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abstract

 

K

 

1

 

 channels encoded by the 

 

human ether-à-go-go-related gene

 

 (HERG) are distinguished from most

 

other voltage-gated K

 

1

 

 channels by an unusually slow deactivation process that enables cardiac I

 

Kr

 

, the correspond-
ing current in ventricular cells, to contribute to the repolarization of the action potential. When the first 16 amino
acids are deleted from the amino terminus of HERG, the deactivation rate is much faster (Wang, J., M.C. Trudeau,
A.M. Zappia, and G.A. Robertson. 1998. 

 

J. Gen. Physiol

 

. 112:637–647). In this study, we determined whether the
first 16 amino acids comprise a functional domain capable of slowing deactivation. We also tested whether this
“deactivation subdomain” slows deactivation directly by affecting channel open times or indirectly by a blocking
mechanism. Using inside-out macropatches excised from 

 

Xenopus 

 

oocytes, we found that a peptide corresponding
to the first 16 amino acids of HERG is sufficient to reconstitute slow deactivation to channels lacking the amino
terminus. The peptide acts as a soluble domain in a rapid and readily reversible manner, reflecting a more dy-
namic regulation of deactivation than the slow modification observed in a previous study with a larger amino-ter-
minal peptide fragment (Morais Cabral, J.H., A. Lee, S.L. Cohen, B.T. Chait, M. Li, and R. Mackinnon. 1998. 

 

Cell.

 

95:649–655). The slowing of deactivation by the peptide occurs in a dose-dependent manner, with a Hill coeffi-
cient that implies the cooperative action of at least three peptides per channel. Unlike internal TEA, which slows
deactivation indirectly by blocking the channels, the peptide does not reduce current amplitude. Nor does the
amino terminus interfere with the blocking effect of TEA, indicating that the amino terminus binding site is spa-
tially distinct from the TEA binding site. Analysis of the single channel activity in cell-attached patches shows that
the amino terminus significantly increases channel mean open time with no alteration of the mean closed time or
the addition of nonconducting states expected from a pore block mechanism.We propose that the four amino-ter-
minal deactivation subdomains of the tetrameric channel interact with binding sites uncovered by channel open-
ing to specifically stabilize the open state and thus slow channel closing.
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I N T R O D U C T I O N

 

Repolarization of the ventricular cardiac action potential
depends on a collection of potassium currents that con-
trol the duration of the action potential and the QT in-

 

terval during each heartbeat. Temporally, I

 

Kr

 

 is the last of
these currents to exert its repolarizing influence (Zeng
et al., 1995). Disrupting I

 

Kr

 

 with drugs (Sanguinetti and

 

Jurkiewicz, 1990) or by mutations in the 

 

human ether-à-go-
go–related gene

 

 (HERG)

 

1

 

 (Curran et al., 1995) prolongs
the ventricular action potential and QT interval, leading
in some cases to life-threatening cardiac arrhythmias.
The polypeptide encoded by HERG forms channels in
heterologous expression systems with the characteristic
features of I

 

Kr

 

 (Sanguinetti et al., 1995; Trudeau et al.,
1995), although the drug-binding properties of native I

 

Kr

 

channels are more closely mimicked by hetero-oligo-

meric assemblies of HERG with the smaller MinK-related
peptide MiRP1 (Abbott et al., 1999).

 

Work in several laboratories has contributed to our
understanding of how the gating mechanisms of HERG

 

channels enable I

 

Kr

 

 to fulfill its physiological role in the
heart. Like other S4-containing channels, HERG chan-
nels activate and inactivate upon depolarization, and
return to rest (deactivate) upon repolarization (San-
guinetti et al., 1995; Trudeau et al., 1995). But because
inactivation is faster than activation, channels spend lit-
tle time in the open state and outward current is effec-
tively suppressed at the positive voltages reached dur-
ing the peak of the action potential (Zhou et al., 1998).
It is upon repolarization, as HERG channels recover
from inactivation, revisit the open state, and slowly

 

close, that a large outward current is evoked. This
“resurgent current,” a term coined for the current

 

through Na

 

1

 

 channels exhibiting an analogous gating
process in cerebellar Purkinje neurons (Raman and
Bean, 1997), provides the terminal repolarization for
the cardiac action potential. The resurgent nature of
the native current that would later be identified as I

 

Kr

 

(Sanguinetti and Jurkiewicz, 1990) was originally de-
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scribed by Shibasaki (1987), who also accurately pre-
dicted the underlying gating mechanism.

Critical to the production of the resurgent current are
a rapid, C-type inactivation mechanism (Schonherr and
Heinemann, 1996; Smith et al., 1996; Herzberg et al.,
1998), and a slow deactivation process, about which less
is known. Our previous studies suggest that a domain
within the first 16 residues of the amino terminus slows
deactivation by interacting with a site near the internal
mouth of the pore. Removal of the first 16 amino acids
dramatically increases deactivation rate (Wang et al.,
1998), phenocopying a more extensive amino-terminal
deletion (

 

D

 

2-354) (Schonherr and Heinemann, 1996;
Spector et al., 1996). The same phenotype results from
the covalent modification of the S4–S5 linker by a thiol-
reducing agent, suggesting that the addition of a bulky
group near the internal mouth of the pore interferes
with the ability of the amino terminus to slow deactiva-
tion. Conversion from the slow to the fast deactivation
phenotype occurs within minutes of adding the agent, as
if a dynamic process leaves the target cysteine accessible
to modification when the amino-terminal domain and
its receptor site are not in contact (Wang et al., 1998).

In contrast, a peptide corresponding to the first 135
amino acids of HERG, and encompassing a 

 

Per-Arnt-Sim

 

(PAS) domain identified within its crystal structure,
gradually reconstituted slow deactivation over a 24-h
period when injected into oocytes expressing HERG
channels lacking the amino terminus (Morais Cabral et
al., 1998). Acute application of this peptide to an ex-
cised patch had no effect, and the reconstituted slow
deactivation was unaffected by membrane excision, ar-
guing against a rapid association and dissociation pro-
cess and in favor of a stable, structural role for the PAS
domain or other region within the peptide (Morais Ca-
bral et al., 1998).

In this study, we tested the hypothesis that the small
segment of 16 amino acids required for slow deactiva-
tion can act as an independent, soluble domain to dy-
namically restore slow deactivation to a channel lacking
an amino terminus. This approach is analogous to that
used to restore fast inactivation gating in 

 

Shaker

 

 channels
with an amino-terminal peptide (Zagotta et al., 1990).
We also asked whether the HERG amino terminus slows
deactivation directly by stabilizing the open state and in-
creasing channel open time, or indirectly by a blocking
mechanism that prevents channel closure while it occu-
pies its binding site, two possibilities that could not be
distinguished in our previous studies. The latter “foot-in-
the-door” hypothesis is based on the slowing of deactiva-
tion by quaternary ammonium ions in other K

 

1

 

 chan-
nels (Armstrong, 1969, 1971; Choi et al., 1993) and by
the amino terminus peptide in 

 

Shaker

 

 channels, a sec-
ondary consequence of the inactivation mechanism
(Demo and Yellen, 1991). We found that a peptide cor-

 

responding to the first 16 amino acids can restore slow
deactivation to truncated HERG channels, and that the
amino terminus slows deactivation directly by holding the
channels open longer. This gating mechanism, not pre-
viously described, may be generally important among
diverse voltage-gated channels that mediate resurgent
currents upon repolarization or otherwise require slow
deactivation to fulfill their physiological roles.

 

M E T H O D S

 

Expression of Channels in Xenopus Oocytes

 

Preparation of oocytes and RNA synthesis and injection were per-
formed as previously described (Wang et al., 1998). The expres-
sion level of the channels was monitored daily with a two-elec-
trode voltage clamp. The appropriate outward whole-cell current
level was 50 

 

m

 

A for the macropatch experiments and 20 

 

m

 

A for
the single channel recordings.

Unless otherwise noted, all experiments were carried out in an
S620T background. This mutation dramatically increased expres-
sion levels. Deactivation in S620T was shown in a previous study
to be regulated by the amino terminus in a manner indistin-
guishable from that in wild-type channels (Wang et al., 1998).

 

Current Recording and Data Analysis

 

All currents were recorded using an Axopatch 200A integrating
patch clamp and pClamp 6.0.3 data acquisition software (Axon
Instruments, Inc.). Recordings were digitized at 2.5 kHz unfil-
tered for macropatch experiment and 10 kHz filtered at 1 kHz
for single channel experiments. Single channel activities were re-
corded in the cell-attached configuration, while the macropatch
data were obtained in the inside-out patch configuration. Patch
electrodes were fabricated from borosilicate glass using a Flam-
ing/Brown micropipette puller (Sutter Instrument Co.). The tip
of the electrode was heat polished with a microforge (Narishige
Scientific Instruments) immediately before the recordings. For
single-channel recordings, the electrode was also coated with Syl-
gard as close to the tip as possible to reduce capacitance. The tip
opening was 3–6 

 

m

 

m for macropatch and 1 

 

m

 

m for single chan-
nel recordings. The resistance of the electrodes was 1–2 M

 

V

 

 for
macropatch and 5–10 M

 

V

 

 for single channel recordings with the
solutions indicated below. Seal resistance was at least 10 G

 

V

 

 for
macropatch and 50 G

 

V

 

 for the single channel recordings. In
macropatch experiments, once a gigaseal was formed and on-cell
currents were recorded as controls, the patch was excised from
the oocyte into internal bath solution.

PClamp and Origin 4.1 (Microcal Software, Inc.) were used for
data analysis and generating statistic plots. Time constants (

 

t

 

s) for
deactivation were measured in Clampfit with a Chebyshev fit to
the deactivating tail current using the equation 

 

y
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. Deactivation rate was estimated from the time constant

 

t 5 

 

1/(

 

a 1 b

 

), where 

 

a

 

 is the activation rate constant and 

 

b

 

 is the
deactivation rate constant for a two-state system. At 

 

2

 

140 mV,
there is little return from the closed to the open state and so deac-
tivation rate can be reasonably inferred from 

 

t

 

 

 

>

 

 1/

 

b

 

. Time con-
stants are represented in figures as box plots, in which the box top
and bottom represent the range of the data between 1 and 99%
and the middle line represents the mean value. Histograms of the
open- and closed-time distribution were generated in pStat from
the continuous recordings obtained with Fetchex program. Sec-
ond-order exponential fitting to the histograms using the Mar-
quardt-LSQ method generated the time constants as the mean
dwell time of each state.
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We observed faster deactivation kinetics in the macropatch re-
cordings compared with those in our previous whole-cell record-
ings. The faster deactivation rate occurred in both on-cell and ex-
cised patch configurations, and in both S620T and S620T

 

D

 

2-354
channels. Therefore, the interpretation of our data is unaffected.
Likely reasons for this change to fast kinetics include alteration
of membrane mechanics and negative pressure associated with
patch formation (Shcherbatko et al., 1999).

 

Solutions

 

Unless otherwise noted, the pipette and bath solution contained
(mM): 100 KCl, 0.3 CaCl

 

2

 

, 1 MgCl

 

2

 

, 40 

 

N

 

-methyl-glucamine, and
10 HEPES, pH 7.4. The internal bath solution contained (mM):
140 KCl, 2 MgCl

 

2

 

, 10 EGTA, 5 HEPES, and 5 MgATP, pH 7.4.
TEA-Cl was dissolved in internal bath solution, and then applied
to the bath solution directly.

 

Peptide Synthesis and Handling

 

The H16 and H16s peptides were synthesized using the facilities at
the University of Wisconsin Biotechnology Center. Both peptides
were purified with reverse-phase HPLC. The peptide was stored as
lyophilized powder at 

 

2

 

20

 

8

 

C. Before each experiment, the pep-
tide was then dissolved in internal bath solution to desired con-
centration, and then applied to the bath solution directly.

 

R E S U L T S

 

Restoration of Slow Deactivation by an Amino-Terminal Peptide

 

In a previous study, we found that the first 16 amino ac-
ids are necessary for slow deactivation in HERG chan-
nels (Wang et al., 1998) and that their removal fully
mimics the deactivation phenotype of the more exten-
sive amino-terminal truncation 

 

D

 

2-354 (Schonherr and
Heinemann, 1996; Spector et al., 1996; Wang et al.,
1998). To determine whether this smaller region is suf-
ficient to restore slow deactivation to the truncated
channel, we constructed a peptide corresponding to
the first 16 amino acids and applied it to inside-out
macropatches excised from oocytes expressing the con-
struct 

 

D

 

2-354. Fig. 1 A is a composite of three record-
ings of tail currents evoked at 

 

2

 

140 mV after an activat-
ing step to 60 mV (only partially shown). The currents
were sequentially recorded from the same patch, first
immediately after excision, then after application of
peptide (H16), and finally after wash out of the pep-
tide. Deactivation was rapid in the on-cell recording
and unchanged by excision. Application of the peptide
slowed deactivation without reducing the initial tail
current, an effect that was rapidly reversible upon wash-
out (Fig.1 A). Consistent results were obtained with
four patches, indicating that the first 16 amino acids
comprise an independent, soluble domain that revers-
ibly slows deactivation without pore blocking. Both ex-
ponential components characteristic of HERG deacti-
vation were slowed by the peptide (Fig. 1 B), consistent
with the effect of the native amino terminus in whole
cell recordings (Wang et al., 1998). When a scrambled
peptide with the same amino acid composition as the

 

H16 peptide was applied to the excised patch, deactiva-
tion was unaffected (Fig. 1, C and D), indicating that
the slowing of deactivation depends on the structure
dictated by the primary amino acid sequence of the
peptide and not on its size or net charge.

To determine whether the H16 peptide mimics the in-
tact amino terminus or instead slows deactivation by an
independent mechanism not intrinsic to the native chan-
nel, we tested the effect of the peptide in HERG channels
with intact amino termini. In contrast to its slowing of
truncated channels shown in Fig. 1 A, the peptide had no
effect on the deactivation rate in channels with an intact
amino terminus (Fig. 2 A), indicating that the peptide
and the native amino terminus slow deactivation by the
same process. The values for the mean time constants for
the dominant fast component extracted from exponen-
tial fits to the deactivating tail currents from three such
experiments are summarized in Fig. 2 B.

 

Multiple Amino Terminal Peptides Cause Slow Deactivation

 

How many amino termini are required to slow the deac-
tivation rate of a single channel? The peptide slowed de-
activation in a dose-dependent manner (Fig. 3, A and
B), giving a Hill coefficient of 2.2 

 

6

 

 0.1. Thus, three or
more amino termini probably mediate the slowing ef-
fect. Restoration of slow deactivation was not complete,
with the time constant saturating at a value approxi-
mately halfway between the corresponding values for
the wild-type and truncated channels (see 

 

discussion

 

).
At significantly higher concentrations (5 mM), the

peptide has an inhibitory effect (Fig. 3 C). We won-
dered whether channel block by the peptide might re-
flect a physiological process that could account for the
fractional slowing of deactivation not restored by the
peptide. Based on a model of open-channel block, in
which the degree of slowing of deactivation is directly
proportional to the degree of current block (see de-
tailed description in Fig. 4, legend), the resulting inhibi-
tion of current predicts that the deactivation rate will be
slowed by 82.3 

 

6

 

 6.8%. We found that deactivation is
slowed only by 47.6 

 

6

 

 9.3%, similar to that observed
with the lower, saturating concentration of peptide. The
inhibition is therefore an artifact not unexpected from
such high concentrations of synthetic peptide and can-
not account for the additional component of slowing.

 

The Amino Terminus Does Not Slow Deactivation by a 
Pore-blocking Mechanism

 

Note that the slowing of deactivation by the peptide
shown in Figs. 1 and 3 is accompanied by an increase in
the current integral, or total charge moving through
the channels, implying that the peptide increases the
channel mean open time. If, in contrast, the amino ter-
minus had slowed the apparent deactivation rate by oc-
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cluding the pore, as proposed for 

 

Shaker

 

 channels
(Demo and Yellen, 1991), we would have seen an initial
reduction in current amplitude and a proportional de-
crease in apparent deactivation rate as predicted by
competition models (Beam, 1976; Yeh and Narahashi,
1977; Neher and Steinbach, 1978; Grissmer and Ca-
halan, 1989; Choi et al., 1991; see Fig. 4 legend).

Like other voltage-gated K

 

1

 

 channels, HERG channels
are blocked by internal TEA (Smith et al., 1996). Consis-
tent with this block, the deactivation time course was
slowed when TEA was applied to the inner aspect of 

 

D

 

2-
354 truncated channels in excised macropatches. TEA
slowed the apparent deactivation rate by 44.1 

 

6

 

 10.9%,
close to the 50.5 

 

6

 

 5.4% predicted by the fractional cur-

 

rent block obtained in this experiment (Fig. 4, A and C).
The tail currents have been scaled to their peaks in Fig.4
A, bottom, for comparison of deactivation rates.

To determine whether the amino terminus competes
with TEA to slow deactivation, reflecting overlapping
binding sites in the permeation pathway, we applied
TEA to the channels with intact amino termini (Fig. 4
B). TEA slowed the apparent deactivation rate by 39.6 

 

6

 

4.0%, similar to the 42.4 

 

6

 

 5.5% predicted by current
block. Quantitatively similar effects were observed in
the truncated channel (summarized in Fig. 4 C). The
additive and noncompetitive effects of TEA and the
amino terminus indicate that they slow deactivation us-
ing different mechanisms and different sites.

Figure 1. A soluble peptide
corresponding to the first 16
amino acids (H16) reversibly re-
stores slow deactivation to HERG
channels lacking amino termini.
(A) Tail currents from S620T D2-
354 channels at 2140 mV after a
1-s voltage step to 60 mV. (See
methods regarding use of the
S620T background.) Three cur-
rent traces are shown, immedi-
ately after the patch was excised
into the internal bath solution,
after a 3-min incubation with 1
mM H16 peptide solution, and
after a 5-min washout with pep-
tide-free internal bath solution,
respectively. The initial tail cur-
rent amplitude, indicated by the
long arrow, is unaffected by ap-
plication of the peptide. The bot-
tom panel, with expanded time
scale, shows the initial tail cur-
rent amplitude and includes dot-
ted lines showing the fit with two
exponential components. (B)
Fast and slow mean time con-
stants of deactivation extracted
from exponential fits to the deac-
tivating tail currents as shown in
A. Values are tfast 5 24.5 6 6.5
ms, tslow 5 309.8 6 95.4 ms, Af

(weight of the amplitude of the
fast component represented as a
percentage of total current) 5
82.0 6 8.2% for control; tfast 5
54.2 6 5.9 ms, tslow 5 488.2 6
143.5 ms Af 5 73.4 6 9.3% with
the added peptide; and tfast 5
29.9 6 4.5 ms, tslow 5 280.1 6
48.3 ms, Af 5 75.6 6 6.9% upon
washout of the peptide (n 5 4).
Using ANOVA (P , 0.01, at con-

fidence interval 5 0.05), there is a significant difference between the control and the experiment with peptide applied. (C) Tail currents
before and after a 10-min incubation in the scrambled H16s peptide solution. (D) The mean time constants of both fast and slow compo-
nents of the deactivation was not significantly changed by the scrambled peptide (ANOVA, P . 0.3 at confidence interval 5 0.05). Values
are tfast 5 20.4 6 2.9 ms, tslow 5 381.9 6 62.0 ms, Af 5 89.7 6 5.5% for control; tfast 5 24.0 6 4.2 ms, tslow 5 414.7 6 68.5 ms, Af 5 81.6 6
7.6% for the scrambled peptide (n 5 3).
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The Amino Terminus Slows Deactivation by 
Stabilizing the Open State

The slowing of macroscopic currents by peptide in the
excised macropatch, with no evidence of channel block,
suggests that a preferential stabilization of the open
state underlies slow deactivation. To test this hypothesis
directly, we determined the life time of each conforma-
tional state inferred from recordings of single channels
with intact (S620T) or truncated (S620TD2-354) amino
termini. Under steady state conditions at 280 mV,
bursting behavior is prominent in both channels, but
the truncated channels exhibit shorter openings (Fig.
5, A and B). Ensemble tail currents constructed from

multiple trials of single channel recordings elicited by a
repolarizing step are consistent with the corresponding
whole-cell currents for each construct, confirming the
identity of the single channels (Fig. 5, C and D).

Fits to the histograms of the open- and closed-time
distributions (Fig. 6, A and B) yielded two exponential
components for open and closed states for both chan-
nels, indicating two open and two closed states. Both
mean open times, as represented by the time constants
of the open time histogram, are significantly prolonged
in the presence of the amino terminus, whereas neither
mean closed time is affected. This selective increase of
the mean open time is consistent with a mechanism by
which the amino terminus stabilizes the open state to
hold the channel open longer. The lack of additional
nonconducting states attributable to the presence of
the amino terminus also further confirms the absence
of pore block.

D I S C U S S I O N

In this study, we found that a small amino terminal do-
main of HERG can reversibly reconstitute slow deacti-
vation as a soluble peptide. The amino terminal do-
main slows deactivation directly by increasing channel
open time, rather than indirectly slowing apparent de-
activation rate by a pore blocking mechanism. We envi-
sion the amino terminus interacting with the open “tee-
pee” conformation suggested by recent structural and
functional studies of the KcsA bacterial K1 channel
(Doyle et al., 1998; Perozo et al., 1999). For example,
the peptide might intercalate between the staves of the
teepee formed by the S6 transmembrane domain like
the cadmium ion that links a substituted cysteine with a
nearby histidine residue to stabilize the open state in
Shaker channels (Holmgren et al., 1998). Alternatively,
the peptide domain could stabilize the open teepee
conformation by inserting between residues in S5 and
S6 uncovered by channel opening.

It remains to be determined why we were able to rap-
idly restore slow deactivation using the 16-mer peptide
in the excised macropatch when a longer, 135-amino
acid polypeptide, which included the initial 16 amino
acids, had no effect under the same conditions (Morais
Cabral et al., 1998). Perhaps in the latter study, the
small deactivation subdomain was buried in the larger
structure, the proper conformation of which was only
slowly achieved after interaction of the polypeptide
with the rest of the channel, thus accounting for the ex-
tended period of time (z24 h) required to reconstitute
slow deactivation. It therefore seems unlikely that the
PAS domain identified in the crystal structure of the
HERG amino terminus is involved on a rapid time scale
in the regulation of deactivation rate. On the other
hand, alteration of its structure can disrupt slow deacti-
vation (Morais Cabral et al., 1998; Chen et al., 1999),

Figure 2. The H16 peptide has no effect on deactivation rate in
channels with intact amino termini, indicating that the peptide acts
by the same mechanism as the native amino terminus. (A) Tail cur-
rents from S620T channels evoked at 2140 mV after a voltage step
to 60 mV, before and after a 5-min incubation in 1 mM H16 peptide.
(Arrow) Initial tail current amplitude. (B) Time constants of domi-
nant fast components of the deactivation extracted from exponen-
tial fits to the tail currents were 137.6 6 16.5 ms, Af 5 90.0 6 2.3%
for the controls, and 167.7 6 21.5 ms, Af 5 87.6 6 4.7% after appli-
cation of the peptide (n 5 3). There is no significant difference
when tested with ANOVA. (P . 0.3 at confidence level of 0.05.)
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perhaps by preventing the deactivation subdomain
from reaching its own receptor site.

Another puzzle is why the 16-mer peptide only par-
tially restores slow deactivation to the truncated channel.
Although deletion of this region is sufficient to fully dis-
able the amino-terminal slowing of deactivation (Wang
et al., 1998), it may be just one component of a more
complex structure that is needed for full restoration of
function. In this case, we might expect the peptide to
fully restore slow deactivation in the smaller truncation
mutant D2-16, but unfortunately we were unable to ex-
press this mutant at sufficiently high levels for excised
macropatch recordings. The larger, 135 amino acid pep-
tide containing the PAS domain gave quantitatively simi-
lar results, slowing deactivation to a rate about halfway
between that of wild-type and truncated channels (Mo-
rais Cabral et al., 1998). Both peptides may lack the
structural attributes required to fully restore slow deacti-
vation, due either to misfolding or the absence of se-
quences downstream in the greater part of the amino
terminus not examined in either study.

Analysis of the dose dependence of the peptide effect
indicates that three or more amino termini bind to
hold each channel open. This finding is consistent with

our previous study of heteromeric mouse ether-à-go-go–
related gene 1 (Merg1) channels composed of two types
of subunits arising from alternative splicing, one lacking
what we now recognize as the deactivation subdomain
(London et al., 1997). The intermediate deactivation
rates observed were inconsistent with a single ball-and-
chain mechanism expected to give rise to a preponder-
ance of slowly closing channels. Based on the stoichio-
metric predictions of the current study, and the presumed
tetrameric structure of the channel, it is reasonable to
suggest that four amino termini interact with the open
channel to slow deactivation. The physiological role of
alternative splicing of the Merg or HERG orthologs is
unknown, but the faster deactivation obtained in heter-
omultimers is expected to reduce the magnitude of the
resurgent current. Perhaps selective expression or coas-
sembly of these naturally occurring splice variants lack-
ing the deactivation subdomain helps control IKr mag-
nitude developmentally or in a tissue-specific manner.
When slow deactivation is called for, four of the longer
isoforms may assemble, each contributing a deactiva-
tion subdomain to stabilize the open state and ensure
that IKr is of sufficient magnitude to fulfill its physiolog-
ical role.

Figure 3. Multiple amino ter-
mini are required to slow deactiva-
tion in the HERG channel. (A)
Tail currents from S620T D2-354
channels show progressive slow-
ing in solutions of increasing H16
peptide concentration. From top
to bottom, the concentrations are
0, 100, 250, 500, 750, and 1,000
mM. (B) Dose–response curve
plotted as a fractional slowing of
deactivation rate [D(1/t)/D(1/
t)max] against peptide concentra-
tion (n 5 3 for each peptide con-
centration up to 1 mM, n 5 2 for
5 mM). t is the time constant of
the dominant fast component,
which contributes .90% of the
deactivating current. Fitting the
data to the Hill equation [ln(1 2
y)/y] 5 2N(lnK 2 ln[peptide])
yielded a Hill coefficient of 2.2 6
0.1, indicating possible coopera-
tive interactions among at least
three amino termini. (C) High
concentrations (5 mM) of peptide
blocked the current (top), but
caused no further slowing of deac-
tivation (scaled currents, bottom).
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Previous studies have shown that deactivation of volt-
age-dependent K1 currents can be slowed by an amino-
terminal blocking mechanism, as in Shaker (Demo and
Yellen, 1991) or by internal blocking ions that prevent
channel closure (Armstrong, 1969, 1971; Choi et al.,
1993). The blocker effectively competes for the open
state, reducing the number of channels available to
close at any given time, thus slowing the apparent deac-
tivation rate by mass action. Although there is no ap-
parent inactivating phenotype characteristic of channel
block by the amino terminus in HERG channels (Schon-
herr and Heinemann, 1996; Spector et al., 1996; Wang
et al., 1998), we were unable in previous studies to rule

out a fast amino-terminal blocking effect with slow re-
covery by comparing macroscopic current from trun-
cated and wild-type channels. In this study, we show
that slow deactivation is not associated with block by
comparing initial tail currents from the same channel
before and after application of peptide. Instead, the in-
tegral of the deactivating current is increased, indicat-
ing that the amino terminus stabilizes the channel in its
open state during repolarization. Furthermore, the ad-
ditive effects of TEA and the deactivation subdomain
indicate that spatially discrete receptor sites mediate
their respective modulatory effects on the time course
of deactivation.

Figure 4. The amino terminus
does not alter the ability of TEA
to block current or to slow deacti-
vation. (A, top) Tail currents from
S620TD2-354 truncated channels
evoked at 2140 mV after depolar-
ization to 60 mV, before and after
application of 1 mM TEA to the
internal bath solution. Arrows
point to the instantaneous tail
current levels. (Bottom) The
same currents scaled to their peak
amplitudes to illustrate the slow-
ing of apparent deactivation rate
by TEA. (B, top) Tail currents
from channels with amino ter-
mini intact under same condi-
tions as in A. (Bottom) The same
currents scaled. (C) Box plot
shows that mean values for per-
cent slowing of deactivation (left)
are predicted by corresponding
percent current block (right) for
both S620TD2-354 truncated
channels and S620T channels
with intact amino termini, indicat-
ing a lack of competition between
the amino terminus and TEA in
open-channel block (n 5 3 for
each construct, P . 0.2). The
competition models describe a
channel that cannot close until
the blocking particle vacates its
binding site (Scheme I), where C,
O, and B are the closed, open,
and blocked states, respectively,
and b is the rate constant of the
open-to-closed transition. 

(SCHEME I)

Channels in the blocked state are unavailable for closing until they return to the open, unblocked state, and so the apparent deactivation
rate bapp is reduced according to the expression bapp 5 f ? b, where f is the fraction of channels in the open state. At the very negative volt-
ages studied, we assume little return from the closed to the open state and bapp > 1/tfast (see methods). The forward and reverse rates of
block are assumed to be fast relative to b.
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The slow deactivation process in HERG channels has
provided an opportunity to investigate an unusual gat-
ing mechanism that was not previously apparent in
studies of rapidly deactivating channels more com-
monly studied. We do not yet know exactly how the first
16 amino acids stabilize the open state in HERG, or
whether the action of the deactivation subdomain will
emerge as a common gating mechanism used by mem-
bers of other channel families. However, it is clear that
for many channels, including HERG, the amino termi-
nus is a hub of activity for a diverse array of mechanisms
modulating gating such as phosphorylation (e.g., Co-
varrubias et al., 1994), interactions with beta subunits
(Sewing et al., 1996), alternative splicing (Timpe et al.,
1988; Lees-Miller et al., 1997; London et al., 1997), and
carboxy-terminal interactions (Jerng and Covarrubias,
1997; Varnum and Zagotta, 1997; Kupershmidt et al.,

1998). Our study of the regulation of deactivation in
HERG brings one more element to the functional di-
versity of the amino terminus, and underscores the im-
portance of more detailed structural and functional
analyses of its interactions with the gating machinery.
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Figure 5. Single-channel activi-
ties at negative (repolarizing)
potentials display longer open
times when the amino terminus
is present. During a continuous
voltage command of 280 mV,
lasting for 325 min, single-chan-
nel activities were recorded in
cell-attached patch with 100 mM
potassium in the pipette. Repre-
sentative segments of the records
from S620T and S620TD2-354
channels are shown in A and B,
with longer openings apparent
in S620T channels (n 5 3 for
each construct). (C and D) En-
semble tail currents and repre-
sentative single trials of activities
from which the ensemble aver-
ages were constructed for S620T
and S620TD2-354 channels, re-
spectively, during a 2-s repolariz-
ing command to 280 mV after
depolarization to 60 mV. Deacti-
vation of the ensemble currents
displays typical slow phenotype
for S620T channel and fast phe-
notype for S620TD2-354 chan-
nels (n 5 3 for each construct).
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