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Abstract

In this paper we use Cox’s regression model to fit failure time data with continuous informative 

auxiliary variables in the presence of a validation subsample. We first estimate the induced 

relative risk function by kernel smoothing based on the validation subsample, and then improve 

the estimation by utilizing the information on the incomplete observations from non-validation 

subsample and the auxiliary observations from the primary sample. Asymptotic normality of the 

proposed estimator is derived. The proposed method allows one to robustly model the failure time 

data with an informative multivariate auxiliary covariate. Comparison of the proposed approach 

with several existing methods is made via simulations. Two real datasets are analyzed to illustrate 

the proposed method.
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1 Introduction

In epidemiologic studies, the exposure variable vector X is often too difficult or too 

expensive to measure on the full cohort, whereas an auxiliary variable vector W for X can be 

easily measured for all subjects in the study cohort. For example, in a large scale nutritional 

study, the PIN Study (Savitz et al. 2001), it would be prohibitively expensive to obtain the 

exact dietary iron intake on each individual recruited. Instead, a self administered 

quantitative food questionnaire is conducted on all subjects where a crude assessment of iron 

intake is obtained. The true exposure, the blood serrum ferritin concentration, is only 

assayed for a validation set consisting of a small subset of the full study cohort. Although 

the true covariates are missing for most individuals, the existence of some surrogates or 

auxiliary measurements conveys information about X and serves as common proxy measure. 
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Utilizing the available auxiliary information to improve the efficiency of the effects 

estimation and in turns to increase the power of the study is critical for the success of the 

studies. In this paper, we study censored failure time regression with a continuous auxiliary 

covariate vector.

A variety of authors have contributed their work to this field. Related works include Prentice 

(1982), Pepe et al. (1989), Lin and Ying (1993), Hughes (1993), Lipsitz and Ibrahim (1996), 

Zhou and Wang (2000), Fan and Wang (2009), Liu et al. (2010), etc. In particular, Prentice 

(1982) introduced a partial likelihood estimator based on the induced relative risk function. 

This method was further developed by Pepe et al. (1989) using parametric modeling. Zhou 

and Pepe (1995) proposed an estimated partial likelihood method for discrete auxiliary 

covariates to relax the parametric assumptions on the frequency of events and the underlying 

distributions of covariates. This method was extended by Zhou and Wang (2000) to deal 

with continuous auxiliary variables, based on the Nadaraya-Watson kernel smoother method 

(Nadaraya 1964; Watson, 1964). Fan and Wang (2009), Liu et al. (2010) used the same 

approach for multivariate failure time data with auxiliary covariates. While Zhou and 

Wang’s (2000) approach is useful in certain situations, there are some restrictions on it. 

First, the approach is effective only when the auxiliary variable W is of low dimension so 

that the “curse of dimensionality” in nonparametric smoothing can be avoided. Secondly, it 

requires that, conditionally on X, W provides no additional information about the hazard of 

failure; that is, all of the effects of W on failure and censoring are mediated through X, which 

is somewhat restricted since W may not be a true surrogate and depends on the failure given 

X.

Further, this method does not fully utilize the observations in the non-validation subsample 

and hence cannot be efficient in certain situations.

We here propose a new method to deal with the above problems associated with the method 

in Zhou and Wang (2000). The proposed method allows W to be multivariate and to be 

informative in the sense that, conditional X, it may provide additional information on the 

hazard of failure. We first estimate the induced relative risk function with a kernel smoother 

based on the validation sample, and then improve the estimation by utilizing the information 

on the incomplete observations from the non-validation subsample. In addition, the local 

linear smoother (see for example in Fan and Gijbels 1996) is employed to enhance the 

performance of the kernel smoother in Zhou and Wang (2000) at the boundary regions. Our 

method will be expected to improve the efficiency of the estimator of Zhou and Wang 

(2000) in various situations, for example, when auxiliary variable W is informative or not 

very informative about X (see also the simulation results). Asymptotic normality of our 

estimator is derived.

The proposed methodology can be extended to model multivariate failure time data with 

auxiliary covariates by following the method in Fan and Wang (2009) or Liu et al. (2010).

The paper is organized as follows. In Section 2, we introduce the hazards models. In Section 

3 we introduce our new estimation approach to predicting the induced relative risk for 

individuals in non-validation subsample based on the kernel smoother. In Section 4 we 
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concentrate on the asymptotic properties of the proposed estimators. We conduct 

simulations in Section 5 to compare the efficiencies of different estimating methods. In 

Section 6 we apply the proposed methodology to two real datasets.

2 Cox’s proportional hazards models

To facilitate exposition, we here employ the notations in Zhou and Wang (2000). Suppose 

that there are n independent individuals in a study cohort. Let {Xi(t), Zi(t)} denote the 

covariate vector for the ith subject at time t (i = 1, …, n). Assume that Xi(·) is only observed 

in the validation subsample which is chosen at the baseline under the ignorable missing 

mechanism condition (Rubin 1976). Let Zi(·) be the remaining covariate vector that is 

always observed, and Wi(·) the informative auxiliary variables for Xi(·). Let ηi be an 

indicator variable with ηi = 1 if the ith individual is in the validation set and 0 if in the 

nonvalidation set. Put V = {i : ηi = 1} and V̄ = {i : ηi = 0}. We assume that individuals in the 

validation subsample are randomly selected and hence representative. Then observed data 

for the ith subject is {Si, δi, Zi(·), Wi(·), Xi(·)} if ηi = 1, and {Si, δi, Zi(·), Wi(·)} if ηi = 0, 

where Si is the observed event time for the ith subject, which is the minimum of the potential 

failure time Ti and the censoring time Ci, and δi is the indicator of censoring. We consider 

the following conditional hazard rate function of failure (Cox 1972)

(2.1)

where λ0(·) ≥ 0 is the unspecified base-line hazard and  is the relative risk 

parameter vector to be estimated.

For model (2.1), the relative risk functions are , and the 

partial likelihood function for the parameters β is

(2.2)

where ℛ(Si) is the risk set at time Si. However, for i ∈ V̄, the true variate Xi(t) is not 

observed, and hence the corresponding relative risk function γi(β, t) is not available and has 

to be imputed.

Zhou and Wang (2000) used the conditional expectation

(2.3)

for the imputation of γi(β, t) (i ∈ V̄). Based on data in V, they obtained the Nadaraya-Watson 

kernel estimator (Nadaraya 1964; Watson 1964) of the above imputation and replaced γi(β, 

t) for i ∈ V̄ in (2.2) by the kernel estimator, which leads to the estimated partial likelihood. 

Under the assumption that W is not informative, that is, all of the effects of W on failure and 

censoring are mediated through X, so that
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they derived the consistency and asymptotic normality of the estimation. However, if W is 

informative, their method will generally be biased (see also Section 5). In addition, since this 

method directly used information in the auxiliary covariate W and estimated the conditional 

expectation (2.3), it may encounter the so-called “curse of dimensionality” if W is of higher 

dimension. For the present study, we propose a new method for imputation of the relative 

risk function. The information in W will be used in a new way. This leads to a new estimated 

partial likelihood.

3 Estimated partial likelihood with a local smoother

In this section, we introduce our method to estimate the parameters in model (2.1) based on 

maximizing the estimated partial likelihood.

3.1 Local smoother for the relative risk function

Instead of (2.3), we use the conditional expectation of γi(β, t),

as imputation of γi(β, t). Let d be the dimension of Z and let

(3.4)

be the induced risk function. Put , and νi(β1, t) = E[ζi(β1, t)|Si ≥ t, 

Zi(t)]. To use the partial likelihood (2.2), we need to estimate ϕi(β, t) or equivalently νi(β1, t) 

for i ∈ V̄. Using the local linear smoother (see for example, Fan and Gijbels 1996) leads to 

the following (functional) estimators of νj(β1, t) for j ∈ V̄

(3.5)

where h is the bandwidth,

Yi(t) = I[Si≥t] is the at-risk indicator, sk = ∑i∈V(Zi(t)−Zj(t))kYi(t)Kh(Zi(t)−Zj(t)), and Kh(·) = 

h−dK(·/h) for a d-variate kernel function K(·).
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The above estimation of the relative risk function was similarly used in Zhou and Wang 

(2000) for a nonparametric smoothing problem on the estimation of E[γi(β, t)|Si ≥ t, 

Zi(t),Wi(t)], where the “curse of dimensionality” problem can happen if W is multivariate. 

Note that this estimation method uses only the complete observations in V and neglects the 

important information on incomplete observations in V̄. It follows that this approach cannot 

be expected to be efficient in certain situations. In addition, it is required in Zhou and Wang 

(2000) that, conditional on X, the auxiliary variable W provides no additional information on 

the the hazard of failure. This requirement may not hold if W is not a genuine surrogate of X. 

In the following, we propose an improved estimation approach which utilizes information 

from W and observations in V̄ and does not impose the requirement. Moreover, the proposed 

method allows one to model the failure time data with informative multivariate auxiliary 

variable W without “curse of dimensionality”. Note that even for one dimensional Z and W, 

the method in Zhou and Wang (2000) requires a two-dimensional smoother while the new 

method needs only one-dimensional smoothing. To have a performance comparable with 

that of a one-dimensional nonparametric smoother using M1 = 50 data points, we need about 

 data points for a 2-dimensional nonparameteric smoother. Hence the loss of 

efficiency due to highly dimensional smoothing is large and increasing exponentially fast 

(see page 317 of Fan and Yao 2003).

3.2 Improved estimation of the relative risk function and the estimated partial likelihood

Recall that W is a vector of auxiliary variables for X and is hence correlated with X. Let ξi(α, 

t) = exp(α′Wi(t)), where α is a parameter vector to be chosen. Considering the conditional 

expectation of ψi(α, t) = E[ξi(α, t)|Si ≥ t, Zi(t)], then we can estimate ψi(α, t) by running local 

linear smoothing based on the data in V:

(3.6)

The following result depicts asymptotic correlation of ν̂
j(β1, t) and ψ̂

j(α, t).

Proposition 3.1—Suppose that the conditions in Appendix 1 hold. Given (Sj ≥ t, Zj(t)), 

 is jointly asymptotically normal with 

mean zero and covariance matrix

where ν0(K) = ∫ K2(u)du, , and 

p(·) is the density function of Z.

By the distribution theory for multivariate normal variates, the conditional distribution of 

 given  is asymptotically normal with 

mean
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The conditional mean can be estimated by substituting consistent estimators based on the 

validation sample for , σ1(Zj, t) and σ2(Zj, t), and by replacing ψj(α, t) with the 

primary sample based estimator

(3.7)

where

and s̄k = ∑i∈V∪V̄ (Zi(t) − Zj(t))k Yi(t)Kh (Zi(t) − Zj(t)).

By equating  with its estimated conditional mean and solving 

for νj(β1, t), we obtain an improved (functional) estimate

(3.8)

The updated estimator ν̄
j(β1, t) is doomed to be more accurate than ν̂

j(β1, t) in (3.5), since it 

has used the information from W and observations in V̄. Even though the information about 

W may not be utilized in a very efficient way as in Zhou and Wang’s (2000) estimator when 

W is not informative, it is the price we have to pay for achieving robustness against 

informative W. Note that ν̄
j depends on α which is related to efficiency of the estimator. 

Intuitively, one should choose α to maximize the conditional correlation coefficient between 

ζj and ξj, given (Sj ≥ t, Zj), which is evident from the following result.

Proposition 3.2—Assume that the conditions in Appendix 1 hold. Given (Sj ≥ t, Zj(t)), 

then we have

where .

When , i.e. the relative risk contributed by W is not correlated to that contributed by X, 

given (S ≥ t, Z), the estimator ν̄
j is asymptotically equivalent to ν̂

j in (3.5).

In general, . Hence, by Propositions 3.1 and 3.2, ν̄
j is more efficient than ν̂

j. Note that 

the proposed estimator is consistent for any α.
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The above estimation method for νj(β, t) was similarly used in Chen and Chen (2000) for 

estimating parameters in a parametric regression model. Our estimation can be regarded as 

an extension of their estimation approach in nonparametric regression. In addition, we do 

not need a working model to specify the regression relationship between the surrogate and 

the covariate, and hence there is no risk of misspecification of the working model.

For each given value of β, with the estimator νj̄(β, t), we can estimate the induced relative 

risk ri(β, t) in (3.4) by

(3.9)

where . Then the parameters β can be estimated by 

maximizing the following estimated partial likelihood function (EPL):

(3.10)

We denote β̂
EPL = arg maxβ EPL(β).

For an extreme case with W ≈ Z, Zhou and Wang’s imputation for (2.3) approximately 

becomes ϕ̂
i(β, t) = ν̂

i(β, t) exp(β′Zi(t)) and uses a two dimensional smoother, which is 

inferior to the improved estimator ϕ̄
i(β, t), and hence by the definition of β̂

EPL, our estimator 

is superior to Zhou and Wang’s. However, it is generally difficult to compare these two 

estimators. In our estimation of the induced relative risk, we used an improved estimator 

ϕ̄
j(β, t) for j ∈ V̄. The “curse of dimensionality” problem in Zhou and Wang (2000) can be 

avoided for a multivariate W. Our approach would at least be useful in cases where the 

number of variables in Z which are correlated with the missing covariate X is low, whereas 

the exposure variables of interest and their auxiliary variables may be multivariate.

An alternative to β̂
EPL is to maximize (3.10) but with r̂i(β, t) replaced by r̃i(β, t) = ηiγi(β, t)

+(1−ηi) ϕî(β, t), where ϕ̂
i(β, t) = ν̂

i(β, t) exp(β′Zi(t)). We denote the resulting estimator by β̂
V, 

which does not use the information on W in V̄. Intuitively, β̂
EPL should be better than β̂

V, but 

this is not true in general, since comparison of the asymptotic results in Theorems 4.1 and 

4.2 below could not lead to a dominated estimator. However, in small validation ratio 

settings, β̂
V is not expected to perform well, since it uses only the observations in the 

validation set for smoothing.

4 Asymptotic behaviors

Let nv be the subsample size of the validation set and let ρ be the limit of ratio of validation 

observations, limn→∞ nv/n. Assume that ρ ∈ (0, 1]. Define s(0)(β, t) = E [Yi(t)ri(β, t)], s(1)(β, 

t) = (∂/∂β)s(0)(β, t), s(2)(β, t) = (∂/∂βτ)s(1)(β, t).

For any matrix A, we use A⊗2 to denote matrix AAτ.

Let Ni(t) = I[Si<t,δi=1] and
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Define the filters ℱi(t) = σ {Ni(u), Yi(u+), Xi(u), Zi(u) : 0 ≤ u ≤ t}.

The censoring time is assumed to be independent of the failure time conditioning on the true 

covariates in model (2.1), that is,

(4.11)

which is different from that in Zhou and Wang (2000) where it is assumed

Then, under the independent censoring assumption (4.11),

Mi(t) is a mean zero martingale with repsect to ℱi(t) (Kalbfleisch and Prentice 1980; 

Fleming and Harrington 1991).

In addition, the cumulative hazard  can be consistently estimated as

Without loss of generality, we assume that t ∈[0, 1]. Put 

, where 

, and

The following theorem shows that β̂
EPL is asymptotically normal.

Theorem 4.1

Suppose that Condition (A) in Appendix 1 holds. Then β̂
EPL is consistent estimator for β and 

satisfies
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where Ω = I−1(β0)Σ(β0)I−1(β0) with Σ(β0) = (1 − ρ)Σ1(β0) + ρΣ2(β0),

Remark 4.1

It is interesting to note that  when the auxiliary W approximates X, and hence the 

second term in the expectation of Σ2(β) approximates to (1 − ρ)Qi. Therefore, a small ρ will 

not result in a big Σ2(β0). Theoretically, when Wi = Zi,  and the above asymptotic 

variance formula shares the same formula as that for the estimator in Zhou and Wang (2000) 

as exactly expected. However, in practice where Wi ≈ Zi, since Zhou and Wang (2000) used 

a higher dimensional smoother than us, our estimator would have better efficiency for finite 

samples.

When , β̂
EPL is asymptotically equivalent to the complete-case estimator based on only 

the validation set V. This is also expected, since the auxiliary variable Wi contains no 

information on Xi at this setting. From Theorem 4.1, the asymptotic covariance matrix of 

β̂
EPL is of sandwich form, which can consistently be estimated by Ω̂

0 = Î−1(β0) Σ̂(β0)Î−1(β0), 

where Î(β) and Σ̂(β) are the corresponding empirical estimates. Specifically,
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where ρ̂ = nv/n,

In summary, a constant variance estimator for β̂
EPL can be obtained by replacing the 

population quantities in the asymptotic covariance matrix Σ(β0) with their corresponding 

sample averages as in Zhou and Wang (2000). Hence, the asymptotic confidence intervals 

for β can also be constructed.

The following theorem demonstrates the asymptotic normality of β̂
V.

Theorem 4.2

Under the same conditions as in Theorem 4.1, the estimator β̂
V shares the same asymptotic 

distribution as βÊPL but with Σ1(β0) and Σ2(β0) replaced by Σ1V (β0) and Σ2V (β0), 

respectively, where , and 

.

4.1 Choice of the parameter vector α

The choice of α affects efficiency of β̂
EPL, although the estimator is -consistent for any 

α. In this paper, we choose α by minimizing the variance of the estimator βÊPL. Given initial 

value of β and α, one can estimate α by minimizing the trace of Ω̂(α).
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Once the value of α is known, maximization of EPL(β) can be solved via Newton-Raphson 

iterations. Repeating this procedure, one can find a solution to the optimization problem 

(3.10). To reduce the burden of computation in practice, one can employ a consistent naive 

estimator of β as initial value, for example the estimator of β based on only the validation 

sample which is easy to implement because it involves only a simple fit for the usual Cox’s 

model. In our experience, using the naive estimator as the initial value the iterations 

converge in a few steps.

4.2 Choice of the bandwidth parameter

As for the bandwidths, they affect the estimator β̂
EPL, which is true in any nonparametric 

smoothing problems. Fortunately, the proposed estimator β̂
EPL is effective for a large range 

of bandwidths (see Condition (6) in Appendix 1). Similar to that in Zhou and Wang (2000), 

we employed here the empirical bandwidth h = (h1, h2)′ with h1 = 2σ̂
Zn−1/3 and h2 = 

2σŴn−1/3, where σ̂
Z and σ̂

W are respectively the sample standard deviations of Z and W, 

which satisfy the bandwidth conditions required in this paper.

5 Simulations

In this section, we conduct finite-sample simulationsa The aims of the simulations are three-

fold: one is to examine the small sample behavior of β̂
EPL, another is to compare the 

performance of our estimator with some existing estimators under various situations, and the 

third and the most important is to illustrate that the proposed estimation allows for an 

informative auxiliary vector W. The covariates (X, Z) are generated from the following 

transformation to create correlation:

(5.12)

where Ui’s are independent and identically distributed as U(0, 2). The failure time T 

conditional on covariate X is from an exponential distribution with hazard function

where λ is the baseline constant hazard. We only consider the case λ = 1. Then

The auxiliary variable W is generated from

(5.13)

where e ~ (0, σ2) and σ2 is the parameter controlling the strength of the association 

between X and W. We consider the settings with γ = 0 and 2. Model (5.13) with γ = 2 allows 

aAll numerical results in this paper are obtained using the software MATLAB and the codes are available (Additional file 1).
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one to explore the effectiveness of the proposed method with an informative surrogate W. 

For γ = 0, it also allows us to compare the performance of the newly proposed method and 

that in Zhou and Wang (2000). We do simulations for σ = 0.2 and 0.8. The censoring 

variable is uniformly distributed and independent of the failure time. The validation set is 

randomly selected with P(ηi = 1) = 0.5.

We choose the Gaussian kernel function with the bandwidths (h1 = 2σ̂Zn−1/3, h2 = 2σ̂
Wn−1/3) 

which satisfy the bandwidth conditions in Theorem 4.1, where σ̂
Z and σ̂

W are the sample 

standard deviations of Z and W respectively. In the following tables, β0 =[log(2), 0.5]′ 

denotes the true value of the parameter to be estimated, se is the standard error of β̂
EPL from 

simulation,  denotes the mean of the estimated standard errors and cp denotes the 

95% coverage probability.

The methods we considered are the newly proposed estimated partial likehood estimation 

(β̂
EPL)and its conterpart (β̂

ZW) in Zhou and Wang (2000), the estimator (β̂
V) which does not 

use the information on W in V̄, the complete-case Cox regression analysis (β̂
CC) which uses 

only the validation subsample, the Cox regression with W substituted for the missing X (β̂
N), 

and the full data Cox regression (β̂
F) which assumes that X is available for all n subjects in 

the study.

Tables 1 and 2 summarizes the results obtained from the simulation. Note that β̂
F, β̂

CC and 

β̂
V in Table 2 are the same in Table 1, so we do not report them in Table 2. For finite sample 

sizes, the mean, median, standard error (se) and 95% confidence intervals of the estimator 

are calculated based on 500 independent runs. We observe that βF̂ is the best estimator but it 

is not always obtainable for practical studies. The estimator βN̂ is biased. In all the situations 

β̂
EPL is observed to be a consistent estimator of true β0. The estimates obtained from Zhou 

and Wang (2000) method are biased when γ = 2. Also, we notice that the bias in their 

estimates increases when σ increases. Efficiency of β̂
EPL relative to the complete case 

estimator β̂
CC is approximately the same for β1 = log(2) but much higher for β2 = 0.5. For γ 

= 0 the estimator β̂
ZW is more efficient than the proposed estimator for smaller values of σ 

but as the correlation between the exposure and auxiliary variable decreases the efficiency 

becomes closer (see the values of se for n = 300). Also, we notice that β̂
EPL has less bias 

than β̂
V for different values of n, but they are still comparable and even in some cases β̂

V is 

better in terms of the standard deviation. For γ = 2, our method stays almost equally efficient 

as σ increases, but βẐW fails because of its large bias and low coverage probability (cp). Note 

that, when γ = 2, W is an informative auxiliary variable about the failure time and is not very 

informative about X.

We also performed simulations to see the effect of validation ratio and different bandwidths 

on the estimation. The proposed estimator β̂
EPL works well for smaller validation 

percentages and is not very sensitive to the bandwidth selection. In particular, β̂
EPL is better 

than βV̂ when the validation ratio is 0.25, which is evidenced in Table 3. We also conducted 

simulations with smaller validation ratios. Our experience indicates that, as the validation 

ratio gets as small as 0.2, βV̂ is very bad but β̂
EPL still works.
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We conclude that, the proposed partial likelihood estimator can be used to make inference 

for β under various situations. In particular, the estimator is consistent and efficient when the 

auxiliary variable is informative about the hazard rate of failure time while Zhou and 

Wang’s estimator fails.

6 Real data analysis

6.1 Primary Biliary Cirrhosis data

We apply the proposed approach to the data from the Mayo Clinic trial in primary biliary 

cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients, 

referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the 

randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the 

data set participated in the randomized trial and contain largely complete data. The 

additional 112 cases did not participate in the clinical trial, but agreed to have basic 

measurements recorded and to be followed for survival. Six of those cases were lost to 

follow-up shortly after diagnosis, so the data here are on an additional 106 cases as well as 

the 312 randomized participants.

A clinical background description and a more extended discussion for the trial and the 

covariates recorded can be found in Dickson et al. (1989) and Markus et al. (1989). The 

variables involved in our specify analysis include id: case number; days: number of days 

between registration and the earlier of death, transplantation, or study analysis time; status: 

status of censoring; bili: serum bilirubin (in mg/dl); chol: serum cholesterol (inmg/dl) and 

Age: age in days.

In this analysis, we are particularly interested in the effect of patients’ serum cholesterol and 

age on the survival of the patients. This type of failure time data can be modeled by the Cox 

proportional hazards models with an unknown baseline hazard function. However, about 

31% outcomes of cholesterol were missing in this data set. Removing those observations 

may lead to biased estimates and standard errors. We noted that the outcomes of serum 

bilirubin were completely obtained with no missing values. Preliminary analysis showed 

that there is a significant correlation between serum cholesterol and bilirubin. Also, 

intuitively bilirubin has some additional effect on the hazard of failure and we would like to 

use that information efficiently. To illustrate this effect, we performed a complete Cox 

regression analysis for two different situations. We take the logarithmic transformation of 

bilirubin for our study.

In Table 4, we observe that the coefficient and standard error estimates are quite different 

for both the situations and the 95% confidence intervals for the coefficient of age are 

nonoverlapping. We can conclude that serum bilirubin has some additional effect on the 

hazard of failure. Hence, our proposed method can be applied to this dataset considering 

serum bilirubin as the informative auxiliary covariate.

Table 5 displays the analysis results based on the Cox’s regression for the complete data 

(CC), the method proposed by Zhou and Wang (2000) (ZW) and the proposed method 

(EPL). The CC method uses only 284 complete-case observations and the other two 
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methods use all 418 observations. Variable “logchol” denotes the logarithm of cholesterol. 

The estimates of the coefficients and their standard errors are given in the table.

The regression analysis confirms that both serum cholesterol and age are significantly 

related to the time to event. For estimating the effect of serum cholesterol and age, there is a 

reasonable efficiency gain by using the two methods based on partial likelihood approach 

over the complete case Cox regression analysis. But there is a discrepancy between the 

estimates from complete data and Zhou and Wangs estimate which could be due to the fact 

that the latter method does not consider the additional effect contributed by the auxiliary 

covariate. In our simulation we observed that the standard error of the estimates were 

underestimated in Zhou and Wangs method when auxiliary variable was informative. In the 

real data analysis also the standard error estimate for serum cholesterol is underestimated. 

Moreover, the standard error estimates in our method is comparable to Zhou and Wangs 

method whereas the calculation time is much less compared to their method.

6.2 Serrum Ferritin Concentration in relation to preterm delivery study

We apply the proposed approach to the data on iron intake in relation to preterm delivery 

study from the University of North Carolina Hospitals at Chapel Hill. A total of 1520 

women were included in the study. 17 of these women were lost to follow up. So the data 

consist of 1503 individuals among which 270 individuals had their serrum ferritin 

concentration (FERRITIN) measured with an immunometric assay. However a crude score 

for dietary iron intake (DTFE) was collected using a dietary food frequency questionnaire 

for all the individuals.

A clinical background description and a more extended discussion for the trial and the 

covariates recorded can be found in Savitz et al. (2001). The variables involved in our 

specfic analysis include (i) id: case number; (ii) Gestation Time: The number of weeks from 

pregnancy to delivery; (iii) DTFE: Dietary iron intake(in 100mg/dl); (iv) Ferritin: Serum 

Ferritin (in 100 mg/dl); and (v) Age: age in years. By using the notations in the proposed 

method, X is Ferritin, W is DTFE, and Z is Age.

In this analysis, we are particularly interested in the effect of patients’ serum ferritin and age 

on the delivery of the patients. This type of failure time data can be modeled by the Cox 

proportional hazards models.

However, outcomes for serum ferritin were missing in this data set. Removing those 

observations can lead to biased or inefficient estimates. We noted that the outcomes of 

dietary iron intake were completely obtained with no missing values.

Table 6 displays the analysis results based on the the CC method, the ZW method, and the 

proposed EPL method. The CC method used only 270 complete-case observations and the 

other two methods used all 1503 observations.

The regression analysis using the new method confirms that both serum ferritin and age are 

significantly related to the time to event. For estimating the effect of serum ferritin and age, 

there is also a reasonable efficiency gain by using the two methods based on partial 
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likelihood approach over the complete case cox regression analysis. The estimate of serrum 

ferritin is lower by the EPL method. The estimate is significantly different from zero with p-

value 0.020. In contrast, the p-value from CC method in estimation of serrum ferritin is 0.06.

7 Conclusion

We have introduced an EPL estimation method for Cox’s models with informative auxiliary 

covariates and established asymptotic normality of our estimator. The proposed proposed 

methodology allows for multivariate auxiliary covariates W without suffering the curse of 

dimensionality.

We used the same bandwidth as suggested by Zhou and Wang (2000) in our estimation. 

Though it performs reasonably well, one can develop a bandwidth selection criteria like 

generalized cross-validation for an improved estimation. It is desirable to increase the 

efficiency of the estimation. In future, we can consider the optimization of α or introduce 

some weight structure in the score equation to achieve robustness. Further, it is worthy 

extending our approach to model multivariate failure time.
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Appendix 1: Condition (A)

For the risk function ri(β, t) (as well as for rî(β, t), γi(β, t), ϕî(β, t) and ϕi(β, t)), we denote by 

 the jth derivative of ri(β, t) with respect to β, j = 0, 1, 2, where  means the 

function itself. Define , S(1)(β, t) = (∂/∂β)S(0)(β, t), S(2)(β, t) 

= (∂/∂β)S(1)(β, t), s(0)(β, t) = E[Yi(t)ri(β, t)], s(1)(β, t) = (∂/∂β)s(0)(β, t), s(2)(β, t) = (∂/∂β)s(1)(β, 

t). Let ,
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The following conditions are needed for the theoretical results in the paper:

1. .

2. Pr(Y(1) = 1|V) > 0 for any validation set V.

3. There exists an open subset ℬ, containing the true value β0 of β, of the Euclidean 

space ℛp. In addition,  with elements (∂2/∂βi∂βj)r(β, t) exists and is 

continuous on ℬ for each t ∈[0, 1], uniform in t, and ϕ(β, t) is bounded away from 

0 on ℬ×[0, 1]. Furthermore, I(β) is positive definite.

4.

Also observe that, s(0)(β, t) = E[Y(t)r(β, t)]= E[Y(t)r*(β, t)].

5. Let FY (t),Z be the joint distribution of (Y(t), Z), and f (t, z) = (∂/∂z)FY (t),z(1, z). For 

each t ∈[0, 1], both f (t, z) and ϕ(β, t) have the 2nd continuous derivative almost 

everywhere.

6. h → 0, nhd+4 → 0 and nhd(log n)−2 → ∞, as n → ∞.

Appendix 2: Technical Proofs

Proof of Proposition 3.1

The argument employed here is similar to that for Theorem 1 of Jiang et al. (2011). Note 

that ν̂
j − νj = ∑i∈V ωi(νi − νj) + ∑i∈V ωi(ζi − νi). By standard nonparametric regression 

techniques (see for example Härdle 1990; Fan and Gijbels 1996), it can be shown that the 

first term above contributes to bias and is Op(h2), which is of order , if one uses 

an undersmoothing bandwidth such that nhd+4 → 0, so that 

. Similarly, 
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. Then the asymptotic normality can be obtained 

by using the Cramé-Wald device and directly computing the asymptotic mean and variance 

(see, for example the Lemma 6.3 in Jiang and Mack 2001).

Proof of Proposition 3.2

Note that from (3.8)

The asymptotic normality of  is obtained by the Slutsky’s theorem and the 

asymptotic normality of  and .

Lemma 7.1

Under Condition (A),

Proof—By simple algebra, we have

Note that for j = 0, …, 2

(7.14)

and

(7.15)

uniformly for i = 1, …, n if h → 0 and nhd → ∞. It follows that
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uniformly in β ∈ ℬ.

Proof of Theorem 4.1

The proof is argued in the framework of the multivariate counting processes, the martingale 

theory, and the techniques commonly used in nonparametric regression. Following the same 

routine as in Zhou and Wang (2000), the consistency of β̂
EPL can be derived by using the 

Inverse Function Theorem (Rudin 1964; Andersen and Gill, 1982) and the argument by 

Foutz (1977). In the following, we give only the asymptotic normality in Theorem 4.1. The 

main techniques we employed are Taylor’s expansion of the score function corresponding to 

the estimated likelihood function (3.10), Lenglart inequality, the martingale central limit 

theorem (see e.g. Fleming and Harrington 1991), and nonparametric regression techniques.

By using counting process notation, the score function corresponding to the estimated partial 

likelihood function (3.10) at time point t can be written as

(7.16)

where

By (7.16), β̂
EPL solves the equation Û(β, 1) = 0. By Taylor’s expansion, one gets

(7.17)

where β* is between β̂
EPL and β0. By Lemma 7.1 and consistency of β̂

EPL,

Therefore, to prove the asymptotic normality in the theorem it suffices to show that n−1/2Û 

(β, 1) is asymptotically normal with mean 0 and variance Σ(β0) = (1−ρ)Σ1(β0)+ρΣ2(β0), 

which is evidenced in Lemma 7.4 below.

Proof of Theorem 4.2

Using similar arguments to Theorem 4.1, we establish the result.

Lemma 7.2

Under Condition (A),
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Proof—The result can be obtained by following the same argument as that for Lemma 2.4 

of Zhou and Wang (1999).

Lemma 7.3

Under Condition (A), the second term of Û (β, t) in (7.16) admits the following 

decomposition

Proof—The proof uses the same argument as that for Lemma 2.5 of Zhou and Wang 

(1999). By the Taylor expansion

if , and  are finite. Then

Note that ∑i Δr̂i(u)r̂i(u)Yi(u) = 0. It follows that the left side of the result in the lemma can be 

expressed as
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where the last equality is from Lemma 7.2. Therefore the result holds.

Lemma 7.4

Under Condition (A),

Proof—Note that r̂i − ri = (1 − ηi) (ϕī − ϕi). Applying the first order approximation 

 to r(̂1)/r̂ and Ŝ(1)/Ŝ(0) 

around (r(1), r) and (s(1), s(0)), respectively, and by Lemma 7.3 the second term of n−1/2Û(β, 

1) in (7.16) becomes

(7.18)

Note that . Since

the first term in (7.18) can be rewritten as
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Note that

uniformly for j = 1, …, n. Then
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Therefore, the second term of n−1/2Û(β, 1) in (7.16) equals

Hence, n−1/2Û(β, 1) can be expressed as

For the 1st and 3rd terms above, each of them is a sum of independently distributed terms 

with mean zero from the nonvalidation and validation subsamples, respectively. The 1st 

term converges weakly to a gaussian process with covariance (1−ρ)Σ1(β0). The 3rd term is 

asymptotically normal with mean zero and variance ρΣ2(β0). By independence of the two 

terms,  with Σ(β) = (1 − ρ)Σ1(β) + ρΣ2(β).
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Table 3

Comparison of simulation results with β =[ln(2) 0.5]′, 50% censoring, σ = 0.2, and validation fraction 0.25

n = 100 n = 200

β̂V β̂EPL β̂V β̂EPL

mean − β0 −0.142 0.056 −0.087 0.049

0.107 0.018 0.056 0.001

median − β0 −0.152 0.035 −0.125 0.011

0.091 −0.002 0.065 0.002

se 0.506 0.565 0.405 0.417

0.329 0.320 0.234 0.232

0.513 0.618 0.380 0.410

0.306 0.333 0.220 0.224

cp 0.944 0.936 0.928 0.924

0.934 0.954 0.934 0.942
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Table 5

Regression analysis of primary biliary cirrhosis (PBC) data

Method Variable Estimates of parameters Standard error 95% Confidence interval

CC
logchol 0.853 0.214 (0.432, 1.273)

age 0.048 0.010 (0.029, 0.067)

ZW
logchol 1.142 0.154 (0.840, 1.444)

age 0.047 0.007 (0.033, 0.061)

EPL
logchol 0.851 0.215 (0.429, 1.273)

age 0.044 0.007 (0.029, 0.058)
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