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Abstract

Structural hippocampal abnormalities are common in many neurological and psychiatric

disorders, and variation in hippocampal measures is related to cognitive performance

and other complex phenotypes such as stress sensitivity. Hippocampal subregions are

increasingly studied, as automated algorithms have become available for mapping and

volume quantification. In the context of the Enhancing Neuro Imaging Genetics
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through Meta Analysis Consortium, several Disease Working Groups are using the

FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients

with neurological and psychiatric conditions along with data from matched controls. In

this overview, we explain the algorithm's principles, summarize measurement reliability

studies, and demonstrate two additional aspects (subfield autocorrelation and volume/

reliability correlation) with illustrative data. We then explain the rationale for a stan-

dardized hippocampal subfield segmentation quality control (QC) procedure for

improved pipeline harmonization. To guide researchers to make optimal use of the

algorithm, we discuss how global size and age effects can be modeled, how QC steps

can be incorporated and how subfields may be aggregated into composite volumes.

This discussion is based on a synopsis of 162 published neuroimaging studies

(01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in

a broad range of domains including cognition and healthy aging, brain development and

neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epi-

lepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and

candidate and whole genome (epi-)genetics. Finally, we highlight points where

FreeSurfer-based hippocampal subfield studies may be optimized.
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1 | INTRODUCTION

The hippocampus is an intensely studied brain region in preclinical

and clinical neuroscience (Andersen, Morris, Amaral, Bliss, &

O'Keefe, 2007). It is involved in multiple aspects of cognition, includ-

ing spatial navigation (O'Keefe, 1990), learning (Morris, 2006), and

episodic memory (Burgess, Maguire, & O'Keefe, 2002), affective

processing (Koelsch et al., 2015), and stress response regulation in

humans (Herman et al., 2016; McEwen & Akil, 2020). Given its many

functions—and its circumscribed, exposed position in the medial tem-

poral lobe—it has been the target of volumetric studies in neurology

and psychiatry. Early hippocampal studies with computed tomography

used indirect metrics such as widened hippocampal fissure, increased

hippocampal lucency, or temporal horn diameter (de Leon, George,

Stylopoulos, Smith, & Miller, 1989; George et al., 1990; Sandor,

Albert, Stafford, & Harpley, 1988; Scheltens, Weinstein, & Leys,

1992). Its contrast-rich boundaries on magnetic resonance imaging

(MRI) against the ventricular space may even have led to an “investi-
gation bias” toward this structure compared to other less cir-

cumscribed brain structures. Meanwhile, MRI-based hippocampal

morphometry has advanced through improved contrast, spatial resolu-

tion, and computational progress. Images with 0.5–0.9 mm isotropic

spatial resolution are now regularly collected with standard anatomical

sequences on 3 Tesla platforms (e.g., Human Connectome Project,

http://protocols.humanconnectome.org). The spread of high-field MRI

further accelerated this development. Recent work validating in vivo

7-Tesla human MRI with histology has pushed MRI toward “in vivo

neuropathology” (DeKraker, Ferko, Lau, Köhler, & Khan, 2018) and

allows subfield segmentation techniques to take advantage of the res-

olution and contrast available at 7 Tesla (Giuliano et al., 2017).

Attempts to subdivide the hippocampal formation into substruc-

tures from MRI have been made for several years. Based on sublayers

and boundaries with neighboring structures, subdividing the hippo-

campus has been the objective of several manual segmentation proto-

cols (Jeukens et al., 2009; La Joie et al., 2010; Mueller et al., 2007;

Mueller et al., 2018; Mueller & Weiner, 2009; Shing et al., 2011;

Wisse et al., 2012). Detecting and following boundaries in the com-

plex, “swiss roll-”like structure and recognizing landmarks when the

internal contrast is insufficient, is a complex visual task that requires

expert anatomical knowledge and practice. The procedure may take

up to 40 hours per case (Winterburn et al., 2013), exhausting realisti-

cally available resources, particularly in larger imaging genetics studies,

some of which now exceed 50,000 individuals (Satizabal et al., 2019,

Grasby, Jahanshad et al., 2020). Manual segmentations are still repre-

sent the gold standard and have been carefully interwoven into fully

automated algorithms (Iglesias et al., 2015; Van Leemput et al., 2008,

2009; Yushkevich et al., 2009; Yushkevich et al., 2015).

The Enhancing Neuro Imaging Genetics through Meta Analysis

(ENIGMA) consortium conducts imaging and imaging genetics ana-

lyses in population cohorts and clinical samples using an international

multisite framework, bringing together imaging and genetics groups

for large-scale collaborations. The principle of distributed analyses—in

which local sites perform image postprocessing and association statis-

tics on their own authority—makes harmonization an important
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element to enhance reliability. Collaborative studies allow for detec-

tion of small effects sizes, but, the resulting summary statistics rely

heavily on the quality of the incoming local association results and

extracted data. As disease working groups are increasingly engaged

(Thompson et al., 2020) in cross-diagnostic comparisons or genuine

transdiagnostic (“denosologization”) studies, these efforts might bene-

fit from pipeline harmonization (Figure 1).

The purpose of this report is to give an overview of the hippo-

campal subfield segmentation algorithm implemented in FreeSurfer

(FS) and present a novel protocol for standardizing quality control

(QC). To put the pipeline into context and to guide researchers to

optimally use the algorithm, we review reports that have employed

this tool, pointing out typical methodological challenges and pitfalls.

In this article, we follow the recently established practice to refer to

the resulting substructures either as “subregion(s)” or “subfield(s)”, in
an interchangeable way despite the erstwhile anatomical nomencla-

tures that reserved “subfields” for the cornu ammonis (CA). Section 1

provided background and rationale for this study. In Section 2,

we describe the core algorithm of the FS-based hippocampus

segmentation, summarize findings of reliability studies, with examples

of the correlation between subfield volumes, and discuss the relation-

ship between size and reliability. Next, Section 3 describes the QC

procedure developed in the context of the ENIGMA consortium to

improve pipeline harmonization. In Section 4, we give an overview on

FS-based hippocampal subfield studies published between January

2013 and December 2019, focusing on (a) the clinical or neuroscience

domains being studied, (b) statistical methods, and (c) QC procedures.

Finally, Section 5 concludes with a summary, discussion, and outlook.

2 | THE FS HIPPOCAMPAL SUBFIELD
SEGMENTATION ALGORITHM

2.1 | Principle and output

The hippocampal segmentation tool examined in this paper is part of

the widely used and freely available neuroimaging analysis package,

FS (Fischl, 2012). The current version of this tool is FreeSurfer 7.1,

F IGURE 1 Domains covered by 162 FreeSurfer subfields studies published between 2013 and 2019. Ten studies performed on patient
groups with a genetic analysis included (see Supplemental Table 1, domain/subdomain “genetics”) were counted double to avoid under-
representation of genetic studies, that is, the pie chart contains a total of 172 entries. The following additional aggregations were made: major
depressive disorder (MDD) and bipolar disorder (21 and 6 studies) were pooled; single neurological (8), single psychiatric studies (5) and one study
on perceived stress were pooled to a category “other (single studies)”; studies on epilepsy (10) and encephalitis (5) were pooled. AD, Alzheimer's
disease; FTD, frontotemporal dementia; LBD, Lewy body disease; MCI, mild cognitive impairment; PTSD, posttraumatic stress disorders; SCD,
subjective cognitive deficits
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and this version has no significant changes to the hippocampal sub-

field tool compared to version 6.0 [FS6.0]. FreeSurfer 7.1 includes a

segmentation of the amygdala (Saygin et al., 2017) that does not

affect the hippocampal subregion segmentation that was introduced

with FS6.0. The automated segmentation of hippocampal subfields is

driven by a probabilistic atlas, built from two manually delineated

datasets: one comprised of 15 post mortem subjects, including four

with Alzheimer's disease, from whom ex vivo MRI (7 Tesla, FLASH

sequence) was obtained at very high resolution (0.10–0.20 mm isotro-

pic); and a second that comprised 39 T1-weighted in vivo images

(1 mm isotropic voxels) from 29 controls and 10 mildly demented indi-

viduals. The key developmental leap from FS5.3 to FS6.0 was the

inclusion of manually delineated high resolution ex vivo MRI data

(Iglesias et al., 2015). Both labeled datasets were combined by a

Bayesian algorithm into a probabilistic atlas that is encoded in a tetra-

hedral mesh, where each node carries probabilistic information on its

assignment to subregions (van Leemput, 2009).1

The challenge of segmenting a new, unseen hippocampus was

then posed as a Bayesian inference problem of maximizing the proba-

bility of the segmentation—given the atlas and the input image.

Robustness to changes in MRI contrast was achieved by modeling

voxel intensities as samples from a Gaussian mixture model condi-

tioned on the hidden segmentation. Parameters of this model were

informed by the individual input scan more specifically from five

F IGURE 2 Typical subfield size ranking, overlay in FreeSurfer viewer and exemplary age-volume relationships. (a) Typically raw subfield
volumes ranked according to their average size are depicted from a local Max Planck Institute of Psychiatry (MPIP)-based sample of N = 614
subjects (T1WI, FS6.0, mean values and 1 SD). The volume ranking order is extremely robust across other samples including 3 Tesla samples (data
not shown). The colored frames point to subregions that underlie ranking violation rules (see Section 2.3 for details). (b) A 3 Tesla example viewed

in FS in three corresponding planes (see white cross-hair) with the FS inherent color scheme. The same scheme for the 12 subregions was
adopted in the ENIGMA quality control (QC) algorithm. (c) An example of a tendency for nonlinear age effects for the bilateral CA1 region,
adjusted for intracranial volume (ICV), sex, diagnosis (major depressive disorder [MDD]/healthy) and site (here coding for coil upgrade related raw
image differences). Quadratic or cubic polynomial fits are superior to a linear correlation. (d) The same principle is plotted for the ratio between
total gray matter volume and ICV; a less strong nonlinear influence can be read from the fit values. (e) One of three aggregation schemes available
in recent development versions of FS, referred to as “FS60,” explaining the mapping between the 12 output labels (which are the labels in the
FS6.0 atlas used in this study) and the underlying regions
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intensity compartments: gray matter, white matter, cerebrospinal

fluid, alveus, and the molecular layer). Although the alveus and molec-

ular layer resemble white matter, they are modeled separately, given

that partial volume effects influence their voxel intensities. The out-

puts of the hippocampal segmentation are left and right hemisphere

images with label assignments for voxels in the hippocampal area

(at resolutions of 1-mm isotropic and 0.333-mm isotropic) to either

background or one of twelve subregions. These are (sorted by average

size): CA1, molecular layer (ML), hippocampal tail, subiculum,

presubiculum, granule cell layer of dentate gyrus (GC-ML-DG), CA4,

CA3, hippocampal fissure, hippocampus-amygdala-transition-area

(HATA), and fimbria (Figure 2a,b). The manual delineation protocol

and the grouping of its subregions into 12 output labels are detailed

in Iglesias et al. (2015). Alternative aggregations, for example, ones

that consider head, body and tail subdivisions, are available online

(https://surfer.nmr.mgh.harvard.edu/fswiki/

HippocampalSubfieldsAndNucleiOfAmygdala). In this report, we use

reaggregation to refer to aggregations deviating from the three stan-

dard aggregations.

2.2 | Measurement reliability and validity

The output of the automated FS subfield segmentation consists of both

the spatial map of a subfield and its absolute volume, and reliability

measures have been reported for both, as detailed in Sections 2.2.1 and

2.2.2. For volumes, the difference between measurements (e.g., test–

retest measures) can be expressed as percentage error or as intraclass

coefficient (ICC). The latter quantifies the consistency of repeated mea-

surements of the same quantity. Different subtypes of the ICC exist,

and some are sensitive also to systematic biases of one measurement, a

feature that may remain undetected by the Pearson correlation. The

spatial reliability of subfield segmentations is often expressed as the

Sørensen–Dice index often abbreviated to Dice index; range 0–1; 1 rep-

resents perfect overlap of both measurements). The Dice index can be

calculated for a single pair of repeatedly measured subregions and is rel-

evant for using the subfield segmentation as regions of interest (ROIs)

for other (e.g., functional imaging) experiments.

2.2.1 | Test–retest reliability (same scanner)

Several studies have examined test–retest reliability of FS6.0 subfield

volumes, all reporting ICC values larger than 0.5 and most around 0.9

(Brown et al., 2020; Elvsåshagen et al., 2016; Quattrini et al., 2020;

Whelan et al., 2016; Worker et al., 2018). More specifically, Whelan

et al. (2016) included data from four independent cohorts (total

N > 1,740), reporting high ICC values (0.70–0.97) for a 3 Tesla sample,

and moderate to high for a 4 Tesla sample (0.50–0.89). Another 3-Tesla

study applied FS6.0 to data from 22 healthy subjects scanned three

times, and 40 patients with AD scanned twice, again reporting high ICC

values (>0.9) for 20 of 24 investigated hippocampal subregions, and sig-

nificantly lower ICC for the hippocampal fissure and fimbria (Worker

et al., 2018). In addition, high sensitivity toward AD progression at both

2-year and 6-week follow-up times was detected, using intraindividually

optimized co-registration of repeated scans (Worker et al., 2018). In their

report on bipolar disorder, Elvsåshagen et al. (2016) reported test–retest

ICC over 0.94 for 3-Tesla T1-weighted images selectively for the dentate

gyrus/CA4, for within-session repeats (N = 53) and two separate scan-

ning sessions (N = 21). Quattrini et al. (2020) also reported good volume

reliability (mean error <5%, ICC > 0.92) and excellent spatial agreement

(mean Dice index >0.92) for different 3 Tesla scanner platforms. Another

recent report on FS6.0 (Brown et al., 2020) confirmed high test–retest

reliability (measured by volume differences, ICC, and Dice overlap) with a

similar regional ranking, that is, high reliability for all subregions except

for the parasubiculum, hippocampal fissure, and HATA.

The reliability of FS5.3 hippocampal subfield segmentations have

also been investigated in 65 subjects scanned at 13 sites. Marizzoni

et al. (2015) reported good or very good volumetric (reproducibility

errors 2–5%) and spatial reproducibility (Dice indices �0.9 or >0.9) for

all subregions except for the hippocampal fissure and fimbria.

Of note, since FS7.1 (released 04/2020), hippocampal subfield

segmentation can be combined with longitudinal input data to opti-

mally assess within-subject changes. This approach reduces measure-

ment noise compared with two separate segmentations, increases

test–retest reliability and thus leads to higher sensitivity to longitudi-

nal changes (Iglesias et al., 2016). The two more recent reports

strongly confirmed this finding both for within- and across-scanner

comparisons, particularly for older subjects (Brown et al., 2020;

Quattrini et al., 2020). For repeated measures, this approach is thus

clearly recommended.

2.2.2 | Reliability across vendor platforms and
field-strengths

Whelan et al. (2016) reported on a FS6.0 study comparing T1WI of

1.5 Tesla with 3 Tesla and found high ICC for 11 subregions

(0.721–0.915) and a low value for the hippocampal fissure (0.575).

Another small trans-platform analysis (1.5 and 3 Tesla, FS5.3, per-

formed on seven children) was included in the report of Tamnes

et al. (2014), showing high linear correlations (r values .80–.97) for all

subfields except the fimbria. More recently, reliability across vendors

(or before and after typical hardware upgrades) has been reported in

great detail (Brown et al., 2020; Quattrini et al., 2020). As a general

pattern, these studies show that there is higher sensitivity of the spa-

tial reproducibility to MR scanner effects, compared to the subfield

volumes. Within-session T1-averages are suggested as one possibility

to improve test–retest reliability.

2.2.3 | Relationship between average subregion
size and measurement reliability

For FS5.3, Marizzoni et al. (2015) reported that specific test–retest

measures (reproducibility errors and Dice index) were positively
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associated with regional volumes. In the interest of this report, based

on published results (Whelan et al., 2016), Table 2), we correlated the

rank of the average subregion size with corresponding ICC values for

two FS6.0 samples (unweighted averages across both samples and

both hemispheres), and found a high positive rank correlation

(Spearman's rho 0.85). This pattern was further confirmed and

extended to the Dice overlap index for FS6.0 by Quattrini

et al. (2020) who also concluded that the best test–retest reproduc-

ibility was achieved for hippocampal subfields >300 mm3 (see typical

size ranking in Figure 2a). This could imply that the power to detect

group differences or other clinical correlations may be biased toward

larger subregions, and this should be considered when interpreting

results.

2.2.4 | Other reliability aspects

T2WI as input

It is known that a T2-weighted image (mostly in the coronal plane,

perpendicular to the main axis of the hippocampus), facilitates the

identification of the molecular layer and of its boundary with the CA1,

which are usually not clearly visible on standard T1-weighted data

(Iglesias et al., 2015; Wisse et al., 2014). In this context, Mueller

et al. (2018) compared four automated segmentation protocols, both

T1WI- and T2WI-based and manual segmentation, particularly with

regard to increasing the sensitivity to disease effects. Indeed, effect

sizes were higher for methods that included a high resolution T2WI

compared to solely T1WI-based methods. Yet, no direct comparison

between a single T1WI and combined T1-/T2WI input to version 6.0

was reported. Such a direct comparison is reported in Iglesias

et al. (2015), who demonstrated increased sensitivity to MCI/controls

differences with the combined input.

FS subfield tool to measure total HV

As the total hippocampal volume (HV) is included in some analyses

of subfield data (as a dependent variable, or as a correction variable),

a recent study (N = 664) validated manually traced HVs against sev-

eral FS versions (5.2, 5.3, and 6.0) (Schmidt et al., 2018). In brief,

automatically measured HV values were systematically larger than

manually traced HVs, with a small influence of age and HV itself on

this bias. Still, ICC values were high as were measures of spatial

overlap. The study also reported detailed failure rates for FS6.0,

estimated from 708 cases: The general segmentation failed in

25 cases (3.5%), with six cases (0.8%) showing incorrect orientation

and two cases (0.3%) showing insufficient quality or contrast, leav-

ing 17 cases (or 2.4%) without clearly explained failure. Several

other reports focused on the reliability of automated total HV mea-

surement: as concluded from eight reliability measures, FS6.0

subfield-based total HV proved more reliable than other automated

algorithms (Khlif, Egorova, et al., 2019; Khlif, Werden, et al., 2019),

with acceptable biases. When FS6.0 is applied to children and ado-

lescents, estimation biases compared to manual tracing may appear

(Herten, Konrad, Krinzinger, Seitz, & von Polier, 2019; Schoemaker

et al., 2016). For the analysis of brains with marked atrophy, the

TABLE 1 Correlation between total HV and subregions, corrected for ICV, age, squared age, sex, and site, in healthy subjects at 1.5 and 3
Tesla. Sorting is according to the partial correlation values (rp) in descending order per sample. The last two columns denote relative shifts of the
volume rank and the correlation rank of the 3 Tesla compared with the 1.5 Tesla sample. Negligible volume rank shifts for the two smallest
regions (parasubiculum, HATA) were noted. For the correlation rank, identical ranking was found for 6 subregions, and a minor perturbation—by a
maximum of two ranks—for the remaining subregions

Partial correlations between total HV and subregions, adjusted for ICV, age, age-squared, sex, site

1.5 Tesla (N = 209) 3 Tesla (N = 211)

Volume rank
shift

Correlation
rank shiftRegion

Volume
rank rp

Fisher's
z Region rp

Fisher's
z

Volume
rank

Molecular layer 2 0.967 2.044 Molecular layer 0.997 2.276 2 0 0

CA1 1 0.863 1.305 CA1 0.929 1.648 1 0 0

GC-ML-DG 6 0.841 1.225 GC-ML-DG 0.909 1.519 6 0 0

Subiculum 4 0.815 1.142 CA4 0.889 1.416 7 0 −1

CA4 7 0.806 1.116 Subiculum 0.856 1.279 4 0 +1

Presubiculum 5 0.662 0.796 CA3 0.685 0.838 8 0 −2

Hippocampal tail 3 0.654 0.782 Presubiculum 0.664 0.800 5 0 +1

CA3 8 0.588 0.675 HATA 0.648 0.771 12 +1 −1

HATA 11 0.557 0.628 Hippocampal tail 0.627 0.737 3 0 +2

Hippocampal

fissure

9 0.386 0.407 Hippocampal

fissure

0.612 0.712 9 0 0

Parasubiculum 12 0.359 0.376 Parasubiculum 0.528 0.588 11 −1 0

Fimbria 10 0.201 0.204 Fimbria 0.390 0.412 10 0 0

Abbreviation: ICV, intracranial volume.
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false segmentation of dura in FS has been identified as a problem

for medial temporal lobe studies (Xie et al., 2019).

2.2.5 | Measurement validity

Studies of test–retest reliability properties cannot account for devia-

tion from the ground truth labeling, so, regardless of the study design,

these studies are not informative on the actual validity of the subfield

measurements. General external validity of the FS-based hippocampal

subfield volume measures is rooted in the cytoarchitectonic principle

of the ex vivo sample labeling. Further validity aspects are still investi-

gated with a latent assumption that subfield measures hold indirect

information on functional or circuit differences with (patho-)physiolog-

ical relevance. Here, studies on subregional functional connectivity

(FC), including intrahippocampal connectivity, or morphological covari-

ance analysis provide relevant contributions (Dalton, McCormick, de

Luca, Clark, & Maguire, 2019; Dalton, McCormick, & Maguire, 2019;

Ge et al., 2019). An intriguing approach to derive hippocampal subre-

gions is to search for subfield-specific connectivity patterns, instead

of hard histological ground truth: purely data-driven, FC-based hippo-

campal parcellations impressively match manual and—to a lesser

degree—automated segmented subfields (Wu et al., 2018). Further,

combined anatomical and functional features from 3 Tesla delivered a

similar accuracy to 7 Tesla data. So far, no FC studies have been pres-

ented that directly incorporate FS6.0-based subfield volumes, or that

relate subfield volumes to connectivity measures.

One report critically addressed different aspects of the FS5.3 hip-

pocampal subfield protocol (Wisse et al., 2014):

1. The effect of using low resolution T1WI as exclusive input to the

algorithm, as these images might not provide sufficient contrast,

for example, of the white matter bands between the dentate gyrus

and the CA.

2. A bias in the original parcellation scheme that extrapolated one

coronal section to the entire longitudinal axis of the hippocampus

(Van Leemput et al., 2008, 2009), leading to overestimations of

CA1 and atypical result patterns.

3. The mismatch between high-resolution 3 Tesla T2WI (0.19 mm

isometric) on which the algorithm has been developed, and its

application to low resolution (1 mm isometric) T1WI.

The second concern, also expressed by de Flores et al. (2015), is

directed toward a core element of the algorithm and was addressed

by integrating ex vivo data into the atlas. This improved the consis-

tency with manual segmentations (i.e., validity), in terms of the bound-

aries of CA2/3, presubiculum and the transition between the

subiculum and CA1 (Iglesias et al., 2015).

The first and third concerns that have been re-emphasized in a

recent comment (Wisse et al., 2020) boil down to the question of

whether low resolution T1WI as inputs can lead to sufficiently valid

subfield results. For optimal correspondence with the gold standard,

good GM/WM contrast is required to detect the white matter bands

and the molecular layer. There is currently no clear demonstration that

this can be only achieved by adding a T2WI, rather than by a T1WI

with high resolution at 0.4–0.5 mm isotropic or 0.4 × 0.4 × 1.0 mm3.

At an empirical level, also when this feature is suboptimally present,

lower resolution T1WI have detected expected biological effects, for

example, with good discrimination between MCI and controls (Iglesias

et al., 2015). Still, a methodological rather than clinical validation study

is missing that compares manual tracings according to the ex vivo pro-

tocol on very high resolution MRI data (e.g., 0.2 mm isotropic) to atlas

based segmentations of downsampled images or newly acquired

lower resolution images of the same subjects.

2.3 | Cross-correlations among subfield volumes
and multiple testing considerations

Due to the explorative character of many hippocampal subfield studies,

multiple test correction needs to be performed to control for false posi-

tive results. In the following exemplary analyses, we demonstrate how

the correlation of (bilaterally added) subfield volumes with each other

and with total HV in two samples. The purpose of these analyses is to

demonstrate how the correlation structure is influenced by the global

correction variable (intracranial volume [ICV] vs. total HV), and how sub-

field volumes relate to the total HV on a 1.5 Tesla compared to a 3 Tesla

platform. Sample A was a 1.5 Tesla major depressive disorder (MDD)/

controls sample acquired at the Max Planck Institute of Psychiatry

(MPIP) and included in previous ENIGMA studies (Schmaal et al., 2017)

(General Electric, Signa/Signa Excite, T1WI, SPGR-3D or spin-echo,

voxel size 0.9 × 0.9 × 1.2 mm3, N = 597 [209 controls, 388 MDD

patients], age 19–89 years); and Sample B, a 3 Tesla sample of healthy

subjects (Münster Cohort, 3T Philips Gyroscan Intera, T1WI, 3D fast

gradient echo sequence, voxel size 0.5 mm isometric; N = 211, age

17–61 years). The data were processed with FS5.3 (general segmenta-

tion) and FS6.0 (subfield segmentation).

In Sample A, Pearson correlations between raw subregional volumes

ranged between r = −0.130 (fimbria vs. fissure, p = 0.756) and r = 0.988

(CA4 vs. GC-ML-DG, p < 1e-20) (median 0.531). Correcting for ICV, age,

age-squared, sex, and site led to a slight left-shift (r-values lowered by

�0.113 on average, resulting median 0.379) within a similar total range

(r = [−0.112; 0.982]). Correcting for total HV instead of ICV led to a mar-

ked left-shift with r between −0.661 (molecular layer vs. hippocampal

tail) and 0.942 (CA4 vs. GC-ML-DG) (median −0.108).—This “global cor-
rection” effect is best explained by the strong collinearity between sub-

field volumes and the total HV, even after correction for ICV, age, age-

squared, sex, and site (r = [0.327; 0.974]) (see Supplemental Figure 1a).

In Sample B, correlations between raw volumes were similar

(r between 0.095 [fimbria vs. hippocampal tail, p = .170] and 0.994 [CA4

vs. GC-ML-DG, p < 1e-20], median 0.575). Partial correlation coefficients

between subregional volumes corrected for the same covariates as in

Sample A were again mildly left-shifted (range r = [−0.085; 0.992],

median 0.475). For comparability with published cross-correlations of

residualized subregional volumes (van der Meer et al., 2018), the age-

squared term was omitted which changed the distribution only marginally
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TABLE 2 Overview of reported FS-based hippocampal subfield studies, 01/2013-12/2019. Studies from the first category (heritability
studies) are summarized in Section 4.2. The clinical/behavioral/biomarker field was categorized into 15 domains, and the genetic field into 4
domains. Minimum keywords are given for single studies or groups of studies to characterize subdomains

Domain Studies

Heritability

Heritability Heritability (Greenspan, Arakelian, & van Erp, 2016; van der Meer et al., 2018; Whelan et al., 2016), heritability and

genetic correlation (Elman et al., 2019)

Clinical diagnoses, behavioral and cognitive phenotypes, or other biomarkers

Neurodevelopmental studies Cognitive aspects during early childhood until early adulthood (Krogsrud et al., 2014; Riggins et al., 2018; Tamnes

et al., 2014)

Healthy aging Cognitive performance (Aslaksen, Bystad, Ørbo, & Vangberg, 2018; Delazer et al., 2019; Engvig et al., 2012; Ezzati,

Katz, Lipton, Lipton, & Verghese, 2015; Foster, Kennedy, Hoagey, & Rodrigue, 2019; Pereira et al., 2014; Zammit

et al., 2017; Zheng, Cui, et al., 2018; Zheng, Liu, et al., 2018), hormonal influences (Pintzka & Håberg, 2015),

protective effects of education (Jiang, Cao, et al., 2019)

Other intermediate aging phenotypes: Beta-amyloid and tau pathology (Caldwell et al., 2018; Hsu et al., 2015;

Lindberg et al., 2017; Parker, Cash, et al., 2019; Parker, Slattery, et al., 2019; Rahayel et al., 2019)

Memory functions in homeless and marginally housed persons (Gicas et al., 2019)

Recollection processes in older age (Hartopp et al., 2018)

Subfields as ROI for fMRI (memory formation) (Thavabalasingam, O'Neil, Tay, Nestor, & Lee, 2019)

Pathological aging Amnestic or vascular MCI, established AD or LBD (de Flores et al., 2015; Evans et al., 2018; Gomar et al., 2017;

Györfi et al., 2017; Hirjak, Wolf, et al., 2017; Hirjak, Sambataro, et al., 2019; Kälin et al., 2017; Kang, Lim, Joo,

Lee, & Lee, 2018; Khan et al., 2015; Li et al., 2016; Li, Dong, Xie, & Zhang, 2013; Liang et al., 2018; Lim

et al., 2012; Lim et al., 2013; Mak et al., 2016; Mak et al., 2017; Parker, Slattery, et al., 2019; Sarica et al., 2018;

Shim et al., 2017; Wang, Yu, et al., 2018)

Vitamin D in MCI (Al-Amin et al., 2019), IL-4 levels in MCI and AD (Boccardi et al., 2019)

Spectral analyses (including healthy elderly, subjective memory complaints, MCI and AD; risk of conversion from

MCI to AD) (DeVivo et al., 2019; Grajski & Bressler, 2019; Izzo, Andreassen, Westlye, & van der Meer, 2019;

Marizzoni et al., 2019; Zhao et al., 2019)

Other neurodegenerative

conditions

PD (including dementia) (Foo et al., 2017; Lenka et al., 2018; Low, Foo, Yong, Tan, & Kandiah, 2019; Park

et al., 2019; Pereira et al., 2013; Stav et al., 2016; Uribe et al., 2018)

Frontotemporal dementia (Bocchetta et al., 2018), LBD, and beta amyloid (Mak et al., 2019)

Multisystem atrophy and PD (Wang, Zhang, Yang, Luo, & Fan, 2019)

Amyotrophic lateral sclerosis (Christidi et al., 2019), primary lateral sclerosis (Finegan et al., 2019)

Epilepsy Mesial temporal lobe epilepsy (Costa et al., 2019; Donos et al., 2018; Duarte et al., 2018; Kim, Suh, & Kim, 2015;

Kreilkamp, Weber, Elkommos, Richardson, & Keller, 2018; Lee, Seo, & Park, 2019; Long, Feng, Liao, Zhou, &

Urbin, 2018; Peixoto-Santos et al., 2018; Schoene-Bake et al., 2014; Sone et al., 2016)

Subfields as ROI for fiber tracking (Rutland et al., 2018)

CNS (autoimmune)

inflammatory disorder

Multiple sclerosis (González Torre et al., 2017; Zuppichini & Sandry, 2018), clinically isolated syndrome

(Cacciaguerra et al., 2019), neuromyelitis optica spectrum disorder (Chen et al., 2019), anti-LGI1 encephalitis

(Finke et al., 2017), anti-NMDA receptor encephalitis (Finke et al., 2016), subtypes of limbic encephalitis (Ernst

et al., 2019)

Neurotoxicity Toxic agents, radiotherapy or hypoxia (Decker et al., 2017; Lv et al., 2018; Ørbo, Vangberg, Tande, Anke, &

Aslaksen, 2018; Phillips et al., 2020; Stamenova et al., 2018), alcoholism (Lee et al., 2016; Mole, Mak, Chien, &

Voon, 2016; Zahr, Pohl, Saranathan, Sullivan, & Pfefferbaum, 2019), alcohol withdrawal (Kühn et al., 2014),

familial risk for alcohol use disorder (adolescents) (Maksimovskiy et al., 2019), cannabis use (Beale et al., 2018),

cigarette smoking (Durazzo, Meyerhoff, & Nixon, 2013), preterm birth in school-aged children (Aanes

et al., 2019)

Stress response Plasma markers of oxidative stress (van Velzen et al., 2017), peripheral inflammatory markers in HIV (Fleischman

et al., 2018) expression of glucocorticoid inducible genes in MDD (Frodl, Carballedo, et al., 2014)

Socioeconomic status and chronic physiological stress (hair cortisol) (Merz et al., 2019).

Perceived stress (Zimmerman et al., 2016)

MDD Female MDD patients (Han, Won, Sim, & Tae, 2016; Kühn et al., 2012), ECT and treatment response to ECT (Cao

et al., 2018; Gryglewski et al., 2019) or antidepressants (Hu et al., 2019; Maller et al., 2017)

Acute and remitted depression (Kraus et al., 2019), depression symptom severity (Brown et al., 2019)

Neurovascular disease in late onset MDD (Choi et al., 2017), MDD and aging (Szymkowicz et al., 2017), MDD and

interleukin-6 (Kakeda et al., 2018), MDD and other inflammatory markers (Lindqvist et al., 2014), MDD and

tryptophan (Doolin et al., 2018)

Subfields as ROI for fiber tracking (Rutland et al., 2019)
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(r = [−0.074; 0.992], median 0.471) and basically matched the mentioned

report. Correcting for total HV again led to a strong left shift of the distri-

bution (r = [−0.663; 0.964], median −0.024) (see Supplemental Figure 1b).

2.3.1 | Comparing the subregional volumes versus
total HV correlations (referred to as
“autocorrelations”) between Samples A and B

For this analysis, Sample A was restricted to control subjects only for

better comparability (N = 209, age range 19–79 years). Similar autocor-

relation ranges were detected in both samples after correcting for age,

age-squared, sex, ICV, and site (Sample A: [0.201; 0.967] vs. Sample B:

[0.390; 0.979]). After Fisher's z transformation, no difference was

detected between the samples (two-sided two-sample t test, unequal

variances assumed, p = .385). Six of twelve subregions (three with the

lowest, and three with the highest correlations) were equally ranked

between the samples, whereas for the remaining subregions the ranking

positions were different (Table 1). Still, the correlation between the

corresponding Fisher's z scores of the two samples was high (r = 0.967).

2.3.2 | Autocorrelations and subfield size

The degree of autocorrelation of a subfield was linearly correlated with

the average raw volume (r = 0.766 [Sample A], and r = 0.690 [Sample B]).

TABLE 2 (Continued)

Domain Studies

Bipolar disease Bipolar disease (Elvsåshagen et al., 2013, 2016), comparison with MDD in adults (Cao et al., 2017; Han et al., 2019)

and in children and adolescents (Tannous et al., 2018), lithium effects (Giakoumatos et al., 2015; Hartberg

et al., 2015; Simonetti et al., 2016)

Predominant polarity (Janiri, Simonetti, et al., 2019)

Schizophrenia Schizophrenia (Zheng et al., 2019), first episode and chronic disease (Kawano et al., 2015; McHugo et al., 2018),

symptom correlates (Han et al., 2016; Kühn et al., 2012), first episode psychosis (Baglivo et al., 2018; Buchy

et al., 2016; Li et al., 2018), response to electroconvulsive therapy (Jiang, Xu, et al., 2019), conversion of high risk

patients (Provenzano et al., 2020), young relatives at risk (Francis et al., 2013; Ho, Iglesias, et al., 2017; Ho, Holt,

et al., 2017), progression patterns (Ho, Holt, et al., 2017; Ho, Iglesias, et al., 2017), genetic and cognitive

correlates of schizophrenia (Nakahara et al., 2019)

Metacognition and insight deficits (Alkan, Davies, Greenwood, & Evans, 2019; Hýža, Kuhn, Češková, Ustohal, &
Kašpárek, 2016; Orfei et al., 2017)

PTSD and early life adversity PTSD (Averill et al., 2017; Bøen et al., 2014; Hayes et al., 2017; L. Chen et al., 2016), childhood maltreatment

(Chalavi et al., 2015; Teicher, Anderson, & Polcari, 2012), verbal abuse (Lee et al., 2018), childhood trauma in

schizophrenia and healthy controls (du Plessis et al., 2019), in bipolar disorders and healthy controls (Janiri, Sani,

et al., 2019) and in adolescence (Malhi et al., 2019)

Other neuropsychiatric

conditions

Pain symptoms (Ezzati et al., 2014), ADHD (Al-Amin, Zinchenko, & Geyer, 2018), anorexia nervosa (Myrvang

et al., 2018), obsessive compulsive disorder (Zhang et al., 2019), and transient global amnesia (Wang, Zhang,

et al., 2018), essential tremor (Prasad et al., 2019), rapid eye movement sleep behavior disorder (Campabadal

et al., 2019), trigeminal neuralgia (Vaculik, Noorani, Hung, & Hodaie, 2019)

Thalamic infarction (Chen et al., 2016), sequelae of microsurgical aneurysm clipping (Hedderich et al., 2019)

Systemic disease Prediabetes (Dong et al., 2019) primary biliary cholangitis (Mosher et al., 2018), systemic lupus erythematosus (Bódi

et al., 2017)

Transdiagnostic approach Psychosis spectrum (Francis et al., 2013; Haukvik et al., 2015; Mathew et al., 2014; Vargas et al., 2017), unipolar–
bipolar spectrum in adults (Cao et al., 2017; Han et al., 2019) or children and adolescents (Tannous et al., 2018)

Bipolar disease and schizophrenia (pooling different subfield methods) (Haukvik, Tamnes, Söderman, &

Agartz, 2018)

Social anxiety disorder, childhood trauma and PTSD (Ahmed-Leitao et al., 2019)

Genetic or epigenetic candidate analyses and exploratory imaging genetics analyses

Candidate SNPs/genes BDNF val66met variants (Aas et al., 2014; Frodl, Skokauskas, et al., 2014), TESC gene and MDD (Han et al., 2017),

COMT and first-episode MDD (Otsuka et al., 2019), oxytocin receptor gene and MDD (Na et al., 2018), 22q11.2

deletion syndrome (Mancini et al., 2019)

Epigenetics and gene–
environment effects

Epigenetic modifications of glucocorticoid receptor in MDD and controls (Na et al., 2014), environmental adversity

and COMT, BDNF, and 5-HTTLPR (Rabl et al., 2014)

Polygenic risk Aerobic exercise and polygenic risk for schizophrenia (Papiol et al., 2017; Papiol et al., 2019)

GWAS GWAS of all subfields (van der Meer et al., 2018), GWAS of the dentate gyrus (Nakahara et al., 2019), GWAS with a

methodological focus (Couvy-Duchesne et al., 2019)

Abbreviations: AD, Alzheimer's disease; ECT, electroconvulsive therapy; FS, FreeSurfer; GWAS, Genome wide association analysis; LBD, Lewy body

dementia; MCI, mild cognitive impairment; MDD, major depressive disorder; PD, Parkinson's disease; PTSD, posttraumatic stress disorder; ROI, region of

interest.
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2.3.3 | Interpretation

The concordance between the autocorrelation of subfields with their

size likely reflects the above (Section 2.2.3) summarized lower mea-

surement reliability of smaller subfields. Although imperfect in design,

as measurements were not repeated in the same subjects, these

cross-sectional results point out that subregion volumes at 1.5 Tesla

do not show a systematically stronger influence of the probability

atlas over the contrast in the input data compared to 3 Tesla. Still,

ranking shifts were observed for half of the subfields between plat-

forms, highlighting that pooling results from different field strengths

(or highly different acquisition schemes) is not recommended; rather,

these should be treated as distinct samples.

2.3.4 | Implications for multiple test correction

For multiple testing corrections, given the demonstrated and reported

high correlation among subfield volumes (Elman et al., 2019; van der

Meer et al., 2018), Bonferroni correction might be too strict. More

recently, it was estimated that the 12 subfield volumes, after correc-

tion for covariates including ICV, represent seven effectively indepen-

dent tests (software available at https://neurogenetics.qimrberghofer.

edu.au/matSpDlite) (Couvy-Duchesne et al., 2019; Li & Ji, 2005; Li,

Yeung, Cherny, & Sham, 2012). False discovery rate based correction

methods as used in several studies so far seem a good option. More

complex methods that take into account the actual correlation pattern

like approximations to permutation analysis (Conneely & Boehnke, 2007;

Zugman et al., 2020) or spectral decomposition (Nyholt, 2004) can be

considered.

3 | QC ASPECTS

3.1 | Reported QC procedures

QC procedures were mentioned in about 44% of 162 reviewed

reports (Supplemental Table 1, see Section 4 for details on the

review procedure), with heterogeneous elaborateness and some-

times involving up to three independent raters. This does not neces-

sarily indicate that no QC was performed in the remaining studies,

as for most imaging laboratories, plausibility checks are expected

and may thus be underreported. The overall technical success rate

of the subfield segmentation is influenced by installation precondi-

tions and rarely explicitly stated (e.g., 96.5% for FS6.0 in Schmidt

et al. (2018)), so cannot be reliably quantified due to the heteroge-

neity of reports but only estimated to be over 95%. Most QC

descriptions point to a visual and mostly qualitative, holistic assess-

ment. Ten studies (�6%) excluded cases only based on outlier fea-

tures (e.g., > 5 SDs), the largest being the study of van der Meer

et al. (2018) (see Supplemental Table 1, column QC details). In turn,

most studies used outlier features to guide visual inspection but did

not exclude outliers without identifying a technical segmentation

failure. Five studies (�3%) report manual editing with no further

details (see Supplemental Table 1, column QC details). Only excep-

tionally, cases were excluded due to complete failure of the segmen-

tation, some of them related to gross brain pathology. Several

studies mentioned FS viewing tools to inspect segmentations, or

mention the ENIGMA protocol, or leave this unspecified. There

appears to be a consensus that in the case of peculiarities or seg-

mentation failure, the whole case is excluded (at least the affected

hemisphere), and not single subfields.

3.2 | Theoretical considerations for QC

The FS6.0-based hippocampal segmentation algorithm is fully automated

and manual corrections are technically feasible, but not designated. Still,

the algorithm should not be used in a completely “unsupervised way,” as
segmentation failures in the complex, multistep procedure may occur for

several reasons. The FS algorithm as such is very robust, and depending

on basic checks before starting the segmentation, a map with hippocam-

pal subfield volumes is generally obtained. The FS tool package allows

one to overlay the hippocampal segmentation output on a background

image with a simple command, usually in native space, for visual QC

(Figure 2b), which is useful in smaller studies.

Still, there is no standardized QC procedure for the hippocampal

segmentation tool in FS. While requiring a certain amount of time, a

visual QC step combined with an automated recommendation of criti-

cal cases, appears to be a good compromise to control the risk of

technical or algorithmic problems that—if undetected—may lead to

distorted results and conclusions. Based on the Bayesian approach of

the probabilistic atlas mesh being matched with the actual data, the

output represents a data-informed modification of this mesh, similar

to other deformation-based procedures, as in tensor-based morphom-

etry, for example. As they are explicitly penalized, extreme deviations

of one subregion (in terms of 3D shape/surface and eventually vol-

ume) are thus unlikely, and will not occur independently of other sub-

regions. The QC rater, in our opinion, needs no formal neuroradiological

training, yet should be sufficiently informed to distinguish between:

1. normal anatomical variants that occur in the hippocampal area and

might adversely affect the automated algorithm;

2. minor, visually conspicuous, yet volumetrically negligible phenomena;

3. incomplete segmentations or otherwise atypical segmentation

results.

Category (1) includes, for example, cystic formations with CSF

intensity within or close to the hippocampal formation, such as sulcus

remnant cysts (also referred to as the “hippocampal sulcus residual

cavity”) (Li et al., 2006; Sasaki, Sone, Ehara, & Tamakawa, 1993) or

choroidal fissure cysts (that can, histologically, represent arachnoid,

neuroglial, or neuroepithelial cysts) (Osborn & Preece, 2006). These

might stand out on the raw image, the fissure overlay or the full seg-

mentation overlay, yet with little effect on the validity of the actual

adjacent subfield volume measures. Following this logic, most subjects
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in this category do not need to be excluded. Research on the effect of

known normal variants is ongoing; more recently, a correlation

between CA1 volumes and incomplete hippocampal inversion (IHI), a

very common normal variant found in about 20% of healthy subjects

(Colenutt, McCann, Knight, Coulthard, & Kauppinen, 2018), has been

reported

F IGURE 3 Examples of normal anatomical variants, peculiarities and phenomena, and discrepancy between the binary hippocampal mask and
segmentation results. Images are displayed at (unsmoothed) 1-mm isometric resolution, and subfield overlays at 0.333-mm isometric resolution.
Anonymized examples are differently contrasted as they stem from several sites with different display settings. All shown examples would not
necessarily need to be excluded, yet see specific comments on a2 and a5. (a1) Example of sulcus remnant cysts that are found in �25% of adults
between the dentate gyrus and the cornu ammonis; considered an incidental finding with no pathological implication; classified as hippocampal
fissure (yellow on mid row image) which represents CSF intensity. Similar peri- or intrahippocampal cysts exist, such as choroidal fissure cysts
(etiologically arachnoid or neuroglial or neuroepithelial cysts) may similarly be classified as hippocampal fissure, or extra-hippocampal
(“background”) by the algorithm, depending on location details. Certain types of cysts may co-occur with enlarged perivascular spaces (Virchow
Robin spaces), for example, in the lower basal ganglia or midbrain (see open arrows in a1). (a2) A cystic area not classified as fissure, but as extra-
hippocampal background, and a part of CA1 seems neglected. Depending on the amount of such truncated hippocampal tissue, extreme cases of
this type should be excluded. (a3–a5) Examples of cysts either classified clearly as fissure, or as background (i.e., no hippocampal subregion). a5

likely classified the fissure correctly that, however, appears brighter than CSF on the raw image due to partial volume effects. More extreme
cases (hippocampal fissure intensity being too bright on T1WI or not represented on T2WI) should be excluded, and the hippocampal fissure
volume may contain cysts. (b) Very frequent (90%) yet practically negligible observed discontinuous appearance of CA1 and/or smaller spared
regions (“holes”) within CA1. (c) Subfields extending into another subfield or forming small extensions/islands; though visually conspicuous the
volume effect of such extensions is negligible. (d) “Holes” localizable to fimbria (light pink, d1), or CA3 (green) or CA1 (red) as in d2 or d3 are
caused by the removal of the alveus (white matter layer on the superior rim of the hippocampus) area in the final binary classification step, which
may cause the impression of an abrupt ending of the segmentation. (e) “Bulky” appearance of CA1 in the sense of this subfield strongly
dominating the appearance on one slice. This may occur due to strict orthogonal slicing in native space. (f1) Example of standard hippocampal
segmentation (recon-all) missing parts of the posterior hippocampus, while the subfield segmentation v6.0 correctly detects these parts.
Incompleteness of the standard binary hippocampal starting mask should therefore not be an exclusion criterion per se. (f2) Anterior parts seem
truncated, yet lie in the amygdala complex; this appearance is normal and does not indicate a failed segmentation
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Category (2) represents phenomena that could be referred to as

“small artifacts” with no critical effect on the resulting volumes. Yet, it

seems useful to identify examples in this category, particularly for

raters assessing a smaller study that may only contain very few exam-

ples of such phenomena (see Figure 3b–e and legends for specific

examples).

Category (3) is potentially complex and comprises heterogeneous

underlying causes, including technical failures (e.g., algorithm failure,

or incorrect orientation of the input image), low input image quality, or

extreme pathology with gross atrophy or intrahippocampal signal inten-

sity changes. Particularly the latter category—extreme pathology—may

lead to a decision to keep the subject in the sample, or exceptionally

exclude only selected subfields. Such a scenario may for example be

marked postoperative or posttraumatic changes of the medial temporal

lobe that prevent proper detection of certain subfields, strong

intrahippocampal intensity changes caused by hippocampal sclerosis,

ischemia or encephalitis, or strongly progressed AD or other forms of

neurodegeneration. For this reason, the underlying T1WI is displayed in

parallel.

Figure 3 covers examples of Categories (1) and (2). Additional

examples of deviations may be found in Figure 12 and supplemental

Figure 22 of the original report on the ex vivo atlas-based method

(Iglesias et al., 2015).

Two further points deserve attention: First, circularity is problematic—

in the sense of (visually) rating those features that will be used as the

dependent variable of the analysis. In addition, as the hippocampal

segmentation is based on—though not fully dependent on—a proper

general segmentation of the hippocampus (as part of the recon-all

command in FS), such a control step should be incorporated in the

QC (see below). For our QC pipeline, we thus developed a triple over-

lay of (a) the resulting hippocampal fissure (an output of the subfield

segmentation) on (b) the starting hippocampus mask of the general

segmentation, both overlaid on (c) the T1-weighted background

image as the basis for the visual QC. In addition to this, yet not in iso-

lation, the full set of hippocampal subregions is shown (Figure 2). Sec-

ond, the general cortical and subcortical segmentation should also

undergo a QC, for example, by the packages supported online, as of

April 2017 (http://enigma.ini.usc.edu/protocols/imaging-protocols),

for two main reasons: (a) the generation of intensity distributions is

based on defined white matter areas and successful cortical/subcorti-

cal segmentation and (b) global measures such as ICV, total brain vol-

ume or total gray matter (TGM) are usually needed for the statistical

model and rely on a proper general registration or segmentation.

As both the general QC and the subfield QC show example slices

of the original input image, this should help in detecting very low-

quality input images (e.g., blurred margins due to motion artifacts).

Such images increase the risk of general segmentation failure

(e.g., parts of lobes missing, or considerable underestimates of cortical

thickness) and/or incomplete progression of the hippocampal segmen-

tation to the borders of the hippocampus. The latter may be found in

case of an extremely degenerated hippocampus where internal CSF

signals may mimic a true margin. In our experience, such global low-

quality cases often lead to strongly underestimated TGM values or

TGM/ICV ratios that appear as outlier values, particularly when plot-

ted against age.

3.3 | A proposed QC pipeline

Within the ENIGMA consortium, we have developed a standardized

set of MATLAB, Linux shell, and R scripts for QC of hippocampal sub-

fields derived from the FS6.0 algorithm that provide several functions,

including (a) starting subfield segmentations on a group of subjects

that have undergone the general recon-all segmentation, (b) gaining a

standardized readout table of subregional volumes and global volumes

from the general segmentation, (c) a list of cases that should be

inspected individually, and (d) a browsable hypertext markup language

(HTML) file that allows to perform this visual QC also in larger samples

(Figure 4).

Steps (a) and (b) are based on Linux shell scripts. Step (c) is an

R script based on two principles: First, an outlier calculation scheme

(+/− 2.98 SDs, each representing the roughly 1% of cases in the tails of

a normal distribution) directed to all subfield volumes, yet also total

brain volume, total GM volume, ICV, and GM/ICV ratio. Second, as the

rank order of the subregional volumes is very robust (Figure 2a) across

MR platforms and samples, a set of three violations of this ranking order

has been defined from an analysis of N = 626 subjects in which the

deviation pattern of the actual rank from the group mean rank was cal-

culated: (a) CA1 not being the largest subregion (i.e., not rank #1;

frequency � 11%), (b) hippocampal tail being below rank #3 (frequency

�2%), and (c) subiculum not being ranked #4 (frequency � 2%). The

first rule is optional (switched off by default) as it may be oversensitive

and too unspecific in larger samples.

For Step (d), the number of cases summarized per HTML-file can

be defined by the user. In this way, several separate files are generated,

for example, for distribution to several raters. Further, a random order

mode (to avoid QC order biases) can be requested, or a sparse version

of the HTML output with fewer example slices that allows one to accel-

erate the throughput in very large samples (e.g., N > 1,000).

Overall, when using our ENIGMA Hippocampal Subfields QC pro-

tocol, we recommend the following steps, as also shown in Figure 5,

before statistical analyses of subregional volumes:

1. Perform general FS segmentation and append the hippocampal

segmentation module, ideally using the same version (currently 6.0

or 7.0) (Note: Combining FS.5.3 general segmentation with FS6.0

subfield version is feasible and produces highly similar results,

compared to FS6.0 only; also see supplemental material in van der

Meer et al. (2018).

2. Perform a QC of the general cortical and subcortical segmentation,

using the respective ENIGMA scripts and instructions (http://

enigma.ini.usc.edu/protocols/imaging-protocols).

3. Read out hippocampal subregional volume and general segmentation

results using the script from the SUBFIELDS package; run the R script

outliers_hippo_and_QC_support.R on this output to generate a list of

cases that could harbor problems (see Figure 5 for an example).
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4. Run the three QC preparation scripts to eventually generate the

QC-HTML files; adapt graphical and random order or sparse out-

put settings in the scripts as required.

5. Inspect all datasets in the QC-HTML files with a standard browser,

with particular attention to the flagged datasets. Additional recom-

mendations are:

a. To become familiar with the study specific variance of segmen-

tations and to avoid an order bias, it may be efficient to view a

random selection of cases at a higher pace, collecting “global
impressions” first.

b. Before browsing the static HTML-file and if unfamiliar with the

FS hippocampal segmentation output, it may be beneficial to

explore a handful of cases using the FS viewer Freeview that

allows scrolling in all three dimensions. As FS output is in native

space, this step is useful to become acquainted with the vari-

ance caused by imperfectly corresponding anatomical slice

positions between subjects.

4 | FS-BASED HIPPOCAMPAL SUBFIELD
ANALYSIS: STATUS OF CLINICAL
NEUROSCIENCE PUBLICATIONS

The studies referred to in this section were retrieved from a PubMed

literature search performed on December 14, 2019. The search com-

bination was “hippocampal subfields” OR “hippocampal subregions”
OR “hippocampal subfield” OR “hippocampal subregion” AND “MRI”

F IGURE 4 Exemplary overlays of full segmentation results, combined hippocampal starting mask and fissure, and full visual quality control
(QC) output. (a) 3 Tesla examples of (bias field corrected) T1-weighted input image and exemplary axial and sagittal colored subfield
segmentation. (b) Principle of combined background image, and hippocampal starting mask (from general subcortical segmentation [recon-all]), and
hippocampal fissure, allowing a check of basic orientation/rotation, successful basic hippocampal segmentation (purple transparent overlay) and
correct placement of hippocampal fissure (yellow) within the hippocampal starting mask in one glance. (c) Layout structure of HTML output of
one case. One 8 × 3 set of images usually fits on a large screen, so a maximum of one page flip is needed to finalize one case. Dark blue
horizontal bars separate cases from each other. Dashed purple box marks the area for which a real example is depicted in (d). (d) Exemplary
HTML-output of one case (limited to axial and part of the coronal output images). Sl., slice number
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(limited [filter] to human studies and a time frame January 1, 2013–

December 14, 2019), resulting in 401 reports. All 401 abstracts were

reviewed (P. G. S.) and those in which the segmentation technique

was not the automated FS tool (i.e., other automated tools or manual

segmentation protocols) were excluded. Reviews and retrospective

meta-analyses were excluded to avoid double inclusion of original

studies. After excluding reliability and purely methodological studies

that we refer to in Section 4.2, 162 reports were available for further

analyses.

From these studies, we aimed to identify domains, topic, and

selected methodological information: field strength, MRI sequence

(T1WI, T2WI, or both), FS version, global volume correction (if used,

and the specific volume used), statistical approach for global

correction (regression method, proportion method, covariate method),

presence of age and sex as covariates, modeling of nonlinear age

effects, and additional covariates. We extracted if a QC of the subfield

segmentation was reported, if outliers were excluded and if manual

corrections were performed. Finally, we noted if and how hippocam-

pal subfields were (re-)aggregated to create composite markers. Three

studies used hippocampal subfield segmentation merely as a tool to

define ROIs, leaving 159 studies for the analysis of statistical aspects.

As one goal of ENIGMA is to advance the endophenotype con-

cept (Gottesman & Gould, 2003)for genetic association studies, the

returned hippocampal subfield studies were organized into studies of

(a) heritability; (b) clinical diagnoses, behavioral and cognitive pheno-

types, or other biomarkers; and (c) studies of candidate genes or

F IGURE 5 Overall quality
control (QC) flow scheme for a
FreeSurfer-based hippocampal
subfield study. Depending on
local pipelines, general QC steps
regarding the raw data quality,
motion artifacts and complete
coverage may be performed
directly on the picture archiving

system and be study-
independent. A general
inspection of the cortical/
subcortical segmentation result of
FS is recommended before
subfield specific operations. Steps
2–7 are supported by a script
package written in MATLAB, R,
and Shell. “freeview + subfields”
refers to an individual check using
the interactive FS viewing tool
(https://surfer.nmr.mgh.harvard.
edu/fswiki/
HippocampalSubfields)
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exploratory imaging genetics analyses. Results of (a) are summarized

as text in Section 4.1. Results of all Categories (a) and (c) are pres-

ented at three different levels of granularity: first, in an iterative pro-

cess based on the full papers, studies were aggregated into

19 domains (15 clinical/ behavioral domains, 4 (epi-)genetic domains)

that are depicted in a pie chart (Figure 1, see legend for details on cat-

egory fusions). Second, in Table 2, subcharacterizations and topics

have been added to single studies or groups of studies for a quick

overview and references. Third, Supplemental Table 1 lists all

162 studies in more detail focusing on the relevant technical features

extracted for the methodological and QC review.

4.1 | Heritability analyses

Hippocampal subfield volumes from FS6.0 have been analyzed with

regard to their heritability—mainly to corroborate their utility as

endophenotype—based on monozygotic/dizygotic twin studies (Elman

et al., 2019; Greenspan et al., 2016; Whelan et al., 2016) or on genotype

information (van der Meer et al., 2018).

Whelan et al. (2016) reported heritability between 56 and 88%

for hippocampal subvolumes and total HV, after controlling for age,

sex, and age-by-sex effects. Heritability estimates h2 as measured by

the proportion of variance in volume attributable to genetics via twin

studies were larger than 70% for regions with relatively larger vol-

umes (whole hippocampus, molecular layer, CA1, CA3, CA4, hippo-

campal tail, granule cell layer, subiculum, and presubiculum) and

moderate to high (55% < h2 < 70%) for smaller subregions (HATA, fim-

bria, parasubiculum, hippocampal fissure). Projection to a hippocampal

surface model demonstrated that heritability is larger for posterior

subregions (including the hippocampal tail), and smaller for anteromedial

subregions (parasubiculum, presubiculum, fimbria), suggesting a gradient

of genetic influences. Even so, the relationship between subregional

volume and measurement reliability may also have influenced estimates

of heritability. Elman et al. (2019) reported heritability values between

37% (HATA) and 89% (molecular layer) from values controlled for age

and sex. Genetic correlations as a measure of shared genetic influences

were high between subfields and the total HV, indicating that for stan-

dard resolution T1WI, no substantial additional information on the

genetic underpinning is gained through the subfield volumes (Elman

et al., 2019). Despite finding significant genetic covariance of the sub-

fields, no stable latent genetic traits (composed from combinations of

subfields) were found in a factor analysis (Elman et al., 2019).

Greenspan et al. (2016) reported heritability estimates for FS6.0

subfield volumes between 20 and 87% along with high shared genetic

variance with total HV (mean 0.79, range 0.50–0.98). After regressing

out total HV—or when percentages based on the ratio of the subre-

gional volume/total HV) were considered—heritabilities ranged

between 4 and 86% (7 and 84%, respectively). Here, heritability values

were not significant for the fimbria, hippocampal fissure and HATA.

From a recent GWAS on hippocampal subregional volumes

residualized for ICV, age, sex and site (van der Meer et al., 2018), sig-

nificant SNP-based heritability was reported from a very large sample

(N > 20,000), ranging between 14% (for the parasubiculum) and 27%

(for the hippocampal tail).

4.2 | Application to clinical diagnoses, behavioral,
and cognitive phenotypes, (epi-)genetic markers or
other biomarkers

We found that hippocampal subfield analyses using the FS tool so far

have been performed in a broad range of domains that are quantified

in Figure 1 and grouped into subdomains/topics in Table 2. Beyond

activity in expected major fields such as hippocampus-dependent

cognitive functions, healthy and pathological aging, major psychiatric

diseases of the affective/psychosis spectrum and different neurologi-

cal disorders, a growing interest in psychotraumatology, and neuro-

toxic influences including systemic inflammation is noted. Subfield

volumes are now also probed as endophenotypes, in studies analyzing

candidate genes, epigenetic methylation patterns polygenic risk

scores, but also exploring the whole genome for associations with sin-

gle subfields (Nakahara et al., 2019) or all subfields (van der Meer

et al., 2018), or for methodological comparisons (Couvy-Duchesne

et al., 2019).

4.3 | Statistical aspects

4.3.1 | Modeling global volume effects

One important source of interindividual variance in regional brain vol-

umes is the variation in overall head size (Mathalon, Sullivan, Rawles, &

Pfefferbaum, 1993). To increase the specificity of regional results, ICV

is often included in the statistical model—of the 159 reports in which

subfield volumes were the outcome variable, 78% reported results

corrected for ICV. Technically, in FS, ICV is estimated from the matrix

created during a linear registration of the individual MRI scan to

Talairach space, and is thus also referred to as “estimated total intra-

cranial volume” (Buckner et al., 2004). FS-based studies thus tend to

employ this measure as an ICV surrogate. Alternatively, after segmen-

tation (e.g., using Statistical Parametric Mapping [SPM] software),

TGM, white matter and CSF volumes can be summed up. Both

methods correlate well with the gold standard of manual delineation,

yet overestimations have been reported for both SPM8 and FS (ver-

sion 5.1.0) (Nordenskjöld et al., 2013). Excellent agreement with the

gold standard, superior to FS5.3, was recently achieved with SPM12

based segmentation augmented by a manually edited intracranial

mask (in MNI space) (Malone et al., 2015). A smaller proportion of

studies considered total brain volume (4.4%), supratentorial gray mat-

ter volume (2.5%) or total HV (5.7%) as a correction variable. Choosing

these variables gradually increases the regional specificity which is

particularly relevant if effects in extra-hippocampal brain areas are

expected (e.g., neurodegenerative disorders). Correction for total HV

allows to study subregional effects that exceed total HV effects, maxi-

mizing the regional specificity.
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ICV (or another global volume) can be modeled in various ways

(O'Brien et al., 2011): first, it can be included as a nuisance covari-

ate in analyses of covariance, linear mixed models or regression

analyses, along with other confounding variables (analysis of covari-

ance approach). This approach was used in most (79%) of the

136 studies that included a global volume. Second, volumes can be

adjusted by regression analysis (residual approach), so volcorr = vol -

b*(ICV-ICVmean), where b is the slope of the regression of vol on

ICV (Hayes et al., 2017; Mathalon et al., 1993). About 13% of

136 studies applied this approach. Third, ICV may be used for a

direct individual standardization of regional volumes. This approach,

applied in 25% of the reports, is referred to as the proportion (or

ratio) approach. In its simplest form, volcorr = vol/ICV. In an exten-

sion of this, the sample mean ICV can be multiplied with this term.

The advantages and disadvantages of each of these methods are a

long discussed topic (Arndt, Cohen, Alliger, Swayze 2nd, &

Andreasen, 1991; Buckner et al., 2004; Jack Jr et al., 1989; O'Brien

et al., 2011; Sanfilipo, Benedict, Zivadinov, & Bakshi, 2004;

Voevodskaya et al., 2014). No generally valid recommendation can

be given that applies to all study types and questions and each

approach requires certain assumptions (O'Brien et al., 2011). For

example, the covariate allows for a clear attribution of different

sources of variance; the regression approach may be unreliable in

small samples, but yields a more Gaussian distribution compared to

the proportion approach.

An increasingly recognized problem is the possibility of nonlinear

(allometric) rather than isometric relationships between total and local

cerebral measures (Jäncke, Liem, & Merillat, 2019; O'Brien et al., 2011;

Reardon et al., 2016). Toro et al. (2009) demonstrated that assumptions

on brain allometry made a critical difference in a genetic study on

HV. More recently, van Eijk et al. (2020) reported that allometric scaling

may also be found for hippocampal subfield volumes.

4.3.2 | Modeling of age effects

Modeling of age effects is another critical point for studies on hip-

pocampal morphology. For TGM volume, when corrected for ICV,

the gain in explained variance through nonlinear terms is rather

weak (Figure 2d), whereas hippocampal subregion volumes (and

other subcortical structures) show nonlinear effects, with a plateau

phase in mid adulthood and a decrease starting around age

65 (de Flores et al., 2015) (also see Figure 2c). Similarly, nonlinear

developmental trajectories have been reported for the age range

between 8 and 30 years for subcortical brain structures including

the total hippocampus (Ostby et al., 2009), and for hippocampal

subregions between age 4 and 22 years (Krogsrud et al., 2014).

This implies that in hippocampal subregional studies of larger age

ranges, either guided by theoretical considerations or by data

exploration, models with nonlinear terms should be used. In our

collection of reports, age effects were modeled in most studies

(�89%); four (2.5%) of these studies modeled nonlinear age

effects.

In addition, aging processes may be abnormal in clinical condi-

tions, and disease-specific aging processes may falsely translate into

group main effects. Respective age-by-sex and age-by-diagnosis inter-

action terms, and their higher order versions, can help to refine the

model and reduce interpretational ambiguity. Here, pooling of multi-

site data (e.g., mega-analysis) is useful, and methods to remove batch

effects under preservation of covariate effects have been suggested

for age harmonization (Fortin et al., 2018; Pomponio et al., 2020).

4.3.3 | Skipping or reaggregation of hippocampal
subfields

Skipping or, in turn, reaggregating hippocampal subfields to create

composite measures (differing from those in the original FS6.0 or

FS5.3 scheme) was reported in a handful of studies (�4%). Subfields

excluded due to their relatively low reliability were mostly the fimbria

and the hippocampal fissure (as the latter does not represent hippo-

campal tissue, but a CSF cleft). Some studies define the subicular com-

plex from the subiculum, the parasubiculum and presubiculum (see

Supplemental Table 1, last column, and table legend for details). In

FS6.0 and FS7.1, three variants of how the algorithms' hidden fine-

grained subfield parcellation is aggregated to the final labels are pro-

vided: (a) a head-body-tail aggregation, useful for comparisons with

earlier landmark-based segmentation work or calculation of more

coarse ROIs regions, for example, for functional MRI, (b) the aggrega-

tion to 12 subregions presented here, and (c) a version called “CA,” in
which the internal labels (GC-ML-DG and molecular layer) are

absorbed by the CA subfields. More specifically, GC-ML-DG is

assigned to CA4, and voxels in the molecular layer are assigned to the

closest voxel that is neither in the molecular layer nor background.

McHugo et al. (2018) in their work on psychosis suggested two

aggregation schemes for easier comparison with data generated from

other commonly used segmentation algorithms (Mueller et al., 2018;

Yushkevich et al., 2015) and to account for imperfect boundary defini-

tions for smaller subregions (CA3, GC-DG, molecular layer) in the

absence of multispectral input data. These schemes are interesting

variants, particularly when volumetric effects along the longitudinal

axis of the hippocampus are investigated.

4.3.4 | Multivariate analyses and structural
covariance analysis

Given the good measurement reliability of most subfield volumes,

multivariate analysis including machine learning approaches are partic-

ularly attractive, allowing for the detection of complex morphological

patterns. For example, hippocampal subfield information predicted

treatment outcome in MDD with an accuracy of 83% (Cao et al., 2018).

Similarly, linear discriminant analysis using hippocampal subfield infor-

mation (from both FS5.3 and FS6.0) proved superior to total HV for dis-

criminating AD patients from healthy controls (Iglesias et al., 2015).

Both studies add indirect clinical validity to the subfield segmentation.
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Structural covariance analysis that is based on the coherence of subfield

volumetric patterns across subjects is another interesting approach: For

example, Wang, Yu, et al. (2018) and Wang, Zhang, et al. (2018)

reported higher covariance between hippocampal subfields and extra-

hippocampal gray matter volume in amnestic and vascular MCI patients

compared with control subjects. Unsupervised learning tasks such as

clustering have revealed groupings within the subfields and with other

brain areas (van der Meer et al., 2018). To our knowledge, no clustering

of patient samples into subgroups, based on hippocampal subfield pat-

terns, has been reported so far.

5 | SUMMARY DISCUSSION AND
OUTLOOK

The FS-based hippocampal subfield segmentation algorithm is a

widely applied tool that can be used to study physiological

hippocampus-dependent processes and pathological conditions.

Healthy and pathological aging studies, including the MCI/AD spec-

trum, together with studies on the psychosis and the affective disor-

ders spectrum make up about 50% of the studies. Early environmental,

and genetic influences and studies of neurotoxic influences on hippo-

campal integrity make up the majority of the remaining studies. The tool

provides an opportunity to improve upon the long-known non-

specificity of (total) hippocampal volumetry findings in many neuropsy-

chiatric diseases (Geuze, Vermetten, & Bremner, 2005). Due to its easy,

automated use, it naturally fosters exploratory studies, and some

reports now exist performing GWAS on hippocampal subfield volumes

(Morey et al., 2020; Nakahara et al., 2019; van der Meer et al., 2018).

Here, recent methodological work has highlighted that for hippocampal

subfield volumes multivariate GWAS could be a useful addition to the

classical multiple univariate approach (Couvy-Duchesne et al., 2019).

Most clinical/behavioral studies used analysis of covariance or lin-

ear mixed models, covarying for age, sex, and ICV. Still, considerable

variability exists regarding the modeling of age and global volumes,

which hampers retrospective meta-analyses. A similar degree of het-

erogeneity was noted for QC steps. Prospective harmonized analyses

of existing datasets, as performed in ENIGMA, and also the analysis of

prospectively acquired subfield data could benefit from our QC proto-

col as a guideline. Multivariate analyses of hippocampal subfield data

are still rarely used but have begun to show promising results, for

example, for predicting treatment response in MDD (Cao et al., 2018).

In conjunction with good across-site and across-vendor reliability

(Brown et al., 2020; Quattrini et al., 2020), this strengthens the poten-

tial of subfield volumes as a biomarker for clinical trials. One possible

advantage of subregional volumes over voxel-wise or vertex-wise fea-

tures is a higher degree of interpretability, as effect weights can be

translated back to histology or other levels of validation.

Only very few studies (3.1%) made use of two MRI input channels

despite evidence that a second, high resolution T2WI—by detecting

critical internal hippocampal boundaries—can improve subfield mea-

surement reliability and validity (Iglesias et al., 2015; Mueller et al.,

2018; Winterburn et al., 2013). We suggest that in the currently

available FS hippocampal subfield studies the potential of the algo-

rithm is not fully exploited and optimized MRI protocols are consid-

ered in future prospective studies.

At least two other automated hippocampal subfield segmenta-

tion algorithms exist, both developed and evaluated on 3 Tesla plat-

forms and both based on manual tracings on high resolution MRI

images as a reference: MaGET-Brain (multiple automatically gener-

ated templates) (Pipitone et al., 2014) and automatic segmentation of

hippocampal subfields (ASHS) (Yushkevich et al., 2015). A complex

challenge in this methodological field is the definition of an agreed

manual segmentation protocol: here, the hippocampal subfields group

of the EU Joint Programme–Neurodegenerative Disease Research is

aiming at harmonizing a reliable and valid protocol for postmortem

data, also fostering its translation to MRI data. A protocol for 7 Tesla

MRI data with good agreement between manual and ASHS perfor-

mance has been published (Wisse et al., 2016), and comparing

ex vivo to high-field MRI data (9.4 Tesla) has resulted in further pro-

gress in protocol definitions (de Flores et al., 2019). This work is

ongoing and will serve as the basis for new validation experiments

within the MRI domain (Olsen et al., 2019). The influence of IHI—a

common, atypical rotation of the hippocampal formation (Cury

et al., 2015) that impacts subfield volumes (Colenutt et al., 2018)—

presents another challenge.

As an outlook, hippocampal shape analysis is worthwhile as it can

be combined with subfield information to localize shape effects. The

shape analysis pipeline of ENIGMA (http://enigma.usc.edu/ongoing/

enigma-shape-analysis) is based on the FS subcortical segmentation,

followed by topological correction steps and smoothing based on the

topology-preserving level set algorithm (Gutman et al., 2015; Xiao

Han, Xu, & Prince, 2003). After registration to standard templates

(Gutman et al., 2015; Gutman, Wang, Rajagopalan, Toga, & Thompson,

2012), two metrics are calculated for each vertex point: a radial distance

that is comparable to a “shape thickness” measure, and the Jacobian

determinant (Gutman et al., 2015; Wang et al., 2011), a metric of local-

ized tissue reduction or enlargement of surface area relative to the tem-

plate shape. Using a subfield surface projection (first presented for

FS5.3 by Cong et al. (2014)), shape effects can be assigned to specific

subfields. Such a combined approach has recently helped to localize

hippocampal shape changes in MDD (Ho et al., 2020) and to identify

volume changes and a complex bending and displacement of parts of

the hippocampus in obsessive–compulsive disorder (Zhang et al., 2019).

Beyond this, using a surface-based atlas of hippocampal subvolume

projections built on the medial core modeling (Gutman et al., 2012), pro-

portional contributions of volume subfields to a surface effect can be

quantified (Figure 6).

In conclusion, the FS-based hippocampal subfield segmentation

tool provides a valuable, fine-morphological phenotyping instrument

with good measurement reliability and validity. Use of a standardized

QC procedure can help to harmonize large-scale, collaborative studies

and reduce methodological heterogeneity. Acquisition protocols spe-

cifically designed for subfield studies, as well as further external vali-

dation and multivariate analysis techniques, could further improve its

usefulness in clinical neuroscience.
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ENDNOTE
1 The modification from FS5.3 to FS6.0 incorporated anatomical and theo-

retical refinements, as well as a new subregional parcellation that corre-

lated more strongly with gold standards and was derived from higher

resolution ex vivo scans. The atlas in FS5.3 had been built from in vivo

scans at 0.38 × 0.38 × 0.80 mm3 resolution, which yielded voxels

approximately 100 times larger than the ex vivo protocol and required

the human labeller to rely on geometric criteria in their delineations. This

had led to underestimation of CA1 at the expense of the subiculum and

CA2/CA3 (de Flores et al., 2015; Iglesias et al., 2015; Wisse, Biessels, &

Geerlings, 2014). Thus, while analyses of between version (FS5.3/FS6.0)

agreement have been performed (Whelan et al., 2016), their interpreta-

tion is difficult and they are therefore not reported in detail here.
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