%
CI, 0.474–0.577) within error range 0.0 (Table 2). Figure 3 displays the confusion matrices
of classification results in the validation and test set. Among the seven categories, the
WBL ratio 0.0 has the lowest accuracy with lots of samples predicted to WBL ratio 0.1. The
accuracy of the rest categories was much higher.

Table 2. Results for prediction of WBL ratio.

Validation Set Test Set

MAE 0.054 0.054

CS (0.1) 0.953
(345/362, 0.924–0.970)

0.951
(367/386, 0.924–0.970)

CS (0.0) 0.511
(185/362, 0.458–0.564)

0.526
(203/386, 0.474–0.577)

MAE: Mean Absolute Error, CS: Cumulative Score, CS (0.1) and CS (0.0) are proportions, nominator/denominator
and 95% confidence interval in the parentheses.
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Figure 3. Confusion matrices of predicted and ground truth labels of the WBL ratio. (A): validation
set, (B): test set. WBL, weight bearing line.

Gradient-Weighted Class Activation Mapping (Grad-CAM)

We applied the Grad-CAM technique to locate the most significant areas in the image
for classification (Figure 4). They are image data representing a WBL ratio of 0.0 to 0.6.
For raw image data of WBL 0.2 to 0.6, the heat map signals appear around the knee joint
area. However, in the raw image data of WBL ratio 0.0, the heat map signal appeared
on multiple points including femoral diaphysis and metaphysis, fibular head, and tibial
diaphysis. In the raw image data of the WBL ratio of 0.1, the heat map signal appeared
on the tibial diaphysis. Thus, it would be complicated for the DL algorithm to detect and
diagnose the WBL ratio of 0.0 and 0.1 that reveal severe varus malalignment.

Figure 4. Knee radiographs of each WBL ratio categories which overlaid with the heat maps obtained
by using the Grad-CAM method. WBL, weight bearing line; CAM, class activation mapping.
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4. Discussion

The principal findings of this study are as follows. The DL algorithm could interpret
the categorical analysis of the WBL ratio of the lower limb from knee standing AP alone
even it could not predict the accurate WBL ratio value. The algorithm showed an accuracy
of 95.1% as CS, MAE of 0.054. To the best of our knowledge, this is the first study for the
interpretation of knee joint alignment using deep learning. This would be meaningful
because the developed CNN model could be used as a supportive tool for the primary
physician for assessing lower limb alignment in patients with knee OA without special
equipment or software that can be only available in the advanced hospital.

The gold standard for assessing lower limb alignment is weight bearing WLR, which
can obtain visual information of hip, knee, and ankle joints [9,17]. Since the equipment
and software for WLR is far expensive than that for simple radiographs, it is not well
prepared in primary clinics [15,16]. Even in the advanced hospital, WLR was only taken 4%
of patients who have taken standing knee AP radiograph in our study. Therefore, in many
clinics that do not have such equipment and software, the alignment can only be predicted
indirectly using a simple knee radiograph [9,32]. However, Lee et al. [9] reported that the
severity of varus malalignment could be underestimated in the simple knee AP without
WLR and they concluded that it can’t replace WLR. Therefore, it was recommended that
when knee OA patients are needed to assess one’s alignment, they should visit an advanced
hospital where equips weight bearing WLR.

Several studies tried to enhance the performance and accuracy of making a diagnosis
of knee OA using DL algorithms [21,33]. However, most of the previous studies were
focused on the classification of knee joint OA according to the Kellgren-Lawrence grade
compared with the interpretation of radiologists. In addition, to the best of our knowledge,
most of those studies used image data with cropping around the knee joint. In this study,
we used the knee standing AP image without cropping around the knee joint due to make
the validation possible for use in the primary clinics. If the developed CNN model could
alternate WLR in assessing lower limb alignment, it would be helpful for knee OA who
is not well-approachable to metropolitan areas, especially for those who have a physical
disability for the disease.

The strength of this study is that it is the first study to use DL to predict lower limb
alignment. This research result will be the basis for the development of a cost-effective and
easily available alignment prediction DL model that can be used in primary clinics in the
future. This study has also several limitations. First, number of patients who have WLR
was too small compared to the number of patients who have simple knee AP radiograph.
However, as mentioned, WLR is not routinely acquired in patients with knee pain because
the equipment is expensive and difficult to access. This is more prominent in the primary
clinic. Second, it was difficult to interpret the developed CNN model because the Grad-
CAM highlighted inconsistent areas or areas outside the body, especially in the subjects
with severe varus deformity (WBL ratio 0.0 and 0.1). This is thought to be due to insufficient
number of subjects with relatively severe varus deformity. Therefore, it was assumed that
new methodological approaches that combines CNN with ML such as deformity profiles
would make Grad-CAM highlights consistent areas. Third, the number of subjects was not
enough to build the model for accurate prediction. As a result, it was possible to predict
the approximate information of the WBL ratio only within the seven categories. These
results may be useful for predicting the approximate location of the WBL ratio of patients
visiting primary clinics, but it would be difficult to use for preoperative planning and
postoperative follow-up, which require precise numbers. If a sufficient number of subjects
is secured and the algorithm is reinforced in a future study, it can be possible to use for
preoperative planning of alignment correction surgery. Fourth, the number of test sets was
small although the ratio of validation and test set was adequate.
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5. Conclusions

Developed DL algorithm could predict the WBL ratio on simple knee standing AP
alone with comparable accuracy as the degree primary physician can assess the alignment.
It can be the basis for developing an automated lower limb alignment assessment tool that
can be used easily and cost-effectively in primary clinics.
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