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A virtual evaluation of options 
for managing risk of hospital 
congestion with minimum 
intervention
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Hospital congestion is a common problem for the healthcare sector. However, existing approaches 
including hospital resource optimization and process improvement might lead to huge cost of human 
and physical structure changes. This study evaluated less disruptive interventions based on a hospital 
simulation model and offer objective reasoning to support hospital management decisions. This 
study tested a congestion prevention method that estimates hospital congestion risk level (R), and 
activates minimum intervention when R is above certain threshold, using a virtual hospital created 
by simulation modelling. The results indicated that applying a less disruptive intervention is often 
enough, and more cost effective, to reduce the risk level of hospital congestion. Moreover, the virtual 
implementation approach enabled testing of the method at a more detailed level, thereby revealed 
interesting findings difficult to achieve theoretically, such as discharging extra two medical inpatients, 
rather than surgical inpatients, a day earlier on days when R is above the threshold, would bring more 
benefits in terms of congestion reduction for the hospital.

Abbreviations
ED	� Emergency Department
HESMAD	� Hospital Event Simulation Model: Arrivals to Discharge
SI	� Supplementary Information

Hospital congestion is becoming a major concern in this modern era due to increasing patient demands. More 
hospital congestion episodes accompanied by longer waiting times and queuing length have been associated 
with a greater risk of hospital-acquired infections, public complaints and, possibly, negative impacts on hospital 
staff mental health1,2. Hence, there is an urgent need to find effective ways to reduce overcrowding and conges-
tion in hospitals.

Recent studies have sought solutions from various perspectives and with various approaches (Table 1). A 
considerable amount of attention has been directed to explore solutions for crowding within some parts of the 
hospital, particularly the Emergency Department (ED), aiming to reduce access block through improving ED 
performance3–9,11–13. However, to deal with more general, hospital-wide problems, instead of focusing on a par-
ticular department, examining the hospital as a connected whole based on real data is necessary. This is because 
the complicated interactions among these parts must be taken into consideration14.

In terms of methodology, there have been many studies attempting to reduce hospital3–13 congestion and 
improve the efficiency of hospital operation using simulation-based approach. This approach allows researchers 
to digitally represent and capture the variability, uncertainty, and complexity of a dynamic system14. Compared 
to analytical methods, simulation-based approach is more suitable for examining system-wide consequences of 
changes in one or more areas of the hospital in a risk-free environment4.

In terms of hospital improvement strategies, many studies focused on optimizing human and physical 
resources utilization or using additional resources in order to improve hospital performance3–11. Other studies 
introduced process improvement strategies to address hospital overcrowding issues. For example, a so-called 
fast track strategy that includes discharging low-acuity patient quickly while improving the schedule of patients’ 
discharge and establishing a fast-track service line was proposed to accelerate hospital process15.
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Definitely, resource optimization and process improvement are resultful ways to reduce hospital congestion. 
However, from a feasibility viewpoint, it is potentially difficult to implement these approaches because they tend 
to involve large human and physical structure changes. Naturally, achieving better results through applying a 
less disruptive intervention (smaller adjustments leading to satisfactory outcomes) would be managerially more 
desirable. To our knowledge, research on identifying such less disruptive interventions is still lacking. This study 
hopes to fill this gap in the literature with more feasible interventions to control hospital crowding.

This paper introduces a congestion prevention method that aims to manage the risk of hospital congestion 
with less disruptive interventions. Through virtual implementation of this method using a simulation model, 
this study demonstrates, with highly detailed simulation results, the effectiveness of both the prevention method 
and the virtual implementation approach. In the rest of this paper, “Methods” section mainly introduces the 
congestion prevention method and simulation-based evaluation. “Results” section exhibits the simulation results 
so that the solutions can be compared and considered for real-world disposition. Discussions and conclusions 
are presented in “Discussion” and “Conclusion” sections.

Methods
A hospital congestion prevention method.  This section introduces a research-based congestion pre-
vention method based on a concept named “hospital’s instability wedges”16. The concept demonstrates that, 
theoretically, the risk of patient flow congestion can be calculated on a daily basis and prevention can be achieved 
by activating interventions that involve a very small number of patients  when the risk level is deemed high. This 
leads to a potentially effective method for real-time congestion prevention.

The typical scenario in a hospital is that, on a daily basis, patients arrive at the ED via ambulance or self-
presentation. Some patients are discharged from the ED and some  admitted. Apart from ED, inpatients are 
discharged after a period of stay, and a variable number of planned elective admissions occur. These processes 
compete for limited resources and congestion episodes occur when bottlenecks appear. The method first estimates 
the risk of congestion R at a set time every day, using hospital occupancy, predicted patients’ admission and dis-
charge numbers based on the day-by-day variation patterns derived from the hospital’s history data, and activates 
minimum intervention when the risk R is above a certain level. The risk R(C) represents the ratio that the current 
day’s midnight occupancy (Mt) exceeds a specified threshold C. The threshold C was set as the hospital’s normal 
bed capacity in this study. The probability of such exceedance R(C) was calculated by the following equation:

In order to control the risk of hospital congestion, this formulation has been refined to become more imple-
mentable and controllable for decision-makers. The following equation was considered at the beginning:

where Nt indicates the new arrivals at the hospital ED on the day. Et is defined as the elective patients 
scheduled to stay in the hospital at least one night. Mt−1 is the midnight occupancy of the previous day. 
ηt ∈ (0, 1],ωt ∈ (0, 1], vt ∈ (0, 1] denotes the admission rate of the new arrivals, cancelled elective patients and 
inpatients discharged, respectively.

The following task is to investigate the dependence of the congestion risk R(C) on ηt ,ωtandvt which are 
treated as control parameters. Due to the fact that Nt is the only random variable on the right-hand side of Eq. (2),  
Eq. (1) can be refined as follows:

(1)R(C) ≈ P(Mt > C)

(2)Mt = ηtNt + Et(1− ωt)+Mt−1(1− vt)

(3)
R(C) = P(Mt > C)

= P

(

Nt > [C −Mt−1(1− νt)− Et(1− ωt)]
1

ηt

)

Table 1.   A summary and comparative review of the major works in the literature. ED, emergency department.

Category References Tools Objectives Study areas

Resource adjustment

Brenner et al.3 Simulation Finding an optimal number of resources ED

Zeinali et al.4 Simulation-based metamodeling Resources planning ED

Ghanes et al.5 Simulation Optimizing human resource staffing level ED

Chen et al.6 Multi-objective simulation optimization Resource optimization to reduce hospital congestion ED

Hajjarsaraei et al.7 Simulation Human resource planning ED

Diefenbach et al.8 Simulation Analyzing the effect of bed configuration ED

Paul et al.9 Simulation Optimizing bed utilization including additional resources ED

Hejazi10 Simulation Resource optimization and planning Whole hospital

Process improvement

Kaushal et al.11 Simulation Evaluation of fast track (additional non-urgent areas) to reduce conges-
tion ED

Hussein et al.12 Simulation /Six Sigma Changing utilization technology of medical equipment or introducing 
new equipment ED

Liu et al.13 Simulation-based optimization Improving the efficiency of ED unit ED
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As a result, R(C) became the simplified notation R(C, ηt ,ωt , vt) which is composed of the control parameters. 
Nt fits the normal distribution (See Histogram of Nt in Supporting Information SI-Fig. 1).

Equation (3) can be refined again based on the simple restriction ωt = 0:

where xt := [C −Mt−1(1− νt)− Et ]/ηt , µt and σ 2
t  are the mean and variance of the population of arrivals in 

ED on the selected day of the week and �(x;µ, σ 2) denotes the probability distribution function of the normally 
distributed random variable X ∼ N(µ, σ 2) . Consequently, R(C) can be easily calculated based on the equation 
above.

This method allows decision-makers to change the control parameters to prevent hospital congestion when 
the congestion risk R(C) is high. That is to say, if we adjust the threshold C or the admission rate ηt or discharge 
rate of patients vt , R(C) will be changed accordingly. The method can be applied to different hospitals. In this 
study, data from a large Australia metropolitan hospital was collected for testing the method. An example of R(C) 
change with different ηt and vt of the hospital was showed in SI-Fig. 2. It demonstrated that smaller changes in 
the numbers of admitted or discharged patients exhibit more effective and sensitive impacts on R(C).

We assumed that hospital managers check the congestion risk using this method in the morning and adjust 
the plan for the day. If the risk rate is extraordinarily high in the morning, the probability of congestion occur-
rence might also be high during the day. Therefore, managers will plan to make an adjustment to the bed capacity 
or discharge a few patients to weaken this discordant possibility. Relying on the above method using historical 
patient flow data allows us to understand the change of congestion probability R(C) when interventions are 
adopted. However, it is impossible to demonstrate the expected, but more intuitive and quantitative, impacts on 
congestion episodes only by the method. Moreover, when managers attempt to manipulate different numbers of 
patients for congestion prevention, other issues might emerge including the type of patients or department that 
should be the focus for the intervention(s). In other words, from a managerial perspective, the type of patients 
affected by an intervention can impact on de-congestion effectiveness. Smaller adjustments affecting several dif-
ferent types of patients may be more effective and sensitive in reducing congestion risk. To address these issues, 
simulation modelling carries an advantage due to the fact that it provides a risk-free platform to help stakehold-
ers access changes in operations, managerial policies and examine different alternatives. Through implementing 
the method and designing more specific indicators for hospital congestion based on the simulation model, the 
impacts of less disruptive interventions on congestion prevention were investigated explicitly and in depth.

Simulation‑based evaluation.  Aiming to provide more accessible service is not a simple task for the 
healthcare system because hospitals are complex and dynamic. To achieve hospital service improvement, a com-
prehensive modeling of the complex system named Hospital Event Simulation Model: Arrivals to Discharge 
(HESMAD) has been developed by the tool named Anylogic in order to imitate the dynamic behaviours neces-
sary for, and consequent to, each theoretical intervention17. The structure of HESAMD was showed in SI-Fig. 3. 
The model was constructed to simulate behaviours of the hospital as realistically as possible due to connecting 
to 2 years’ real patient flow data (2014–2016) of the large Australia metropolitan hospital. Definitely, it can be 
applied to different hospitals if patient flow data are provided. It contains several components representing emer-
gency admissions, elective admissions, inpatients and discharge. The whole process and modules of HESMAD 
were described in SI4.

In order to clarify the decongestion effects of different strategies more thoroughly, the less disruptive interven-
tion ideas from the method were transcribed into scenarios for investigating in the simulation model (Fig. 1).

We assumed that hospital managers check the congestion risk using the method in the morning and adjust the 
plan for the day. When R(C) exceeded 0.85, managers could add beds or cancel operations on a few patients for 
that particular day. In the simulation platform, the same process was realized. The model calculates R(C) in 8:00 
am every day. If R(C) > 0.85, the intervention is executed for that day. All parameters used for R(C) calculation 
are generated by the simulation model on a daily basis. Furthermore, a color-coding system was also adopted 
for each scenario evaluation before, during and after hospital overcrowding.

The threshold was defined as the hospital capacity in the risk prevention method in this study. In this large 
tertiary hospital, there are 330 base beds including 170 medical beds, 130 surgical beds and 30 AMU beds in 
separate inpatient departments. 8 flexible beds can be arranged when the hospital is nearing exhaustion of its 
finite capacity. Using the congestion risk prediction method, the impacts of adding flexible beds on congestion 
prevention (scenario 1–4) were estimated by the HESMAD model. In order to evaluate the effects of less disrup-
tive interventions, smaller adjustments were always promoted at the beginning. Furthermore, the department to 
which the flexible beds are added (scenario 5, 6) can influence decongestion efficiency was investigated (Table 2).

In the simulation platform, the discharging intervention was transcribed into different scenarios to test its 
effects on hospital congestion. However, the type of patients which is more likely to impact on congestion could 
be an issue. Discharging operations without considering patient types from the method is not sufficient. There-
fore, interventions on different types of patients were executed by the simulation model on a daily basis but only 
when the congestion risk rate reaches or exceeds 0.85 (scenario 10–21) at 8 am each day (Table 2). In practice, 
low-acuity patients (e.g., patients with fracture or with chronic disease) are always selected for early discharge. 
Also, from an ethical aspect, those patients who have recently started treatment are not considered for discharge. 
In order to realize the patients’ selection for discharge by the simulation model, the model selected patients 
who have 1 day left of their hospital stay and whose triage score ≥ 4 for discharging (SI--Tables 1, 2: Triage). The 
simulation model generates patients who were assigned all information including Length of stay, triage number 
and personal information related to the whole treatment process, therefore, discharging low-acuity patients is 

(4)R(C) = r(C, ηt , 0, νt) = P(Nt > xt) = 1−�
(

xt;µt , σ
2
t

)
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Figure 1.   Process of the simulation-based evaluation.

Table 2.   Threshold and discharge scenarios.

Scenario No Threshold Description

Threshold scenarios

0 330 Base case (No flex beds added)

1 332 2 flexible beds added (1 bed for medical 1 bed for surgical department)

2 334 4 flexible beds added (2 beds for medical 2 beds for surgical department)

3 336 6 flexible beds added (3 beds for medical 3 beds for surgical department)

4 338 8 flexible beds added (4 beds for medical 4 beds for surgical department)

5 338 8 flex beds for medical department

6 338 8 flex beds for surgical department

Discharge scenarios

7–10 330 Discharging 2, 4, 6, 8 inpatients

11–14 330 Discharging 2,4,6,8 medical patients

15–18 330 Discharging2, 4, 6, 8 surgical patients

19–20 330 Discharging 2, 4 long stay patients (LOS > 21 days)

Admission scenarios

21–24 330 Remove 2, 4, 6, 8 patients planned to be admitted
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easily realized. Since this study concentrates on the congestion prevention of differing inpatient departments, 
the model was adjusted for inpatients including medical, surgical and long stay patients (SI-Table 2).

Controlling admission rate was also tested by the simulation model for congestion prevention. In ED, 2–8 
patients who are planned to be admitted were removed when R(C) reaches 0.85.

A color-coding system, similar to traffic signals used to trace hospital overcrowding status, was adopted into 
the HESMAD on a daily basis.

•	 Green day means that the hospital has at least 10% of total inpatient beds available.
•	 Amber day means that the hospital has between 3 and 10% of total inpatient beds available.
•	 Red day means that the hospital has less than 3% of total inpatient beds available.

The accumulated numbers of green, amber and red days were collected finally to indicate the congestion 
situation. Also, the midnight hospital occupancy, R(C), and the number of patients affected by each intervention 
were recorded every day for each simulation-based evaluation. Each simulation runs for 2 years. Results of the 
second year were collected for analysis to minimize the effect of the ‘warm-up’ period of the first year. In addi-
tion, each scenario was replicated 20 times under the same condition to obtain an average behaviour that would 
allow meaningful comparison of the results from different intervention scenarios. Minimizing the number of 
red days was the goal for different interventions. The reduction in the number of red days per affected patient 
was also calculated to estimate the efficiency of each scenario whereby the efficacy of each intervention is related 
to its disruption to patient care. The result comparisons are exhibited in Table 3.

Access to anonymised patient flow data used in this study was granted through an ethics approval process 
governed by Research Governance & Ethics-Office for Research, Southern Adelaide Local Health Network who 
waived informed consent of participants. We confirm that all methods were carried out in accordance with 
relevant guidelines and regulations.

Results
The base case scenario in Table 3 is the baseline for the result comparisons of different interventions. The results 
of scenario 1–6 indicated that the occupancy increased slightly when the total bed capacity increased. The number 
of red days decreased from 79.95 to 53.1 when 2 flexible beds were added to inpatient departments (scenario 
1) compared to base case scenario. The more flexible beds were added, the greater the reduction in red days. By 
contrast, the number of green days changed from 33.45 to 107.35 days when elevated threshold interventions 
were executed (scenario 1–4). The number of amber days decreased accordingly while implementing scenario 

Table 3.   The results of scenarios (20 replications).

Scenario No Midnight occupancy
Mean standard 
deviation Numbers of red days

Numbers of amber 
days

Numbers of green 
days Patients affected

Red days reduction 
per affected patient

0 311.8 4.16 79.95 250.6 33.45 – –

1 308.21 4.53 53.1 232.2 79.7 – –

2 310.22 4.71 45.45 240 79.55 – –

3 310.75 4.63 44.6 229.9 90.5 – –

4 311.26 4.33 37.2 220.45 107.35 – –

5 308.23 4.75 23.24 204.95 136.81 – –

6 313.51 4.23 50.25 231.1 83.65 – –

7 310.38 4.64 67.45 252.75 43.8 225.6 0.055

8 310.18 4.32 63.4 255.35 45.25 446.4 0.037

9 309.87 4.88 60.7 256.15 47.15 597.6 0.032

10 308.57 4.23 54.75 260.8 48.45 816 0.031

11 306.64 4.41 52.21 234.42 77.37 278.4 0.100

12 305.77 4.32 50.95 227.6 85.45 417.6 0.069

13 304.85 4.46 43.5 226.25 94.25 518.4 0.070

14 304.45 4.86 41.05 229.2 93.75 681.6 0.057

15 311.04 4.63 70.65 254.85 38.5 235.2 0.040

16 310.23 4.56 68.75 249.95 45.3 465.6 0.024

17 309.84 4.37 66.3 249.2 48.5 691.2 0.020

18 309.41 4.23 63.15 246.65 54.2 844.8 0.020

19 310.63 4.53 70.4 252.45 41.15 134.4 0.071

20 310.19 4.12 64.1 254.45 45.45 247.3 0.064

21 309.45 4.52 62.56 254.17 47.27 220.3 0.078

22 309.12 4.41 61.31 256.31 46.38 450.2 0.042

23 308.23 4.33 58.64 260.42 44.94 590.5 0.036

24 307.64 4.15 53.29 266.74 43.97 805.3 0.033
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1–4. This was a non-linear decrement because the number of amber days of scenario 3 was 240 which increased 
slightly compared to scenario 2. Adding 8 flexible beds to the medical department (scenario 5) resulted in a 
70.93% reduction of red-days comparing with the base-case scenario (scenario 0). However, adding 8 beds to 
the surgical ward (scenario 6) only achieved a 37.15% reduction in red days.

Scenario 7–10 focused on earlier discharges of different numbers of inpatients. According to Table 3, the 
midnight occupancy decreased from 311.8 to 308.57 while discharging 2–8 inpatients. Discharging 2–8 inpa-
tients (scenario 7) when R(C) exceeds 0.85 resulted in 15.63%, 20.7%, 24.8% and 31.52% decreases in red days 
respectively compared to base-case scenario (scenario 0). Differing from threshold scenarios, the amber days 
increased from 250.6 to 260.8 when 2–8 inpatients were discharged (scenario 7–10). These scenarios also offered 
increases of 31%, 35%, 41% and 45% in green days respectively. Compared to discharging inpatients, controlling 
admission rates seems to achieve more red days reductions. Removing 2–8 inpatients (scenario 21–24) led to 
21.75%, 23.31%, 26.65% and 33.35% decreases in red days.

The midnight occupancy decreased from 311.8 to 304.45 while executing scenarios 11–14. Discharging medi-
cal patients produced greater levels of red-days reduction compared to other discharging scenarios. Removing 
2 medical patients when R(C) exceeds 0.85 led to a 34.7% reduction in red days (scenario 1). Particularly dis-
charging 8 medical patients generated a 48.66% red day reduction. Amber days increased 6.46%, 9.18%, 9.72% 
and 8.54% respectively when 2–8 medical patients were discharged. Discharging medical patients also achieved 
green days increase from 33.45 to 97.

For surgical patients, these discharging interventions maximally reduced red days by 21.01% (scenario 18). 
Removing 2–8 surgical patients (scenario 15–18) can boost the number of green-days from 38.5 to 54.2, but 
these particular interventions had only a limited impact on the number of amber days. The midnight occupancy 
was decreased from 311.8 to 309.41.

Removing 2 and 4 long stay patients when R(C) exceeds 0.85 resulted in 11.94% and 19.82% reductions of 
red days. The number of amber days slightly increased. Also, the number of green days increased 23% and 36% 
respectively when 2 and 4 patients were discharged. These two scenarios only have limited impacts on the change 
of midnight occupancy (311.8–310.19).

Red days reduction per affected patient was also calculated to evaluate the efficiency of each scenario in 
Table 3. Red days reduction per affected patient of discharging two medical patients was 0.1 which was higher 
than discharging two surgical (0.04) or two long-stay patients (0.07). This suggested that a discharge strategy 
is more effective and less disruptive if medical patients are discharged. The other discovery was that for all 
discharging scenarios, the efficiency of red days reduction of removing smaller numbers of patients is always 
greater than discharging more patients.

Discussion
This study investigated the congestion prevention method in the simulation model to investigate the potential 
impacts of different approaches especially less disruptive interventions on hospital overcrowding. In this study, a 
colour-coding system which is similar to traffic signals was adopted to describe the status of hospital overcrowd-
ing and used it for results comparison of different scenarios. The results demonstrated that threshold scenarios 
were more effective for red day reductions than discharging scenarios. We considered that adding a bed might 
benefit a considerable number of patients during a period of hospital congestion. Discharging patients seems to 
have fewer effects because it only involves certain numbers of discharged patients. However, it is important to 
recognize that opening a bed requires more costs, discharging patients saves money. Hence, from a cost–benefit 
perspective, the profits and costs from decongestion effects of the scenarios need to be explored further in the 
future tasks.

Another interesting discovery is that adding 2 beds hugely decreased red days, however, adding 4 beds and 6 
beds have very similar effects on red-days reductions. One possibility is that some patients waiting in the queue 
are admitted to these additional beds which sustains the occupancy, consequently, the red-days gap between 
adding 4 beds (scenario 2) and 6 beds (scenario 3) is not obvious. It demonstrated that a smaller change seems 
to be more efficient.

Adding beds especially in the medical department brings more expected benefits in respect of congestion 
reduction for the hospital. Also, discharging medical patients rather than surgical patients brings benefits in 
respect of congestion prevention and leads to impressive red-days reductions and elevations in the numbers of 
green-days. To seek to understand this phenomenon, by tracing the historical data (SI-Table 3), it has been found 
that there are 17.3% more medical patients than surgical patients. Also, the proportion of medical patients whose 
LOS exceeds 21 days is higher than that of surgical patients. The total period of time where hospital beds are 
occupied by medical patients for one year is longer than surgical patients. Consequently, we believe that medical 
patients contribute to hospital congestion more significantly than other types of patients. When interventions are 
implemented for medical patients and medical departments, the effect on red days reduction is more obvious.

In this study, the cumulated numbers of red days, amber days and green days for each one-year simulation 
period were recorded based on the colour-coding system. A reduction in the number of red days is the common 
goal of all interventions. However, for the change of amber days and green days, we still need to discuss further. 
In the face of a reduction in red days, there are three patterns of possible change for the number of amber and 
green days (Table 4). If, when red days decrease, an intervention can lead to amber days decreasing and green 
days increasing, this suggests decongestion is occurring. But this might be construed as inefficient in terms of 
a resourcing perspective. From the utilization efficiency point of view, the preferable operating pattern of the 
hospital is that resources are utilized as much as possible while patients can still flow smoothly. That is to say, a 
more desired consequence of decongestion or red day reduction is an increase in the numbers of both amber 
days and green days, such as pattern 2 in Table 4. It has been seen that the amber days increase, but the green 
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days decrease in pattern 3 in Table 4. In this case, decision-makers should check parameters such as queue length 
of patients waiting for the treatment and midnight occupancy to confirm that patients still flow smoothly. Oth-
erwise, this latter pattern of intervention has a limited effect on hospital overcrowding. Discharging inpatients 
(scenario 7–10) especially discharging smaller numbers of surgical patients (scenario 15) and long-stay patients 
(scenario 19) will slightly increase amber days which belongs to pattern 2 in Table 4. Hence, less interruptive 
discharging interventions are also preferred from the utilization efficiency perspective.

We also calculated the ratio of the reduction in red days expressed relative to the number of patients affected 
by each intervention and we called this the efficiency of each scenario. We discovered that for different types 
of patients, red days reduction per affected patient of removing fewer patients is always more favorable than 
discharging more patients. This finding confirmed “the hospital instability wedge” phenomenon which demon-
strated that a less disruptive intervention applied may be a more cost-effective way to address congestion risk.

In this study, the congestion prevention method was adopted to calculate R(C) which provides the condi-
tion to execute a range of interventions. The value of 0.85 was selected as the threshold for scenarios execution. 
Scenarios were also tested for different R(C) values (SI-Table 4). It demonstrated that selecting R(C) > 0.85 for 
the condition maximises occupancy and benefits for the least disruption to patient care.

It must be recognized that a large amount of effort was made in HESMAD validation17. However, it is impor-
tant to keep in mind that the simulation study does not attempt to propose exact mechanisms for hospitals. 
Rather, the simulation results demonstrate where greater attention should be paid when addressing patient flow 
congestions within a hospital if improvements are desired.

Conclusion
This study investigated the congestion prevention method in the simulation model to explore the potential 
impacts of different approaches especially less disruptive interventions on hospital overcrowding. The expected 
outcome based on theoretical prediction of this method was evaluated, that is, applying a less disruptive inter-
vention is often enough, and more cost effective, to reduce the risk level of hospital congestion. Making a small 
number of extra beds available was a superior solution compared to discharging approaches to reduce crowding 
in hospitals. In addition, the virtual implementation approach enabled testing of the method at a more detailed 
level, thereby revealed some interesting findings difficult to achieve theoretically, such as discharging smaller 
numbers of medical inpatients, rather than surgical inpatients, a day earlier when R reaches a threshold, would 
bring more benefits in terms of congestion reduction for the hospital.

Data availability
The patient flow data used for this work were obtained with approval by the Ethics Committee, SA Health Office 
for the Research Study ‘Congestion recovery and optimisation of patient flows’ (Application number 475.13). 
These data were used under license for the current study, and so are not publicly available. Data are however 
available from the authors upon reasonable request if you contact Research Governance & Ethics - Office for 
Research, Southern Adelaide Local Health Network and get the permission.
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