PROCEEDINGS A

royalsocietypublishing.org/journal/rspa

)

Research

updates

Cite this article: Kaheman K, Kutz JN,
Brunton SL. 2020 SINDy-P!I: a robust algorithm
for parallel implicit sparse identification of
nonlinear dynamics. Proc. R. Soc. A 476:
20200279.
http://dx.doi.org/10.1098/rspa.2020.0279

Received: 14 April 2020
Accepted: 10 September 2020

Subject Areas:
applied mathematics, differential equations

Keywords:
system identification, optimization, model
selection, rational differential equations

Author for correspondence:
Kadierdan Kaheman
e-mail: kadierk@uw.edu

THE ROYAL SOCIETY

PUBLISHING

SINDy-PI: a robust algorithm
for parallel implicit sparse
identification of nonlinear
dynamics

Kadierdan Kaheman', J. Nathan Kutz? and

Steven L. Brunton'

'Department of Mechanical Engineering, and 2Department of
Applied Mathematics, University of Washington, Seattle, WA 98195,
USA

KK, 0000-0003-2279-2793

Accurately modelling the nonlinear dynamics of a
system from measurement data is a challenging yet
vital topic. The sparse identification of nonlinear
dynamics (SINDy) algorithm is one approach to
discover dynamical systems models from data.
Although extensions have been developed to identify
implicit dynamics, or dynamics described by rational
functions, these extensions are extremely sensitive
to noise. In this work, we develop SINDy-PI
(parallel, implicit), a robust variant of the SINDy
algorithm to identify implicit dynamics and rational
nonlinearities. The SINDy-PI framework includes
multiple optimization algorithms and a principled
approach to model selection. We demonstrate the
ability of this algorithm to learn implicit ordinary
and partial differential equations and conservation
laws from limited and noisy data. In particular,
we show that the proposed approach is several
orders of magnitude more noise robust than previous
approaches, and may be used to identify a class
of ODE and PDE dynamics that were previously
unattainable with SINDy, including for the double
pendulum dynamics and simplified model for the
Belousov—Zhabotinsky (BZ) reaction.

1. Introduction

Discovering dynamical system models from data is
critically important across science and engineering.
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by/4.0/, which permits unrestricted use, provided the original author and
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Traditionally, models are derived from first principles, although this approach may be
prohibitively challenging in many fields, such as climate science, finance and biology. Fortunately,
data-driven model discovery (i.e. system identification) is a rapidly developing field [1], with
a range of techniques including classic linear approaches [2,3], dynamic mode decomposition
(DMD) [4,5] and Koopman theory [6-9], nonlinear autoregressive models [10,11], neural
networks [12-20], Gaussian process regression [21,22], nonlinear Laplacian spectral analysis [23],
diffusion maps [24], genetic programming [25-27], and sparse regression [28-30], to highlight
some of the recent developments. Of particular note is a recent push towards parsimonious
modelling [25,26,28], which favours Pareto-optimal models with the lowest complexity required
to describe the observed data. These models benefit from being interpretable, and they tend
to generalize and prevent overfitting. The sparse identification of nonlinear dynamics (SINDy)
algorithm [28] discovers parsimonious models through a sparsity-promoting optimization to
select only a few model terms from a library of candidate functions. SINDy has been widely
adopted in the community [30—46], but it relies on the dynamics having a sparse representation in
a pre-defined library, making it difficult to discover implicit dynamics and rational functions. The
implicit-SINDy extension [47] makes it possible to identify these implicit functions, although this
algorithm is extremely sensitive to noise. In this work, we develop a robust, parallel algorithm for
the sparse identification of implicit dynamics, making it possible to explore entirely new classes
of systems that were previously inaccessible.

Parsimonious modelling has a rich history, with many scientific advances being argued on the
basis of Occam’s razor, that the simplest model is likely the correct one. SINDy exemplifies this
principle, identifying a potentially nonlinear model with the fewest terms required to describe
how the measurement data changes in time. The basic idea behind SINDy may be illustrated on
a one-dimensional system X = f(x); the general formulation for multidimensional dynamics will
be described in the following sections. An interpretable form of the nonlinear dynamics may be
learned by writing the rate of change of the state of the system x as a sparse linear combination of
a few terms in a library of candidate functions, @ (x) =[61(x) 62(x) ... 6,(0) ]:

x(t) =f(x(t) ~ O (x(t))§, (1.1)

where each 0;(x) is prescribed candidate term (e.g. x, ¥2,sin(x), ...). The derivative of the state
and the library of candidate functions may both be computed from measured trajectory data. It
then remains to solve for a sparse vector § with non-zero entries &; indicating which functions
0;(x) are active in characterizing the dynamics. The resulting models strike a balance between
accuracy and efficiency, and they are highly interpretable by construction. In a short time,
the SINDy algorithm has been extended to include inputs and control [48], to identify partial
differential equations [29,30], to incorporate physically relevant constraints [34], to include tensor
bases [45], and to incorporate integral terms for denoising [49,50]. These extensions and its simple
formulation in terms of a generalized linear model in (1.1) have resulted in SINDy being adopted
in the fields of fluid mechanics [34,37], nonlinear optics [31], plasma physics [32], chemical
reactions [33,36,39], numerical methods [41] and structural modelling [42].

The generalized linear model in (1.1) does not readily lend itself to representing implicit
dynamics and rational functions, which are not naturally expressible as sum of a few basis
functions. Instead, the implicit-SINDy algorithm [47] reformulates the SINDy problem in an
implicit form:

O(x, V)& =0. (1.2)

This formulation is flexible enough to handle a much broader class of dynamics with
rational function nonlinearities, such as x = N(x)/D(x) which may be rewritten as xD(x) + N(x) =
0. However, the sparsest vector & that satisfies (1.2) is the trivial solution & =0. Thus, the
implicit-SINDy algorithm leverages a recent non-convex optimization procedure [51,52] to find
the sparsest vector £ in the null space of @(x,x), which differs from other approaches [53,54]
that identify the rational dynamics. For even small amounts of noise, the dimension of the null
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space will become prohibitively large, making this approach extremely sensitive to noise and
compromising the model discovery process.

This work develops an optimization and model selection framework that recasts implicit-
SINDy as a convex problem, making it as noise robust as the original non-implicit SINDy
algorithm and enabling the identification of implicit ODEs and PDEs that were previously
inaccessible. The key to making the implicit-SINDy algorithm robust is the realization that if we
know even a single term in the dynamics, corresponding to a non-zero entry &;, then we can
rewrite (1.2) in a non-implicit form

0;(x, ¥) = O'(x, )&, (1.3)

where © and &' have the jth element removed. Because none of these terms are known a
priori, we sweep through the library, term by term, testing (1.3) for a sparse model that fits
the data. This procedure is highly parallelizable and provides critical information for model
selection. Our approach is related to the recent work of Zhang et al. [46], which also makes
the implicit problem more robust by testing candidate functions individually. However, there
are a number of key differences in the present approach. Our work explicitly considers rational
nonlinearities to discover exceedingly complex implicit PDEs, such as a simplified model of
the Belousov—Zhabotinsky (BZ) reaction. Our framework also provides several new greedy
algorithms, including parallel and constrained formulations. We further extend this method to
include the effect of control inputs, making it applicable to robotic systems [55], and we use this
procedure to discover Hamiltonians. Finally, our approach provides guidance on model selection,
a comprehensive comparison with previous methods, and a careful analysis of noise robustness.

2. Background

We briefly introduce the full multidimensional SINDy and implicit-SINDy algorithms, which will
provide a foundation for our robust implicit identification algorithm in §3.

(a) Sparse identification of nonlinear dynamics
The goal of SINDy [28] is to discover a dynamical system

d
FO=F0), @D

from time-series data of the state x(t) = [x1(¢),...,x,(})]T € R". We assume that the dynamics,
encoded by the function f, admit a sparse representation in a library of candidate functions:

OW=[6m 6w - GE). 2.2)

Thus, each row equation in (2.1) may be written as

d
3O =fex(B) ~ O (), (2.3)

where &, is a sparse vector, indicating which terms are active in the dynamics.

We determine the non-zero entries of &, through sparse regression based on trajectory
data. The time-series data is arranged into a matrix X = [x(t1) x(f2) - x(t») 17, and the associated
time derivative matrix X = [#(t) i(t2) -- #(ts)]T is computed using an appropriate numerical
differentiation scheme [1,28,56]. It is then possible to evaluate the library @ on trajectory data
in X so that each column of ©(X) is a function 6; evaluated on the m snapshots in X.

It is now possible to write the dynamical system in terms of a generalized linear model,
evaluated on trajectory data:

X=0(X)E. (2.4)

There are several approaches to identify the sparse matrix of coefficients =, including
sequentially thresholded least squares (STLSQ) [28,57], LASSO [58], sparse relaxed regularized
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Figure 1. The illustration of the SINDy-PI algorithm on Michaelis—Menten dynamics. (a) The Michaelis—Menten system is
simulated, and measurement data is provided to SINDy-PI. (b) Multiple possible left-hand side functions are tested at the same
time. (c) The candidate model prediction error is calculated, and the best model is selected. (Online version in colour.)

regression (SR3) [59,60], stepwise sparse regression (SSR) [36] and Bayesian approaches [46,61].
It is possible to augment the library to include partial derivatives for the identification of partial
differential equations (PDEs) [29,30]. Similarly, it is possible to include external forcing terms
in the library @, enabling the identification of forced and actively controlled systems [48]. To
alleviate the effect of noise, it is possible to reframe the SINDy problem in terms of an integral
formulation [49,50]. There are a number of factors that affect the robustness of SINDy, some of
which are discussed in appendix I.

(b) Implicit sparse identification of nonlinear dynamics
The implicit-SINDy algorithm [47] extends SINDy to identify implicit differential equations

f(x,%) =0, (2.5)

and in particular, systems that include rational functions in the dynamics, such as chemical
reactions and metabolic networks that have a separation of timescales.
The implicit-SINDy generalizes the library @(X) in (2.4) to include functions of x and x:

OX,X)Z =0. (2.6)

—

However, this approach requires solving for a matrix £ whose columns &, are sparse vectors
in the null space of ©(X, X). This approach is non-convex, relying on the alternating directions
method (ADM) [47,52], and null space computations are highly ill-conditioned for noisy data
[1,47,62], thus inspiring the current work and mathematical innovations.

3. SINDy-PI: robust parallel identification of implicit dynamics

We have developed the SINDy-PI (parallel, implicit) framework for the robust identification of
implicit dynamics, bypassing the null space approach discussed in §2b (figure 1). The idea is that
if even a single term 0;(x, x) € O (x, x) in the dynamics (2.5) is known, it is possible to rewrite (2.6)
as

0;(X, X) = O (X, XI6;(X, X)§;, (3.1)

where @(X,X|9j(X, X)) is the library ©(X, X) with the 6; column removed. equation (3.1) is no
longer in implicit form, and the sparse coefficient matrix corresponding to the remaining terms
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may be solved for using previously developed SINDy techniques [28-30,36,46,49,50,59-61]. In
particular, we solve for a sparse coefficient vector & i that minimizes the following loss function:

16,06X) = ©(X, X606 308112 + B | & (3.2)

0/

where B is the sparsity promoting parameter. There are numerous relaxations of the non-
convex optimization problem in (3.2), for example the sequentially thresholded least-squares
algorithm [28]. Because there is no null space calculation, the resulting algorithm is considerably
more robust to noise than the implicit-SINDy algorithm [47], i.e. we longer have to deal with an
ill-conditioned null space problem.

In general, the entire point of SINDy is that the dynamics are not known ahead of time, and so
it is necessary to test each candidate function ¢; until one of the models in (3.1) admits a sparse
and accurate solution. When an incorrect candidate term is used, then the algorithm results in a
dense (non-sparse) model & f and an inaccurate model fit, and when a correct term is included, the
algorithm identifies a sparse model & i and an accurate model fit. In this way; it is clear when the
algorithm has identified the correct model. Moreover, there is a wealth of redundant information,
since each term in the correct model may be used as the candidate function on the left-hand side,
and the resulting models may be cross-referenced. This approach is highly parallelizable, and
each candidate term may be tested simultaneously in parallel. The non-parallel formulation in
(3.1) was recently introduced by Zhang et al. [46] in the context of Bayesian regression, where
they also make the implicit problem more robust by testing candidate functions individually;
however, they do not consider dynamics with rational function nonlinearities or control inputs.
In this work, we extend the robust implicit formulation to identify several challenging implicit
ODE and PDE systems with rational function nonlinearities, which are ubiquitous in engineering
and natural systems, and systems with external forcing and control inputs. We also introduce the
parallel formulation and model selection frameworks. Further, we will introduce a constrained
optimization framework to simultaneously test all candidate functions.

(@) Model selection

For each candidate function in (3.1), we obtain one candidate model. When the candidate
function ¢; is not in the true dynamics, then the resulting coefficient vector §; will not be
sparse and there will be large prediction error. In contrast, when a correct candidate function
is selected, then we obtain a sparse coefficient vector §; and small prediction error. For an
implicit dynamical system, there may be several different implicit equations that must be
identified, resulting in several candidate functions that admit sparse models. The sequentially
thresholded least-squares (STLSQ) algorithm that we use here, and whose convergence properties
are considered by Zhang and Schaeffer [57], iteratively computes a least-squares solution to
minimize [6;(X, X) — O(X, X|9j(X, X))& ill2 and then zeros out small entries in & f that are below a set
threshold A. This threshold 2 is a hyperparameter that must be tuned to select the model that most
accurately balances accuracy and efficiency. Thus, we must employ model selection techniques
to identify the implicit models that best supports the data, while remaining as simple as
possible.

There are several valid approaches to model selection. To select a parsimonious yet accurate
model we can also employ the Akaike information criterion (AIC) [63,64] and Bayesian
information criterion (BIC) [65], as in [66]. It is also possible to sweep through the parameter
4 and candidate functions 6, and then choose the Pareto optimal model from a family of models
on the Pareto front balancing accuracy and efficiency; this is the approach in the original SINDy
work [28] and in earlier work leveraging genetic programming to discover dynamics [25,26]. In
this work, we take a different approach, selecting models based on performance on a test dataset
X; that has been withheld for model validation to automate the model selection process. For each
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threshold 1, the resulting model is validated on the test set X;, and the model with the lowest test
error is selected. One error function is the model fit:

16;(Xz, Xe) — ©(Xe, X¢16;(Xe, X)) E |,

Error = : (3.3)
l6;0¢:, X |,
In practice, for rational dynamics, we select based upon the predicted derivative X;:
th _ X;nodel
Error=+— 12 (3.4)
[t
For implicit dynamics where each state derivative may be written as a rational function
. N k (x)
M= D

then we restrict the candidate functions to 6;(x, x) = x8;(x) for some 6;(x) € ©(x) to identify a
separate sparse model for each xy. Several candidate functions may provide accurate and sparse
models. These different models may further be cross-references to check that the same terms
are being selected in each model, providing additional information for model selection and
validation.

(b) Constrained optimization formulation

In (3.1) each candidate function was tested individually in a parallel optimization. However, each
of these individual equations may be combined into a single constrained system of equations

O(X,X)=0(X,X)E such that Z;; =0. (3.6)

We constrain E to have zero entries on the diagonal, as shown in figure 2, which is the same as
removing the candidate function from the library in the separate optimization problems in (3.1).
Without this constraint, the trivial solution £ =1, will provide the sparsest £ and the most
accurate model. This may be written as a formal constrained optimization problem:

min  [|©(X,X) = OX,X)Z|l2 + Bl Zllo,
s.t. diag(Z)=0. 3.7)

This optimization is non-convex, although there are many relaxations that result in accurate
and efficient proxy solutions [28,58,59]. In this work, we will use sequentially thresholded least
squares, so that any entry = ij<X will be set to zero; the sparsity parameter 1 is a hyperparameter,
and each column equation may require a different parameter ;. The constrained formulation in
(3.7) can be solved efficiently in modern optimization packages, and we use CVX [67,68]. After
solving (3.7) we have numerous candidate models, one for each column &, of =, given by

O (X, X)§; =0. (3.8)

The sparse models that result in an accurate fit are candidate implicit models, and they may be
assessed using the model selection approaches outlined above. These various models may be
cross-referenced for consistency, as the same models will have the same sparsity pattern. This
information can then be used to refine the library @, for example to only include the non-zero
entries in the sparse columns of Z.
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Figure 2. Schematicillustrating the constrained formulation of the SINDy-PI algorithm. (Online version in colour.)
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Figure 3.SINDy-PI and implicit-SINDy are compared on the Michaelis—Menten kinetics, where the structure
error quantifies the number of terms in the model that are incorrectly added or deleted, compared with the true
model. The derivative is computed by the total-variation reqularization difference (TVRegDiff) [56] on noisy state
measurements. The violin plots show the cross-validated distribution of the number of incorrect terms across 30
models. The green region (a rectangle stripe at zero value labelled as correct region) indicates no structural difference
between the identified model and the ground truth model. Details are provided in appendix A(b). (Online version
in colour.)

(c) Noise robustness

We now compare the noise sensitivity of SINDy-PI and implicit-SINDy on the one-dimensional
Michaelis—-Menten model for enzyme kinetics [47,69,70], given by

Vmaxx
K +x

X=jx — (3.9)
where x denotes the concentration of the substrate, jy denotes the influx of the substrate,
Vmax denotes the maximum reaction time and K, represents the concentration of half-maximal
reaction. We use the same parameters as in [47], with jy = 0.6, Vimax =1.5, and Kj;; = 0.3. Figure 3
shows the result of the noise robustness of SINDy-PI and implicit-SINDy. In this example, SINDy-
Pl is able to handle over 10° more measurement noise than implicit-SINDy, while still accurately
recovering the correct model. Details are provided in appendix A, and key factors that limit
robustness are discussed in appendix L.

(d) Datausage

The data required to correctly identify a model is a critical aspect when comparing SINDy-PI
and implicit-SINDy. Many experimental datasets are limited in volume, and thus our goal is to
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Figure 4. Success rate of SINDy-PI and implicit-SINDy identifying yeast glycolysis (3.10f) with different percentage of training
data. Each data usage percentage is randomly sampled from the entire dataset composed of all trajectories. The success rate is
calculated by averaging the results of 20 runs. (Online version in colour.)

identify a model with as little data as possible. In this section, we compare the SINDy-PI and
implicit-SINDy methods on the challenging yeast glycolysis model [47,71] given by

C2X1Xg

X1=c1+ 7 (3.10a)
1+ e3xg
. d
Xp = an + dzxy — daxpxy, (3.100)
1+ d2x6
X3 =e1xp + epx3 + e3X0X7 + eax3xp + f5X4X7, (3.10¢)
X4 = f1x3 + eax4 + f3X5 + fax3xe + fsxax7, (3.104d)
X5 = g1X1 + §2X5, (3.10¢)
. h1x1x
X6 = h3x3 + hsxg + hgx3xe + &, (3.101)
1+ h2x6
and X7 = j1X2 + jaX2X7 + j3X4X7. (3.10g)

Equation (3.10f) is the most challenging equation to discover in this system, and figure 4 compares
the success rate of SINDy-PI and implicit-SINDy in identifying this equation. SINDy-PI uses
about 12 times less data than the implicit-SINDy when identifying (3.10f). Details are provided in
appendices B and D.

(e) Comparison for implicit PDE identification

We now investigate the ability of SINDy-PI to discover a PDE with rational terms, given by a
modified KdV equation
280

1+u’
where yu is a loss term and 2go/(1 + u) is a gain term. We fix y = 0.1 and vary the value of gy from
0 to 1. As go increases, the implicit term gradually dominates the dynamics. Figure 5 shows the
results of SINDy-PI and PDE-FIND [29] for different values of gg. For large go, SINDy-PI is able to
accurately identify the rational function term, while this is not possible for PDE-FIND, since this
term is not in the library. Details of the identification process are given in appendix C.

Up = —Uyyy — OULY — YU+ (3.11)

4. Advanced examples

We will now demonstrate the SINDy-PI framework on several challenging examples, including
the double pendulum, an actuated single pendulum on a cart, the Belousov-Zhabotinsky
PDE, and the identification of conserved quantities. All examples are characterized by rational
nonlinearities, and we were unable to identify them using SINDy or implicit-SINDy, even in the
absence of noise.
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Figure 5. Comparison of SINDy-PI and PDE-FIND on an implicit PDE problem given by the modified KdV equation (3.11). As we
increase gy, the rational term begins to play a significant role in the system behaviour. For small gy, PDE-FIND compensates for
the effect of the rational term by tuning the other coefficients. When g is large, PDE-FIND overfits the library. SINDy-PI, on the
other hand, correctly identifies the rational term. (Online version in colour.)

(a) Mounted double pendulum

In our first example, we use SINDy-PI to discover the equations of motion of a mounted
double pendulum, shown in figure 6. The double pendulum is a classic example of chaotic
dynamics [72], and was an original challenging example used to demonstrate the capabilities
of genetic programme for model discovery [26]. Correctly modelling the nonlinear dynamics is
vital for accurate control [72].

We simulate the double pendulum dynamics, derived from the Euler-Lagrange equations, and
use SINDy-PI to re-discover the dynamics from noisy measurements of the trajectory data. The
governing equations and SINDy-PI models are provided in appendix F. Because these dynamics
have rational nonlinearities, the original SINDy algorithm is unable to identify the dynamics,
making this a challenging test case. The state vector is given by x= [¢1, 2, é1, 217, and the
parameters of the simulation are given in appendix D. The training data is generated from an
initial condition Xyain = [7 + 1.2, 7 — 0.6, 0, 0]7, simulated for 10s using a time step of dt =
0.001s. The validation data is generated from an initial condition x4 = [7 — 1, 7 — 0.4, 0.3, 04]7,
simulated for 3s with time step dt =0.001 s.

To test the robustness of SINDy-PI, we add Gaussian noise to both the training and validation
data. We test the resulting models using a new testing initial condition Xiest =[7 +0.3, 7 —
0.5, 0, O]T. We construct our library @ to include over 40 trigonometric and polynomial terms.
The most challenging part of this example is building a library with the necessary terms, without
it growing too large. The library cannot be too extensive, or else the matrix @ becomes ill
conditioned, making it sensitive to noise. To reduce the library size, we use one piece of expert
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Figure 7. SINDy-Pl is used to identify the single pendulum on a cart system. Control is applied to the cart, and both the cart
and pendulum states are measured. When the measurement noise is small, SINDy-PI can identify the correct structure of the
model. (a) Data generation; (b) SINDy-PI identified model performance. (Online version in colour.)

knowledge: the trigonometric terms should only consist of ¢; and ¢, the rotational angles of
the pendula.

The candidate functions are chosen as a combination of state derivatives and trigonometric
functions. Figure 6 shows that SINDy-PI can identify the equations of motion for low noise.
For larger noise, SINDy-PI misidentifies the dynamics, although it still has short term prediction
ability.

(b) Single pendulum on a cart

We now apply SINDy-PI to identify a fractional ODE problem with control input, given by the
single pendulum on a cart in figure 7. SINDy has already been extended to include control
inputs [48], although the original formulation doesn’t accommodate rational functions.

The dynamics are derived from the Euler-Lagrange equations. All system parameters except
for gravity are chosen to be 1, as summarized in appendix D; the governing equations and SINDy-
PI models are shown in appendix E. The cart position is denoted by s. The state vector is given by
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x=[¢,s,¢,5]T. The equations of motion are given by

d .
E(P — ¢, (4.1%)
d .
as =5, (4.1b)
d . (M + m)g sin (¢) + FL1 cos (¢) + mL? sin (¢) cos (¢)¢?
Sop=— > 5 , (4.1¢)
dt L3(M + m — m cos (¢)°)
2 ;2 :
and gs _ mL{ sin (¢)¢~ + FL1 + mg sin (¢) cos (qb). (4.1d)

dt Li(M + m — m cos (¢)?)

Equation (4.1) is simulated with a time step of df =0.001 to generate the training and testing
data for model selection. The training data is generated using an initial condition Xyin =
[0.3, 0, 1, 0] with the control input chosen as Firain = —0.2 4 0.5sin (6t), for time t =0 to f = 16.
Similarly, the validation data is generated using an initial condition x4 =[0.1, 0, 0.1, 0]T with
the control input chosen as F 5 = —1 + sin (f) + 3sin (2¢t), for time t =0 to t =2.

The library is constructed using a combination of trigonometric and polynomial terms. Around
50 different basis functions are used for the library, and around 10 terms are tested as candidate
functions. We add Gaussian noise to all system states. We then test the SINDy-PI model on a
testing initial condition xtest = [, 0, O, 0]T with control input Frest = —0.5 + 0.2 sin (t) 4 0.3 sin (2t)
for time f =0 to t = 2. Figure 7 shows the resulting SINDy-PI models. The structure of the model
is correctly identified up to a noise magnitude of 0.01. Beyond this noise level, the SINDy-PI
identified model only has short term prediction ability.

(c) Simplified model of the Belousov—Zhabotinsky reaction

We now apply SINDy-PI to a challenging PDE with rational nonlinearities, a simplified model of
the Belousov—Zhabotinsky (BZ) reaction. The simplified BZ reaction model is given by [73]

ax 1 - D
ﬁ:,(w_;_x_xz_ﬂaﬁ—s)-i-fxmc, (4.2a)
it e\ qg+x Dy,

0 D

£:x—z—az+yu+§zAZ, (4.2b)
0 1 D,

9 _ —(Bx —s+ xu)+ = As, (4.2¢)
T & Dy

ou 1 X Du

where x, z, s and u are dimensionless variables and A = (92/ Bxg) + (82%/ Byg) denotes the Laplacian
operator.

The strong coupling dynamics and implicit behaviour in (4.2a2) make the data-driven discovery
of the simplified BZ reaction challenging when using implicit-SINDy and PDE-FIND. However,
SINDy-PI correctly identifies the simplified dynamics of the BZ-Reaction, as shown in figure 8. To
generate the simplified BZ reaction data, we use a spectral method [74,75] with time horizon T =1
and time step of df = 0.001. We use n = 128 discretization points with spatial domain ranging from
—10 to 10. The initial condition is chosen to be a mixture of Gaussian functions. Eighty per cent of
the data is used for training, and the remaining 20% is used for model selection. The right-hand
side library is normalized during the sparse regression process. A range of sparsity parameters A
are tested from 0.1 to 1, with increments of 0.1 The other system parameters in (4.2) are given in
appendix D and the SINDy-PI model is given in appendix G.
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Figure 9. SINDy-PI is used to extract the conserved quantity for a double pendulum. (Online version in colour.)

(d) Extracting physical laws and conserved quantities

In this final example, we demonstrate how to use SINDy-PI to extract governing physical laws
and conserved quantities from data. Many systems of interest are governed by Hamiltonian or
Lagrangian dynamics. Instead of identifying the ODE or PDE equations of motion, it might be
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possible to extract the physical laws directly. These equations contain important information
about the system and may be more concise, useful and straightforward than the underlying ODE
or PDE. For example, given a Lagrangian, we can derive the equations of motion.

The most difficult aspect of using SINDy-PI to identify a physical law is how to build the
library. Conservation laws may contain higher-order derivatives, such as . To include all possible
terms, the library may become exceedingly large. The library size will also increase if the system
has many states. Large libraries make the sparse regression sensitive to noise. Thus, extracting
the physical law from data using SINDy-PI is still challenging due to the lack of constraints when
constructing the library function. We only show one example in our paper to demonstrate that it
is possible to achieve this using SINDy-PI, but further work is required to reduce the library size
so that the sparse regression is robust.

As an example, we consider the double pendulum shown in figure 9, with the system
parameters given in appendix D. In this case, we also account for the friction in the pendulum
joint, with friction constants of k1 =7.2484 x 10~* and k; = 1.6522 x 10~ for the pendulum arms,
respectively. In this case, we extract the Lagrangian of the double pendulum [72] using SINDy-P1.
To extract this Lagrangian, we simulate the system with initial condition Xyxin = [7 — 0.6, 7 —
0.4, 0, 0] from t =0 to t = 15 with time step dt = 0.001. The resulting model is shown in figure 9.

5. Conclusion and future work

In this paper, we develop SINDy-PI (parallel,implicit), a robust variant of the SINDy algorithm
to identify implicit dynamics and rational nonlinearities. SINDy-PI overcomes the sensitivity of
the previous implicit-SINDy approach, which is based on a null-space calculation, making it
highly sensitive to noise. Instead, we introduce both parallel and constrained optimizations to test
candidate terms in the dynamics, making the new SINDy-PI algorithm as robust as the original
SINDy algorithm. We also extend the algorithm to incorporate external forcing and actuation,
making it more applicable to real-world systems. We demonstrate this approach on several
challenging systems with implicit and rational dynamics, including ODEs, actuated systems and
PDEs. In particular, we discover the implicit dynamics for a simplified model for the BZ chemical
reaction PDE, the double pendulum mechanical system and the yeast glycolysis model, which
have all been challenging test cases for advanced identification techniques. Throughout these
examples, we demonstrate considerable noise robustness and reductions to the data required,
over the previous implicit-SINDy algorithm.

Despite the advances outlined here, there are still many important avenues of future work. One
limitation of this approach, and of SINDy in general, is in the design of the library of candidate
functions. The goal is a descriptive library, but the library size grows rapidly, which in turn makes
the sparse regression ill-conditioned; other issues effecting robustness are discussed in appendix I.
Recently, tensor approaches have been introduced to alleviate this issue, making libraries both
descriptive and tractable [45], and this is a promising approach that may be incorporated in
SINDy-PI as well. More generally, automatic library generation, guided by expert knowledge,
is an important topic. Other research directions will involve parametrizing elements of the
library, so that the algorithm simultaneously identifies the model structure and the parameters
of the sparsely selected terms. Recent unified optimization frameworks, such as SR3 [59,60], may
make this possible. Model selection is another key area that will required focused attention.
Balancing accuracy on test data, sparsity of the model, and the potential for overfitting are all
serious concerns. The sparse regression and optimization may also be improved for better noise
robustness. Finally, modifying SINDy-PI to incorporate prior physical knowledge and to only
model the discrepancy with an existing model [76] will be the focus of ongoing work.

Data accessibility. Our code and data could be seen in the following link: https://github.com/dynamicslab/
SINDy-PI.
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Appendix A. Noise sensitivity of SINDy-PI and implicit-SINDy

(a) Performance evaluation criteria

To compare the performance of SINDy-PI and implicit-SINDy for noisy data, we must define an
evaluation criteria. We compare the performance of the best model generated by each method
that has the lowest prediction error on the test data, selected according to equation (3.4). To
compare the models generated by the two methods with the ground truth model, we use
the concept of model discrepancy [76-78] and set prediction accuracy, structural accuracy and
parameter accuracy as our performance criteria. A good prediction error does not guarantee the
model has good structural accuracy and parameter accuracy, and vice versa, motivating multiple
performance criteria.

(b) Numerical experiments

We use the Michaelis-Menten kinetics, given by equation (3.9), to compare the performance of
SINDy-PI and implicit-SINDy. We performed our numerical experiments as follows:

Step 1: Randomly generate 2400 different initial conditions of different magnitudes ranging from
0to 12.5. Simulate those initial conditions using a fourth-order Runge—Kutta method with
time step dt = 0.1 and time horizon T = 5. The testing data is generated using 600 random
initial conditions using the same method as the training data.

Step 2: Add Gaussian noise to the training and testing data. 23 different Gaussian noise levels
with magnitudes ranging from 107 to 5 x 10~ are used. For each noise level, 30 different
random noise realizations are generated, resulting in 30 different noisy datasets for each
noise level.

Step 3: Compute the derivative of the noisy data. We investigate several approaches, including
finite-difference and total-variation regularized difference (TVRegDiff) [56] derivatives.
In all cases, SINDy-PI is several orders of magnitude more robust to noise than implicit-
SINDy, and only the result of using TVRegDiff is shown in this paper. TVRegDiff
generates more accurate derivatives, but also requires hyperparameter tuning and causes
aliasing, so we trim the ends of the time series generated by each initial condition
(first and last 30%). It is possible to add Gaussian noise to the clean derivative data to
investigate robustness, although this is less relevant for real-world scenarios, where only
noisy state data is available.

Step 4: Train SINDy-PI and implicit-SINDy models on noisy training data. For each noise level,
we sweep through 68 different sparsity parameters A for SINDy-PI, from 0.01 to 5. The
A is varied by a factor of 2 [52] to calculate the null space in the implicit-SINDy method.
The library for implicit-SINDy and SINDy-PI is

O(X, X) =[1X X2 X3 X* X XX XX2 XX3 XX*]. (A1)

Step 5: Due to the various parameter values, we use model selection to choose a model. We use
the test data with the same noise magnitude to perform the model selection process. The
ratio of training data and testing data is 8 : 2.

Step 6: The best model generated by the two methods is compared. We use the prediction error,
error in the model structure (i.e. the number of terms that are incorrectly present or
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Table 1. The parameter used for simulating the equation (3.10).

parameter ¢ G G 4 & a3 dy e & & e, fi f
value 25 —100 13.6769 200 13.6769 —6 —6 6 —64 6 16 64 -1
parameter £y ko9 & Mmoo h b hs R B
value B =16 =100 13 =31 —200 136769 128 —128 —32 6 —18 —100

missing from the model), and parameter error as our model performance evaluation
criteria. We average the performance over 30 different noise realizations for each noise
level. We then plot the distribution of structure error in figure 3.

Many parameters affect the performance of these methods: the length of training data, prediction
steps to calculate prediction error, the initial conditions for training data, choice of the library,
and the derivative computation. We have attempted to carefully optimize each method, although
an exhaustive parameter sweep is beyond the scope of the present work. However, in all cases
SINDy-PI outperforms implicit-SINDy.

Appendix B. Data usage of SINDy-PI and implicit-SINDy

Section 3d investigates the data usage of SINDy-PI and implicit-SINDy on the yeast glycolysis
model in equation (3.10). The parameters of this problems are given in table 1. The data usage
comparison is performed by the following steps:

Step 1: Generate training data by simulating equation (3.10) with parameters in table 1 and a
time step of dt =0.1, with time horizon T = 5. We simulate the system using 900 random
initial conditions with magnitude ranging from 0 to 3.

Step 2: Shuffle the training data and select j per cent of the entire training dataset at random to
train the SINDy-PI and implicit-SINDy models. These training data are sampled from all
trajectories, and they are not necessarily consecutive in time. No noise is added since we
only care about the effect of the data length in this case. The sparsity parameter A is fixed
for both algorithms (different values); this value is selected for a single percentage j where
both methods fail to identify the correct model, and we sweep through 1.

Step 3: Run the numerical experiment for 20 times for each data length and calculate the
percentage of times the two algorithms yield the correct structure of the equation (3.10f).

The final comparison is shown in figure 4. Data usage requirements for other state equations are
given in table 2; figure 4 shows results for the hardest equation to identify. The other equations
require less data. Normalizing the SINDy-PI library improves data learning rates as well.

Appendix C. SINDy-PI and PDE-FIND on rational PDE problem

In §3e, we compared the performance of SINDy-PI and PDE-FIND on a modified KdV equation.
The simulation data is obtained using a spectral method [74] with a time step of dt =0.01 and
time horizon T = 20, spatial domain L = —25 to 25, and n = 128 spatial discretization points. The
library of PDE-FIND is chosen to be

O(U, Uy, Uyy, Upyy) = [1 U Uy Uyy Uy U2 U2, U2, UU, UUy, UUyy, U202 U202, UZU2, ]
(C1)
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Table 3. Parameters used to simulate the double pendulum.

parameter m m [1 Lz [ a I] /2 g
value 0.2704 0.2056 0.2667 0.2667 0.191 0.1621 0.003 0.0011 9.81

and the right-hand side library for the SINDy-PI is chosen to be
O(U, Uy, Usy, Usax) =[1U Uy Uy Use Uy U2 UF U3 U3, U,
UU; UU; UUyy UUyyy UU2 U202, U2, ], (€2
while the left-hand side library is chosen to be
C(U, U, Uy, Uyy) = [U; UU; UUy UU . (C3)

For both SINDy-PI and PDE-FIND, we used 100 different values for the sparsity parameter A
ranging from 0.1 to 10 with step size 0.1. We use 80% of the simulation data for training and 20%
for testing and model selection. We calculate the normalized prediction error for all models on
state 1; and the model with minimum prediction error is selected as the final model.

Appendix D. Parameter values for simulations

The parameters for the double pendulum simulation in §4a are given in table 3. The parameters
used to simulate the simplified model of the Belousov—Zhabotinsky reaction in equation (4.2) are
given in table 4.

Appendix E. SINDy-PI models for the single pendulum on a cart
The Lagrangian for the single pendulum on a cart with an input force on the cart is:
L=T—V=3%m+M)3*+ JL?m¢* — Lgm cos(¢) + Lm cos(¢)¢s, (E1)

where m is the mass at the end of the pendulum arm, M is the mass of the cart, L is the length of
the pendulum arm, s is the position of the cart and ¢ is the pendulum angle. We do not consider
damping in this case. Using the numeric values m =M =L =1 and g = —9.81 this simplifies to

L=T-V=+ %(bz — 9.81 cos(¢) + cos(p)gs. (E2)
The Euler-Lagrange equation of the system are
doJoL oL 0 -
dfas  ad mL*¢ + mLs cos(¢p) — Lgm sin(¢) =0
dt 9¢ 09 N . 8 ' (E3a)
doL oL _ . (M + m)s — F — mLsin(¢)¢> + mLe cos(¢) =0
dt o5 9s '
where F is the force applied to the pendulum cart. It is possible to isolate ¢ and &:
= —(F cos(¢p) — Mg sin(¢) — mg sin(¢) + Lim cos(¢) sin(¢)¢?) (E4a)
- L(M 4 m sin(¢)2) ’
and
. 12 _ .
- F + Lm sin(¢)¢*~ — mg cos(¢) sm(qﬁ). (E 4b)

M + m sin(¢)?
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Table 5. Parameters used to simulate the single pendulum on a cart.

parameter m L M g

Table 6. Parameters identified by SINDy-PI for equation (E 6¢) under different noise magnitudes.

numerator denominator

sin (¢) F cos (¢) sin (¢) cos (o) constant 0S (q>)2

noise magnitude

It is possible to write this as a system of four coupled first-order equations

d .
d9-s, (=50
d .
as =5, (E5b)
d . —(F cos(¢p) — Mg sin(¢) — mg sin(¢) + Lim cos(¢) sin(¢)¢?) (E50
dr” L(M + m sin(¢)?) !
. H 2 _ .
and i ae F + Lmsin(¢)¢ .mg cos(¢) sin(¢) . (E54)
dt M + msin(¢)?
With the numerical values shown in table 5, this becomes
d .
ad’ = ¢/ (E 611)
= 3, (E6D)
d . 19.62sin(¢) — Fcos (¢) — sin (¢) cos (¢)¢p?
b= , E6
df¢ 2 — cos (¢)? (E6c)
and is _ 2F —9.81sin (2¢) + 2sin (¢)¢p . (E6d)
dt 2 4 2sin (¢)?

Parameters identified by SINDy-PI under different noise magnitudes are presented in tables 6
and 7.

Appendix F. SINDy-PI models for the mounted double pendulum

For a mounted double pendulum system shown in figure 6 we could have the following
parameters: the parameters of the pendulum are centre of mass mq and my, centre of mass
position 41 and ap, arm length L and Ly, arm inertia I; and I, arm rotational angle ¢; and ¢»,
gravity acceleration g. Those values could be seen from table 3. If we consider friction between
the pendulum joint, we could define k; = 7.2485 x 10~* and kp = 1.6522 x 10~* as our damping
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Table 7. Parameters identified by SINDy-PI for equation (E 6) under different noise magnitudes.

numerator denominator

sin (¢)¢? constant
noise magnitude

coefficient. It is easy to derive the Lagrangian of the mounted double pendulum which is given by

_ (ma((L1 cos(¢1)d1 + az cos(¢o)2)? + (L sin(¢r)¢1 + a2 sin(hn)$2)%))

L=T-V 5
2 242 4 2. 242 112 T2
N (m1(a5 cos(¢1)*p7 + aj sin(p1)°¢7)) n (I17) N (I2¢3%) _ gmp(az cos(n)
2 2 2
+ L1 cos(¢1)) — a18my cos(¢1). (F1)
The damping term caused by friction with friction coefficients k1 and k; is
Ry = 3k + 3ka(1 — o). (F2)

The Euler-Lagrange equations with a Rayleigh dissipation term are then:

d oL oL R,
dtagn 91 I (F3a)

and
d oL 9L oR
2 =0. (F3b)

— = - 4t
dtagp,  A¢n ¢
The symbolic form of the equation (F 3a) is

L + kg + kady + Ligrmy + a3dymy + Liazmy sin(dr — ¢o)d3
+ Liaydomy cos(@y — ¢2) — koo — Ligma sin(y) — aygmy sin(y) =0, (F4)
and the symbolic form of equation (F 3b) is
Lada + ko + aséama + Liazdima cos(¢r — ¢) — kadhy
— apgimy sin(¢n) — Liazmy sin(¢r — ¢o)d? = 0. (F5)
Using the numerical parameter values in these equations gives
$1 + 0.03235¢; + 0.323¢ cos(¢1 — ¢) + 0.32343 sin(py — p2) — 0.006006¢» — 37.97 sin(¢y) = 0.
$2 +0.02525¢ + 1.358¢1 cos(¢1 — ¢n) — 0.02525h; — 49.94 sin(¢p) — 1.358¢7 sin(py — ¢2) = 0.
If we set ky = ko =0 and combine the equations, it is possible to solve for ¢ and ¢,
é1= (Llu%gmg sin(¢1) — 2L1u§q§%m% sin(¢1 — ¢2) + 2I,L1gmy sin(¢q)
+ Lyadgm3 sin(py — 2¢) + 2Largmy sin(¢1) — L2a3¢?m3 sin2py — 2¢n)
— 2L Liax@3my sin(1 — ¢2) + 2ma5gmimy sin(¢n))/ N1 + Liasm3

+ 2D L3my + 2Iadmy 4 2La3my — L2a3m3 cos(2¢1 — 2¢n) + 2a3a3myms)
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and
b2 = (aamp(211g sin(n) + 2L3¢3ma sin(¢1 — ¢2) + 2LTgmo sin(¢n) + 211 L1 7 sin(¢y — ¢2)

+ 2a3gm sin(¢n) + L2ax3my sin(2¢n — 2¢2) + 2L1at?m sin(pr — ¢o)

— 2L3gmy cos(¢1 — ¢2) sin(e1) — 2L1argmy cos(py — ¢2) sin(1)))/(2(I 12

+ L%a%m% + IQL%mz + Iza%ml + Ila%mz - L%a%m% cos(¢p1 — 4)2)2 + u%a%mlmz)).
If we use the values in table 3 we have

$1 = (—0.2808 sin(2¢1 — 2¢2)¢p> — 0.4136 sin(¢h1 — )3

+10.3278 sin(p1 — 2¢») + 38.2984 sin(¢1))/(1 — 0.2808 cos(2p1 — 2¢)),
and
$2 = (1.7390 sin(¢1 — ¢2)¢p? + 0.2808 sin(2¢1 — 2¢p2)p3
—33.02sin(2¢1 — ¢n) + 30.9472 sin(¢h)) /(1 — 0.2808 cos(2¢1 — 262)).

With no noise, SINDy-PI discovers the correct equations. When we add random noise with
magnitude of 0.005, SINDy-PI discovers the following

$1 = (—0.2799sin(2¢1 — 2¢0)¢p> — 0.4137 sin(¢p1 — ¢2)$3
+10.3429 sin(¢1 — 2¢2) + 38.3117 sin(¢hy))/(1 — 0.2815 cos(2p1 — 2¢2)),
and
¢ = (1.7392sin(¢1 — ¢2)p? + 0.2805sin(2¢ — 262) 3
— 33.0035 sin(2p1 — ) + 30.9418 sin(¢h))/(1 — 0.2813 cos(21 — 27)).
If we increase the noise magnitude to 0.01 then the SINDy-PI discovered equation becomes
$1 = (—0.276847 sin(2p1 — 2¢) — 0.4138 sin(py — )3
+10.3676 sin(¢1 — 2¢) + 38.3225 sin(¢h1)) /(1 — 0.2818 cos(2p1 — 2¢2)),
and
¢ = (17355 sin(¢h1 — ¢2)¢p> + 0.2794 sin(2¢1 — 2¢p2)p3 + 0.1675sin(2¢1 — 2652)
— 33.0445 sin(2¢1 — o) + 31.0065 sin(¢h))/(1 — 0.2819 cos(2p1 — 2¢2)).

If we continue to increase the noise magnitude to 0.05 then SINDy-PI incorrectly identifies

$1 = (15.5413 sin(¢1 — 2¢2) — 2.6396 sin(¢h1 — o) — 0.9538 cos(p1 — ¢2)
+ 35.9971 cos(¢1 — 61/40) — 2.4160 cos(¢ — 1149/1000) — 0.0733 cos(2¢1 — 2¢)
+ 0.0269 cos(4p1 — 2¢) + 2.3419 sin(2¢1 — ) + 0.5142¢; sin(2p1 — 2¢)
— 0.4584¢, sin(2¢1 — ¢n) — 0.3807¢)3 sin(¢p1 — ¢2) + 0.881061 sin(¢1 — ¢»)
+ 0.9411¢ sin(¢p1 — 2¢») — 0.7664¢, sin(pq — ¢o) + 1.2026)/(1 — 0.4245 cos(2¢1 — 2¢)),

and

$2="70.9sin(¢1 — ¢2).
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Figure 10. Comparison of the model identified by SINDy, Implicit-SINDy, and SINDy-PI on Michaelis—Menten dynamics. (a)
Both SINDy-PI and Implicit-SINDy identified the correct model. However, the SINDy model only agrees for x near the origin.
(b—d) As Gaussian noise level increases, the SINDy model degrades further. (Online version in colour.)

Appendix G. SINDy-PI model for the Belousov—Zhabotinsky reaction
The SINDy-PI discovered PDE for the simplified BZ reaction is

n 0.24667x + 0.33333s 4 0.5z + 3.3333xs — 5.0xz + 2.1333x? — 3.3333x°

X = Ax
x+0.1

7

z; =0.01Az + x + 0.4u — 1.3z,
s; = As + 0.17333r — 0.66667s,
ur = Au — 133.33u + 100z.

Appendix H. Inability to identify rational dynamics with SINDy

In this section, we demonstrate that it is not possible to identify rational dynamics with the
original SINDy algorithm, testing it on the Michaelis-Menten dynamics in equation (3.9). We
use the same parameters in §3c. The Taylor expansion of equation (3.9) at x =0 is

- 50 , 500 5 5000 , 50000

x~0.6 5x+§x 7x +7x 1
Thus, when the trajectory provided for training is close enough to x =0, SINDy should identify
equation (H 1). To verify this, data with xg = 0.2409 is simulated for 22 time steps with dt =0.01.
Both the Implicit-SINDy and SINDy-PI algorithms identify the correct model in equation (3.9)
with highly accurate parameters. The model identified by SINDy is

X0 (H1)

% =0.5914 — 4.7387x + 13.1389x% — 27.6470x> + 36.9846x* — 22.8388x°. (H2)

Thus, SINDy correctly identifies the first three terms of the Taylor expansion, although the higher
order terms have large parameter errors. This model is compared with the SINDy-PI and Implicit-
SINDy models in figure 10 for a test trajectory initialized with x¢ = 0.6. From figure 10g, it can be
seen that both SINDy-PI and Implicit-SINDy match the true solution. However, the SINDy model
only agrees for x near the origin. When Gaussian noise of magnitude o is added, the SINDy model
degrades further. Moreover, the amount of data used needs to be increased to identify the correct
model. In figure 10b-d, 330, 2200 and 4400 data points ranging from 0 to 12 are used for training,.
The same amount of data is used for model selection. From figure 10b—d, it can be seen that the
SINDy model does not work well away from x = 0.

Appendix |. Robustness of SINDy and SINDy-PI

The robustness of SINDy-PI to noise depends on a number of factors, including the the length of
the data, which initial conditions are chosen to generate the data, the model parameters, the order
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Table 8. The effect of K}, on the noise robustness of SINDy-PI.

Ko max magnitude of noise true model identified model

o (0.9x—0.006) o (x—T7.6M4)(x — 5.6092)(x — 2.5078)(x — 0.0072)
0.01 0.001 X==" o X = = = 7.66)x — 5.675)x — 2.5092)(x T 0.009)
e ooy Ry Ty
0.1 0.01 X=—=—"7n = 54144)(x + 0.099)
e T e
1 0.05 X= X+1 X = — W= a7159)r  0.96%8)
R T T m T
10 0.1 == X= ==

of the polynomial terms in the model, etc. The relative impact of all of these factors varies with
the system we are studying.

In general, training data that explores more of the phase space will result in a more robust
model discovery process. Generally speaking, data that results in a better-conditioned @ matrix
will provide more robust results. Several studies have explored strategies to improve the
robustness, with Wu and Xiu suggesting the use of a large ensemble of initial conditions [43].
Exciting transients is also important [28].

Another key factor that affects the condition number of @ is the number of library elements,
which is determined by the order for a polynomial library. Including higher-order terms increases
the condition number, making it more difficult to accurately disambiguate which nonlinear term
is responsible for the observed behaviour. The library size scales exponentially with the maximum
polynomial order.

Noise robustness is also affected by the model parameters. Smaller parameters in £ are more
likely to be removed during thresholding, making the procedure less robust to noise. To illustrate
this, we change the parameter Kj;, in (3.9) and test the maximum noise SINDy-PI can handle. We
set Kj;; equal to 0.01, 0.1, 1 and 10 separately. We generate the training data with 120 random initial
conditions ranging from 0 to 10. Each initial condition is simulated until T =5 with dt = 0.01, and
the same magnitude of Gaussian noise is added. TVRegDiff is used to calculate the derivative,
and the first and last 30% of data is discarded due to aliasing effect. The testing data is generated
using the same process and the ratio of training and testing data is 1: 1. The model and maximum
magnitude of noise allowed for each values of K, is summarized in table 8. These results suggest
that as Kj;; increases, the maximum noise SINDy-PI can handle also increases.
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