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Abstract
Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is

critical for vaccine development and testing. This study describes the molecular epidemiol-

ogy of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three inci-

dent infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho

from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome character-

ized and compared to two previous Kenyan studies describing 41 prevalent infections from

a blood bank survey (1999–2000) and 21 infections from a higher-risk cohort containing a

mix of incident and prevalent infections (2006). Among the 58 strains from the community

cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-

subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD,

and 3.4% A2D). This diversity and the resulting genetic distance between the observed

strains will need to be addressed when vaccine immunogens are chosen. In consideration

of current vaccine development efforts, the strains from these three studies were compared

to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding

to parts of gag, pol, and envelope), which have been developed for possible use in sub-

Saharan Africa. The sequence comparison between the observed strains and the candidate
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vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more

likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of

the bivalent vaccine are not subtype-matched to the local epidemic.

Introduction
The Kenya AIDS Response Progress Report estimates a 2012 HIV-1 prevalence of 5.6% among
men and women between the ages of 15 to 49 years old [1]. This represents a decrease from
previous rates of 6.8% in 2003, 7.6% in 2007, and 6.4% in 2008, and may be part of an overall
stabilization of HIV-1 prevalence in Kenya. The estimated number of new infections has hov-
ered around 100,000 per year for 2012 and 2013. Over 78% of transmissions are heterosexual
in nature, most commonly among young adults between 15 to 24 years old and mostly amongst
the females of that age group [2]. In 2013, the number of people estimated to be living with
HIV-1 in Kenya was approximately 1.6 million; and the epidemic is considered to be both
endemic within the general population as well as concentrated within a few high-risk groups
(MSM, FSW, and IDU’s) [1] [3] [4]. Despite the progress attributable to funding of programs
in prevention, care and treatment, it is widely acknowledged that an efficacious vaccine would
be the most cost-effective means to control the spread of HIV-1 [5] [6].

Viral diversity is considered to be one of the main challenges facing vaccine development
[7]. In the global HIV-1 epidemic, diversity within subtypes in different geographic regions
and at-risk populations has been driven by high rates of genetic mutation and recombination,
which is a confounding characteristic of retroviruses. The current molecular complexity of the
HIV-1 epidemic in Africa is the result of co-circulation of different subtypes in the same geo-
graphic area. With respect to Kenya and the surrounding regions: subtypes A1, C, and D co-
circulate in Kenya, Uganda, and Tanzania. Subtype A1 is proportionately the largest pure
subtype in Kenya with recombinants between A1 and D forming the next largest fraction of
infections [8]. In Uganda, subtypes D and A1 make substantial contributions to the epidemic
as both pure subtypes and recombinants [9] [10] [11]. In Tanzania, subtype C predominates
and co-circulates with subtypes A1, D, and recombinants between the three subtypes [12]. Sub-
type C strains are also the largest fraction in Ethiopia and South Africa [13] [14].

In an effort to characterize HIV-1 subtype diversity within a segment of Kenyan society con-
sidered to be at community-level risk of infection, the HIV and Malaria Cohort Study was con-
ducted to observe prevalent and incident infections within a community cohort of Tea
plantation workers near Kericho, Kenya. The initial phase of the study detected 401 prevalent
infections from participants infected prior to 2003 [15]. Using the multi-region hybridization
assay, it was revealed that HIV-1 subtype A represented the majority (56%) of circulating pure
subtypes within the prevalent infections of this cohort, followed by subtypes D (10%) and C
(5%); the remaining strains were recombinants (29%) [15]. The present study describes the
subsequent incident phase, wherein HIV-1 negative participants were followed from 2003–
2006 in order to identify and characterize incident and early infections [16]. Ultimately, 58
full-length HIV-1 genomes were obtained and phylogenetically compared to the full-length
sequences obtained during two previous Kenyan studies observing blood-bank samples [8] and
a higher-risk cohort [17].

Regarding vaccine development, there are five vectored vaccines currently under develop-
ment for possible use in East Africa. Four are modified Vaccinia Ankara (MVA) vectored vac-
cines designed to carry inserts that will express parts of the gag, pol, and envelope genes from
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HIV-1. Those four vaccines correspond to three regionally tailored variants [18]: MVA-KEA
(subtype A1 from Kenya), MVA-TZC (subtype C from Tanzania), MVA-CMDR (CRF01_AE
from Thailand); and the bivalent MVA-mosaic which simultaneously delivers two inserts
(from subtypes B and C) designed to provide optimal T-cell epitope coverage for a broader
global range of subtypes [19,20]. The fifth vaccine uses adenovirus type 26 (Ad26) as the vector
and contains mosaic inserts matched with the MVA-mosaic. Recent non-human primate stud-
ies have shown that an analogous MVA/Ad26 mosaic SIV vaccine (containing gag/pol/env)
was able to produce envelope antibody responses that correlate with protection from SIV
acquisition during repetitive low dose mucosal challenges [21] and Gag specific T-cell
responses that contributed to enhanced viral load control within the monkeys that eventually
became infected after several challenges [22]. Similarly, the Ad26- and MVA-vectored mosaic
vaccines intended for use in humans showed an 87–90% reduction in the relative risk of infec-
tion against neutralization resistant SHIV162P3 in a low dose intrarectal SHIV challenge
model [23]. Those results suggest that MVA or Ad26 vectored HIV-1 vaccines may have thera-
peutic as well as prophylactic applications. The following work describes the molecular epide-
miology of the incident infection strains from this study and the results of a comparative
analysis between the candidate HIV-1 vaccines and the observed strains from this study, the
blood-bank survey, and the higher-risk cohort.

Methods

Study volunteers
In June 2003, the HIV and Malaria Cohort Study among Plantation Workers and Adult
Dependents in Kericho, Kenya was initiated. This study was a closed, prospective and commu-
nity-based cohort of 2,801 volunteers. The protocol was approved by the National Ethical
Review Committee under the Kenya Medical Research Institute (KEMRI) and the Walter Reed
Army Institute of Research Institutional Review Board. Participants voluntarily provided writ-
ten, informed consent prior to enrollment in the study. Of the 2,801 volunteers, 401 were
excluded after testing seropositive for HIV-1 at the entry examination and the remaining 2,400
seronegative individuals were followed every 6 months for 3 years. Sixty-three incident infec-
tions were identified by the end of the study in December 2006. Subject recruitment, counsel-
ing, laboratory testing, study methods and results regarding HIV-1 diagnostics, prevalence,
incidence, circumcision, local laboratory reference ranges, and HIV-1 genetic diversity and epi-
demiology have been previously published [15,16,24–27]. The plasma samples collected during
this study were used as specimen source for sequencing.

Laboratory procedures
HIV-1 subtype characterization was performed by full-length genome sequencing of HIV-1
RNA extracted from plasma using the QIAamp Viral RNAMini Kit. Complementary DNA
(cDNA) was synthesized as the complete genome or as two half genomes overlapping by 1.5
kb, using ThermoScript RT (Invitrogen Corp., Carlsbad, CA) as instructed by the manufac-
turer. Either primer JL68R (5’-CTTCTTCCTGCCATAGGAGATGCCTAAG-3’) or UNINEF
-7’ (5’-GCACTCAAGGCAAGCTTTATTGAGGCTT-3’) was used as the 3’ primer to synthe-
size cDNA. With near-endpoint dilution of cDNA template, a full genome nested PCR was
performed. MSF12b/UNINEF-7’ and GAG763 (5’- TGACTAGCGGAGGCTAGAAGGAGA
GA-3’)/ TATANEF (5’-GCAGCTGCTTATATGCAGGATCTGAGGG-3’) were the primers
used for full genome amplification. PCR products were purified and sequenced by an ABI 3100
capillary sequencer. DNA sequences were assembled using Sequencher version 4.7 and aligned
with reference strains from the Los Alamos HIV-1 Database to generate a multiple sequence
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alignment. The viral strains were preliminarily genotyped using the NCBI Genotyping tool
[28].

Phylogenetic analysis
Initial alignment of viral sequences was performed using HIVAlign [29] and refined with
MEGA version 5 [30]. Neighbor-Joining trees were constructed with DIVEIN [31], using the
estimated GTR+I+G model, the sequences of interest, and reference strains to designate viral
subtypes. All sequences were subjected to BLAST (hiv.lanl.gov) analysis to search for closely
related strains and confirm the presence or absence of previously published recombinant
forms, which might indicate the spread of a known circulating recombinant form (CRF) or
establish the basis for identifying a new CRF. Informative site analysis and visual inspection
was performed to verify parent subtypes and precisely map breakpoints within the final
genome structures of inter-subtype recombinants [32,33]. In addition, breakpoint assignments
were confirmed using the jpHMM tool [34] at http://jphmm.gobics.de and HIV BLAST (hiv.
lanl.gov) analysis of sub-genome segments within the recombinants. Pairwise distances
between viral genomes or protein sequences are reported in percent and include the interquar-
tile range (IQR), which describes the scatter among the distances by denoting the 25th and 75th

percentile values. The distances and corresponding IQR were determined with the pairwise dis-
tance calculator within MEGA version 5 using the K2P model (nt) or Poisson model (aa), 0.5
gamma, pairwise deletion, and bootstrapped for 100 replications. Analysis of pairwise distances
and epitope coverage between the vaccines and the observed infection strains was conducted
using the amino acid sequences of overlapping regions common to each vaccine. Total and
Positional T-cell epitope coverage by the vaccines were calculated using the Epitope Coverage
Assessment and Positional Epitope Coverage Assessment tools within the Mosaic Vaccine
Tool Suite located at hiv.lanl.gov [35]. Statistical significance of sequence distances between the
vaccine inserts and observed strains was calculated with Prism 6 using the one-way ANOVA
with Bonferroni’s correction (for pure subtype comparison) and the Kruskal-Wallis test with
Dunn’s correction (for recombinant comparison) following-log transformation. Normal distri-
bution of the transformed datasets was confirmed for the pure subtype comparison with the
D’Agostino & Pearson omnibus and Shapiro-Wilk normality tests within Prism 6. The distri-
bution of vaccine to recombinant strain pairwise distances did not pass the normality tests
regardless of transformation strategy.

Nucleotide sequences
The 58 HIV-1 sequences observed during this community cohort incident infection study have
been submitted to GenBank and are available under accession numbers KT022360-KT022417.

Results

Study participants
Detailed epidemiological data on incident rates, socio-demographics, behavioral characteris-
tics, and sexually transmitted infections history of this cohort were described by Shaffer and
colleagues [16].

HIV-1 subtype distribution
From the 63 incident infections identified during the study period, plasma from 62 individuals
was available. Of those, 58 were characterized by full genome sequencing. The subtype distribu-
tion of the observed sequences is shown in Fig 1. We found that 25 (43.1%) of 58 full genome
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characterized samples were pure subtypes (36.2% A1, 5.2% C and 1.7% G) and 33 (56.9%) were
recombinant forms. The recombinants were between parental subtypes A1, A2, C and D.
There were 17 A1D (29.3%), 5 A1CD (8.6%), 4 A1A2D (6.9%), 3 A1C (5.2%), 2 A1A2CD
(3.4%), and 2 A2D (3.4%) recombinants. No pure subtype D strains were found in this cohort,
but over half of the observed strains (90.9% of the recombinants), contained subtype D genetic
material. Likewise, 24.2% of the recombinants contained genetic contributions from the A2
subsubtype, though no pure A2 strains were found.

Phylogenetic relationships among the pure HIV-1 strains
A Neighbor Joining tree of pure subtype strains from the current and previous studies (Fig 2),
shows that all pure subtype A1 virus identified in this incident cohort cluster with A1 reference
sequences from East Africa. Among the pure A1 community cohort incident strains,
05KE851891V4 and 06KE795643V7 appear to be a directly genetic linked transmission pair
with a pairwise distance of 0.4% (SE 0.06%). The demographic characteristics of the partici-
pants harboring those two strains show that they were a male and female living in a monoga-
mous civil union; they were from the same ethnicity, same city, and the infection in the male
was detected 6 months prior to the female. The subtype A1 sequences from this cohort are
interspersed with the prevalent subtype A1 sequences identified during our previous blood
bank survey as well as the A1 sequences identified during a more recent study (2006) involving
a higher-risk cohort (MSM and FSW) from the Mombasa and Kilifi-Coast areas [17]. The
three pure subtype C infections clustered with the single C virus identified during the prevalent
infection (blood bank) study and reference subtype C strains from Botswana, Tanzania, Ethio-
pia, and India. The single subtype G virus (mostly found inWest Africa) clustered with subtype
G strains previously identified from Kenya [36] with a bootstrap value of 100%. This was

Fig 1. Pure subtype and recombinant virus distribution observed during the incident infection study.
The proportion of pure subtype and recombinant strains for the Kericho, Kenya Tea Plantation (community
cohort) incident infection study conducted from 2003 to 2006.

doi:10.1371/journal.pone.0135124.g001
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confirmed via phylogenetic analysis using over 100 full-genome G and G-containing recombi-
nant sequences (S1 Fig).

Phylogenetic relationships and genomic structure of inter-subtype
recombinants
A phylogenetic tree of recombinant strains from the current and previous studies (Fig 3) shows
an interspersed pattern similar to that seen between the pure subtype strains, with large clusters
divided between the parent subtypes A1/A2, C, and D. Within the A1/A2 cluster, two A2D
strains (05KE493170V5 and 05KE725124V4) are closely related to the CRF16_A2D variant
and reference sequences, collectively forming a distinct sub-cluster. As expected, the two previ-
ously mentioned A2D strains have very similar genome structures (Fig 4B); however, those two
infections do not appear to have direct epidemiological linkage, as indicated by the full genome
pairwise distance of 9.7% (SE 0.3%) between the two strains. For comparison, the full genome
pairwise distance between unlinked individuals within this dataset was estimated by separately
analyzing the five sequences within the CRF16_A2D sub-cluster, which yielded a median pair-
wise distance of 10.4% (range: 8.9–11.4%), and the 20 non-linked pure A1 genomes which
yielded a median distance of 10.8% (range: 6.7–13.7%). Recombinant Breakpoint Analysis of
the 33 recombinant forms observed in this study shows a large amount of diversity. The
genome structures (Fig 4A) vary from a simple recombinant with 2 breakpoints to a very com-
plex genome with 22 breakpoints. Other than the two strains that were closely related to
CRF16_A2D, the rest of the recombinants were newly identified unique recombinant forms.
Further confirmation of the genomic structure of the observed CRF16_A2D strains was
obtained by performing additional breakpoint analysis of the entire CRF16 cluster using the
SimPlot [37] analytical suite, with care given to include subtype D reference sequences used
during the initial identification and analysis [38,39] of CRF16_A2D (S2 Fig).

Sequence distance and epitope coverage by the KEA, CMDR, TZC, and
mosaic vaccine inserts
Tables 1 and 2 show the median protein sequence distance and interquartile range (IQR)
between the protein sequences of each immunogen expressed by the MVA and Ad26 vaccine
inserts and either the pure A1 strains (Table 1) or the recombinant strains (Table 2) from the
combined incident, prevalent, and higher-risk cohorts discussed thus far (the same strains
shown in Figs 2 and 3). These distances provide a useful comparison point between the amino
acid sequences of the observed strains in this epidemic and the candidate vaccines.

Higher values for sequence distances reflect larger numbers of differences between the
sequences of the infecting strains and the vaccine under comparison. Distances between amino
acid sequences are distinct from distances between nucleotide sequences and will vary among
the different viral proteins. As a reference, Korber and colleagues [40] performed an amino
acid sequence analysis of HIV-1 and calculated an intra-subtype difference of 17% (range:
4–30%) within Env and 8% (range: 2–15%) within Gag in subtypes A and B; and they found an
inter-subtype difference of 25% (range: 20–36%) in Env and 17% (range: 15–22%) in Gag
between subtypes A and B.

Fig 2. Phylogenetic comparison of pure HIV-1 subtype sequences retrieved from prevalent and incident infections. Full genome sequences from
prevalent HIV-1 subtype A1, C, D and G strains previously identified in 1999–2000 (green), a higher-risk (MSM and FSW) cohort identified in 2006 (blue), and
the community cohort incident infections identified during this study in 2003–2006 (red), including relevant reference sequences (black) were used to
construct a neighbor-joining tree. Bootstrap values at relevant nodes are shown. The scale bar indicates a genetic distance of 10%. Incident infection study
participants 05KE851891V4 and 06KE795643V7 (*) are likely linked: pairwise genetic distance of 0.4% (SE 0.06%).

doi:10.1371/journal.pone.0135124.g002
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For the purpose of these distance comparisons, the mosaic vaccine inserts are treated sepa-
rately; however in application, the mosaic 1 and 2 inserts would be administered simulta-
neously (1:1 ratio) within the bivalent mosaic vaccine. Among the pure A1 infections, the
regionally matched KEA insert is significantly closer to Gag, Pol, and Env from the infecting
strains as compared to the other vaccine inserts. While among the recombinant infections,
only the Env from the KEA and mosaic 1 inserts show closer similarity to the infecting strains.

Since the mosaic vaccine was designed to optimize the generation of T-cell epitopes, a com-
parison of the proportion of nonamers present in the infecting strains and overlapped by each
vaccine was performed. The proportional coverage shown in Fig 5 represents the per-sequence
average of nonamers present in the observed strains that were also present in the vaccine insert
or inserts (as in the case of the bivalent mosaic vaccine). Further positional information is pro-
vided in Figures A-I in S1 File which include exact match nonamer positions, sequence logos
[41] of the strain groups, and sequence positions of known CD8 epitopes for the viral protein
regions used in these comparisons. By design [35], the mosaic vaccine (bivalent, containing
subtypes B and C inserts) provides comparatively good nonamer coverage even within the
recombinants; and while the Kenyan KEA insert provides better coverage among the pure
strains, that advantage is lost once heterogeneity is introduced by the recombinants.

Discussion
This study provides full genome HIV-1 sequencing from 58 incident infections in a Kenyan tea
plantation community cohort from Kericho during 2003–2006. It is complementary to studies
of prevalent infections among HIV-1 positive blood donations in southern Kenya (1999–2000)
[8] and a combination of incident and prevalent infections in a higher-risk cohort from the
Mombasa and Kilifi-Coast areas in 2006 [17]. Furthermore, the observed HIV-1 strains were
compared to several candidate HIV-1 vaccine inserts in order to evaluate the potential suitabil-
ity of those vaccines in East Africa.

In the prevalent infection (blood-bank) study, 60.9% of the strains were pure subtypes (23
A1, 1 C, and 1 D), while in the higher-risk cohort, 58.3% of the incident strains were pure sub-
types (all A1). Here in this study, it was found that 43.1% of the strains from incident infections
among members of a tea plantation cohort in Kenya’s southern Rift Valley are pure subtypes
(21 A1, 3 C, and 1 G). Upon phylogenetic analysis, the interspersed pattern of sequences from
each of these cohorts (see Figs 2 and 3), coupled with a sample collection timeframe spanning
1999 to 2006, suggests regional circulation of HIV-1 in Kenya and its immediate neighbors
with no new introduction of A1 virus strains into the area. In contrast, the three pure subtype
C incident infections, rare in Kenya, clustered with the single C virus found during the preva-
lent infection (blood bank) study in addition to subtype C strains from other regions
(Botswana, Tanzania, Ethiopia, and India). This suggests the possibility that these C strains
were introduced from outside of the Kenya region.

One of the more striking features of this epidemic is the proportion and complexity of inter-
subtype recombinants. In the prevalent infection study (blood-bank from southern Kenya),
recombinants constituted 38.8% of the strains; with A1D representing the majority at 14.6%,
while A2D and A1C contributed equal proportions at 7.3% each, with the remaining strains
consisting of A1A2D, A1CD, A1G and CD recombinants. Similarly, the higher-risk cohort

Fig 3. Phylogenetic tree containing the recombinants from the incident, higher-risk, and prevalent HIV-1 infection studies. The phylogenetic
relationships between incident recombinant strains from the community cohort (red), higher-risk cohort recombinant strains (blue), and prevalent infection
recombinant strains (green) were constructed using the full-length genomes and appropriate pure subtype and recombinant reference sequences. Bootstrap
values at relevant nodes are shown. The scale bar indicates a genetic distance of 10%.

doi:10.1371/journal.pone.0135124.g003
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Fig 4. Genome structures of 33 HIV-1 recombinant strains identified during this community cohort incident infection study. (a) The incident
recombinant genomes are depicted in relation to the HXB2 reference strain. Each colored region represents the predicted parent subtype based on the
results from Recombinant Breakpoint Analysis; subtype A1 is shown in red, A2 in pink, C in yellow, and D in blue. (b) The two A2D strains with similar
structures are shown compared to the CRF16_A2D reference breakpoints from hiv.lanl.gov. The A2D strains do appear to be CRF16_A2D infections, but are
not directly linked (see text).

doi:10.1371/journal.pone.0135124.g004
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(fromMombasa and Kilifi-Coast) had incident infections comprised of 41.7% inter-subtype
recombinants, with A1 being the major parent subtype followed by subtypes D, C, and A2. In
the incident infections of the current community cohort study, the proportion of recombinant
strains was 56.9%. Once again, A1D recombinants represent the majority at 29.3%, followed by
A1CD 8.6%, A1A2D 6.9%, and A1C at 5.2%.

In each of these studies, only strains related to CRF16_A2D or CRF21_A2D possessed geno-
mic structures or phylogenetic relationships that would identify them as the progeny of known
recombinant strains, the rest were unique recombinant forms (URF). Using currently available
sequences, none of the URFs appeared to belong to a parental lineage of recombinants such as
would be expected in the case of new infections involving recombinant transmission. Addition-
ally, although the majority of the recombinants were A1D, there were no pure D strains
observed within the incident infections of the community or higher-risk cohort studies; and
only one pure D strain was observed in the blood-bank study. The apparent absence of parent
strains containing subtype D, may be due to higher pathogenicity of subtype D infections
[42,43], transmission events involving partners not sampled within these cohorts, or the inherit
limitations of sample size. Nonetheless, the overall proportion of recombinant strains is sub-
stantial within these cohorts: blood-bank survey (38.8%), higher-risk cohort (41.7%), and com-
munity cohort (56.9%); which suggests that the process of HIV-1 recombination is ongoing
within the Kenyan epidemic and may be leading to an epidemic dominated by unique
recombinants.

The identification of the recombinants and the parent subtypes observed in these studies are
in general agreement with previously published subtyping surveys of the Kenyan HIV-1 epi-
demic [44] [45] [46] [47] [15]. Any differences may be due to the quantitation of subtype D
proportions by use of partial genome sequencing, which can misclassify recombinants as pure
strains. Since subtype D recombinants are high in number, it is expected that some of them
could be classified as D strains via partial genome sequencing. Regardless, the variety of

Table 1. Median distance between vaccine inserts and observed pure A1 strains.

Candidate vaccine subtype Gag % difference (IQR) Pol % difference (IQR) Env % difference (IQR)

KEA A1 11.6% (10.2–12.4%)a 5.4% (4.9–6.0%)a 17.5% (16.0–19.9%)a

CMDR CRF01_AE 13.3% (12.4–14.5%) 8.4% (7.8–9.0%) 31.3% (29.7–33.0%)

TZC C 18.8% (18.1–20.0%) 9.9% (9.3–10.8%) 33.0% (31.4–34.7%)

mosaic 1 B 19.3% (18.2–20.0%) 9.9% (9.3–10.8%) 26.8% (24.9–28.0%)

mosaic 2 C 18.7% (18.0–20.1%) 9.9% (8.9–10.5%) 29.2% (27.4–30.6%)

a Significantly closer sequence similarity vs. the other inserts listed (p < .01).

doi:10.1371/journal.pone.0135124.t001

Table 2. Median distance between vaccine inserts and observed recombinant strains.

Candidate vaccine subtype Gag % difference (IQR) Pol % difference (IQR) Env % difference (IQR)

KEA A1 16.1% (12.9–18.3%) 9.9% (6.6–12.0%) 21.8% (18.2–27.6%)b

CMDR CRF01_AE 14.7% (13.3–16.5%) 10.2% (8.4–11.0%) 32.0% (30.6–34.9%)

TZC C 17.5% (15.7–19.0%) 9.0% (8.2–9.9%) 33.5% (31.2–35.0%)

mosaic 1 B 16.3% (14.0–18.8%) 9.9% (9.0–10.4%) 26.0% (24.2–27.8%)b

mosaic 2 C 16.1% (14.9–18.0%) 8.7% (8.0–9.6%) 29.6% (27.4–32.1%)

b Both Env inserts have significantly closer sequence similarity to the recombinants when compared to CMDR, TZC, or mosaic 2 (p < .01); however, KEA

is not significantly closer to the recombinants than the mosaic 1 insert.

doi:10.1371/journal.pone.0135124.t002
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recombinants and parent subtypes detected within each of these studies corroborates the over-
all strain composition observed during our full genome surveys.

With respect to vaccine development, viral genetic diversity within a prospective vaccine
cohort can be regarded as an obstacle wherein epitopes of interest are made more difficult to
target by vaccine-induced sequence specific immune responses. As such, the one Ad26- and
four MVA- vectored vaccines under development for use in sub-Saharan Africa represent an
interesting and useful evaluation point. While the KEA vaccine insert (isolated from a Kenyan
infected with subtype A1 virus) would be the expected choice for vaccine deployment in

Fig 5. Vaccine coverage of potential T-cell epitopes from the observed infections. Inserts from the candidate vaccines were analyzed for the proportion
of nonamers that each of their respective immunogens covered within the infecting strains from the incident, higher-risk, and prevalent infection studies. For
each immunogen, the epitope coverage comparisons were divided into the same pure and recombinant strain subsets used to generate Tables 1 and 2. The
colored sections of each bar denote the proportion of coverage attributable to a perfect match (black) or mismatched (blue to gray) nonamer as indicted by
the figure legend.

doi:10.1371/journal.pone.0135124.g005
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Kenya, the heterogeneity within the recombinants largely nullifies the advantage conferred by
subtype matching (Tables 1 and 2). In terms of sequence similarity to the recombinants
(Table 2), both the KEA and mosaic-1 inserts produce Env that is closer to the recombinant
strains than the Env from the CMDR, TZC, or mosaic-2 inserts; however, the KEA Env is not
significantly closer to the recombinants when compared to the mosaic-1 Env. In that regard,
simultaneous delivery of two different subtype vaccines (where one of them is a regional
match) or a combination of subtype matched and mosaic vaccines, will be more likely to pro-
duce a robust immune response than a single subtype vaccine. Though it is unknown whether
a combination of vectored isolate vaccines or mosaic vaccines would be efficacious in human
populations, the genetic distances between the observed sequences and these vaccines are con-
sistent with the distances reported in the successful SHIV study by Barouch et al [23]. Addi-
tionally, MVA vectored SIV vaccine studies using heterologous vaccine and challenge strains
have shown that protective antibody responses to Env do not necessarily require matching of
the vaccine immunogens to the eventual challenge [21]. In consideration of cellular responses,
individually, neither of the mosaic inserts (subtypes B and C) provide remarkably greater epi-
tope coverage than the CMDR or TZC inserts. However, in unison the bivalency of the mosaic
design produces compensatory epitope coverage that allows for enhanced performance in both
pure and recombinant strains, Fig 5.

As indicated by the growing list of recombinant forms in the Los Alamos HIV-1 database
and the present data, the Kenyan epidemic will continue to evolve and produce a variety of
unique recombinant strains. This diversity has the potential to reduce vaccine effectiveness.
Without foreknowledge of the emerging recombinant strains, the application of a multivalent
approach using both regionally tailored and global mosaic strategies may offer the greatest
opportunity for a vaccine-based intervention in heterogeneous epidemics, such as the one
described here. Regardless of the nature of the vaccine chosen, the genetic diversity within the
Kenyan epidemic should prove to be a formidable challenge and will likely yield valuable infor-
mation for use in the next generation of vaccines.

Supporting Information
S1 Fig. Extensive subtype G phylogenetic tree. Phylogenetic analysis of sample
06KE275457V6 (in red) and over 100 full-length subtype G and G recombinant sequences
from the Los Alamos HIV-1 database and our own lab database; confirming the phylogenetic
relationship of the lone G strain from the current incident cohort to Kenyan G strains identi-
fied during previous studies. The magnified subset shows the relevant bootstrap values. The
scale bar indicates a genetic distance of 10%.
(PDF)

S2 Fig. Genomic structure from Simplot analysis of CRF16_A2D cluster. The genomic
structures of the two observed and three reference CRF16_A2D strains were calculated using a
300bp window and the three full-length subtype A2 sequences from the Los Alamos HIV data-
base: 94CY017_41.AF286237, 97CDKTB48.AF286238, 01CM_1445MV.GU201516 and three
full-length subtype D reference sequences: 94UG114.U88824, Z2Z6_Z2_CDC_Z34.M22639,
NDK.M27323 used during initial characterization of the circulating recombinant form
CRF16_A2D [38,39].
(PDF)

S1 File. Proportional coverage by position for each vaccine and WebLogo graphs, CD8 epi-
tope positions, and vaccine sequence alignments for Gag, Pol, and Env. Figures A-C are
graph overlays showing the position of exact match nonamers from overlapping portions of
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each vaccine that are present in the pure (blue crossbars) or recombinant (solid red) strains for
the respective protein regions. These are the same strain groups used for the Proportional Cov-
erage calculations described in the main text. The amino acid alignment positions shown on
the x-axis correspond to HXB2 positions: 1–500 for Gag, 156–595 for Pol (RT), and 1–680 for
Env. Figures D-I present the HXB2 referenced sequence logo [41] for the same strain groups
used in the Proportional Coverage and Positional Coverage calculations as well as the HXB2
referenced CD8 epitopes for those regions. The CD8 T-cell epitopes shown are current as of
2015-06-04 (hiv.lanl.gov/content/immunology) and have been observed in HIV-1 infected
individuals. These high-resolution graphs were generated from the alignment used for the
Positional Coverage graphs and will allow the reader to magnify and view fine details. The
sequence shown on the epitope map portion of each graph, corresponds to the HXB2 reference
sequence K03455. The CTL_CD8 epitope spreadsheet details the location, species, sequence,
and HLA type (if known) for each of the epitopes shown.
(ZIP)
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