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Abstract: The fight against the spread of antibiotic resistance is one of the most important challenges
facing health systems worldwide. Given the limitations of current diagnostic methods, the devel-
opment of fast and accurate tests for the diagnosis of viral and bacterial infections would improve
patient management and treatment, as well as contribute to reducing antibiotic misuse in clinical
settings. In this scenario, analysis of host transcriptomics constitutes a promising target to develop
new diagnostic tests based on the host-specific response to infections. We carried out a multi-cohort
meta-analysis of blood transcriptomic data available in public databases, including 11 different
studies and 1209 samples from virus- (n = 695) and bacteria- (n = 514) infected patients. We applied a
Parallel Regularized Regression Model Search (PReMS) on a set of previously reported genes that
distinguished viral from bacterial infection to find a minimum gene expression bio-signature. This
strategy allowed us to detect three genes, namely BAFT, ISG15 and DNMT1, that clearly differentiate
groups of infection with high accuracy (training set: area under the curve (AUC) 0.86 (sensitivity:
0.81; specificity: 0.87); testing set: AUC 0.87 (sensitivity: 0.82; specificity: 0.86)). BAFT and ISG15 are
involved in processes related to immune response, while DNMT1 is related to the preservation of
methylation patterns, and its expression is modulated by pathogen infections. We successfully tested
this three-transcript signature in the 11 independent studies, demonstrating its high performance
under different scenarios. The main advantage of this three-gene signature is the low number of
genes needed to differentiate both groups of patient categories.

Keywords: RNA; RNAseq; microarrays; transcriptome; transcriptomic biomarkers; RNA signature;
multi-cohort; viral infection; bacterial infection; machine learning

1. Introduction

According to the World Health Organization (WHO), infectious diseases are still
among the major causes of child mortality and are responsible for many medical visits and
hospitalizations around the globe [1]. Until recently, it was commonly considered that most
severe infections were caused by bacterial pathogens but, during the last decade, increasing
evidence shows viral infections as also being responsible for significant morbidity and
mortality in children [2].
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Distinguishing between viral and bacterial infections remains a challenge, since the
established bacterial detection methods, such as bacterial culture, can take a few days
and even result in false negatives when the infection is located in non-accessible sites [3],
or the sample is obtained after an antibiotic treatment [4]. Therefore, out of fear of not
diagnosing and properly treating a potentially life-threatening bacterial infection, most
clinicians decide to empirically administer antibiotics as a preventive tool while await-
ing the bacterial culture test results [4,5]. Consequently, numerous viral infections are
erroneously treated with antibiotics, contributing to the appearance of antibiotic-resistant
bacteria [4,6]. Antibiotics have contributed to longer and healthier lives, but, as stated
by the World Health Organization (WHO), their overuse, together with the absence of
current-generation antimicrobial drugs, is enabling common infections and minor injuries
to become fatal again.

The development of polymerase chain reaction (PCR)-based molecular assays has
noticeably increased the capability to accurately diagnose old and emerging viral infec-
tions [7], and also the interrogation of multiple viruses in a single test [8]. Unfortunately,
molecular assays have been less efficient in detecting bacterial infections, especially those
caused by invasive infections [9]. Furthermore, because these tests point to the presence of
nucleic acids, they might not identify the primary causative agent. Therefore, the detected
pathogen could no longer be viable, and its presence may simply respond to a recent but
unrelated illness [9], or even to an asymptomatic colonization.

In this context, the development of new diagnostic tools is one of the most important
challenges of current public healthcare. They will play a central role in the fight against the
emergence of bacterial resistance through precise and fast diagnosis, as well as facilitating
the correct treatment of bacterial and viral infections.

The human transcriptome is a dynamic layer of information that changes according
to cell types and organism conditions. Thus, host transcriptomics approaches not only
hold the potential to shed light on the molecular pathogenesis of infectious diseases,
but they may also enable the development of new diagnostic approaches based on the
host gene expression response to specific pathogens [10,11]. Several host transcriptomic
signatures in response to different infections were published in the last decade [4,12–17],
but many of them were only focused on the specific pathogen and/or conditions studied,
and usually in patients with the same age range or population background. As such, a
multi-cohort analysis using publicly available data from different studies can help find
common transcriptomic signatures, masking those expression patterns potentially related to
specific pathogens, conditions, ages or genetic backgrounds, hence making the translation
of these signatures to a generic test and its implementation in the clinical routine more
straightforward [5,18–20].

In the present study, we explored host blood gene expression response to different
infections to detect key transcriptomic changes related to viral or bacterial pathogens from
a multi-cohort perspective. For this purpose, we downloaded 1209 transcriptomic sample
profiles from public databases that correspond to 11 different gene expression studies from
both microarray and RNA-seq data, containing bacteria- and virus-infected patients from
different genetic population backgrounds and ages. We performed a multi-signature meta-
analysis of the gene signatures that have been reported in these studies as potentially able
to distinguish viral or bacterial infections. Through a machine learning approach, we were
able to capture the best minimum transcriptomic signature among these gene candidates.

2. Results

To find the best candidates for a specific transcriptomic signature to distinguish viral
from bacterial infections, we first combined the 11 different gene expression datasets
including a total of 1209 samples (695 samples from viral infections and 514 samples
from bacterial infections; Table 1; Table S1), obtaining 3025 common genes between them.
Subsequently, we checked for the presence of the 163 different genes that have previously
been published in these 11 studies as signature genes with the potential to differentiate



Int. J. Mol. Sci. 2021, 22, 3148 3 of 11

between viral and bacterial conditions (Table S2) in the 3025 common genes (note that only
a few of the 11 articles explored transcript signatures with the capability to separate groups
of infection). As a result, 64 out of this initial list of 163 genes could be included in the
meta-analysis gene set.

Table 1. Samples included in the meta-analysis (GEO: Gene Expression Omnibus). Platform: lllumina (I), Affymetrix (A);
MA: microarray; Cohort: children (C); Adult (A); Source: whole blood (WB), peripheral blood mononuclear cell (PBMCs).

GEO ID n (Virus) n (Bacteria) Platform
Description Cohort Source Reference

GSE69529 80 140 HiSeq 2500 (I);
RNA-seq C WB [21]

GSE64456 190 89 HT12 V4 (I); MA C WB [19]

GSE72829 92 52 HT12 V3 (I); MA C WB [4]

GSE6269 8 16 HG U133A Array
(A); MA C PBMCs [22]

GSE20346 19 26 HT-12 V3 (I); MA A WB [23]

GSE40012 39 61 HT-12 V3 (I); MA A WB [24]

GSE40396 35 8 HT-12 V4 (I); MA C WB [25]

GSE42026 41 18 HT-12 V3 (I); MA C WB [26]

GSE25504 3 9 HG U133 Plus 2.0
Array (A); MA C WB [27]

GSE60244 71 22 HT-12 V4 (I); MA A WB [28]

GSE63990 117 73 HG U133 Plus 2.0
Array (I); MA A/C WB [29]

Totals 695 514

We performed an over-representation analysis with these 64 candidate genes (Table S2)
using both Gene Ontology (GO) and Reactome as the reference pathway database. GO
analysis pointed to an implication of these genes in immune response processes (p-adjusted:
3.24 × 10–9) mainly driven by the interferon I signaling pathway (1.26 × 10–8), the
cytokine-mediated signaling pathway (p-adjusted: 2.23 × 10–8), neutrophil degranula-
tion (p-adjusted: 1.34 × 10–7), innate immune response (p-adjusted: 2.58 × 10–7) and other
biological processes related to mechanisms of defense against viral infection (p-adjusted:
9.68 × 10–7) such as negative regulation of viral replication or cell cycle (Figure S1; Table S3).
Similar results were achieved when carrying out the over-representation analysis with
the Reactome database as the reference: interferon alpha/beta signaling (p-adjusted:
8.74 × 10–9), neutrophil degranulation (p-adjusted: 2.15 × 10–6) innate immune sys-
tem (p-adjusted: 1.88 × 10–4) and cytokine signaling in the immune system (p-adjusted:
2.94 × 10–6) (Figure S2; Table S3). Some of the candidate genes are involved in the IL9
signaling pathway (statistically significative in both over-representation analyses; Table S3).

Among these 64 candidate genes (Table S2), we searched for the minimum transcrip-
tome signature that allows to discriminate between viral and bacterial infections using the
optimal gene model size according to the Parallel Regularized Regression Model Search
(PReMS) algorithm. To study the expression patterns of these candidate genes in our
multi-cohort database, we followed a cross-validation strategy that randomly divides the
whole dataset into a training (75% of the samples) and a test set (remaining 25% of the
samples) both including bacteria- and virus-infected samples. First, we carried out an
exploratory analysis on the training set using all candidate genes in the model to assess how
the predictive log-likelihood changes with the number of genes included in the signature
(Figure S3a). We found that the optimal model was composed of 14 genes (Figure S3b)
that clearly separate viral from bacterial infections (Figure 1A) in both the training and the
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test set (p-value < 2.22 × 10–16). We also computed the area under the curve (AUC) of the
14-transcript signature in the training and test cohorts, obtaining values of 0.91 (95%CI:
0.89–0.91) for the training cohort and 0.87 (95%CI: 0.83–0.92) for the test cohort (Figure 1B).
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We analyzed in more detail the predictive log-likelihood (Figure S3b) calculated from
the training cohort after applying the machine learning algorithm to strike a balance between
the size and the accuracy of the gene expression signature. We found that the minimum
signature of three genes keeps a predictive value that is only slightly lower compared with
the 14-transcript signature; in other words, the addition of genes to the three-transcript
model adds very little to the overall predictive value. The minimal signature is composed of
genes BATF (Basic Leucine Zipper ATF-Like Transcription Factor), ISG15 (ISG15 Ubiquitin
Like Modifier) and DNMT1 (DNA Methyltransferase 1). This signature differentiated
bacterial from viral infections with high accuracy (Figure S4), reporting an AUC value of
0.86 (95%CI: 0.84–0.89), with a sensitivity of 0.81 and a specificity of 0.87 (Table 2; Figure 2)
in the training set. The performance was equivalent in the test cohort, with an AUC of 0.87
(95%CI: 0.83–0.92), a sensitivity of 0.82 and a specificity of 0.86 (Table 2; Figure 2).

Table 2. AUC, sensitivity and specificity of the 3-transcript signature.

Study Thresholds Sensitivity Specificity AUC 95% CI

GSE64456 10.80 0.87 0.90 0.93 0.89–0.96

GSE72829 2.96 0.86 0.90 0.94 0.90–0.97

GSE6269 12.49 1.00 0.75 0.84 0.66–1.00

GSE20346 7.00 0.89 0.92 0.92 0.84–1.00

GSE40012 7.07 0.82 0.75 0.83 0.75–0.91

GSE40396 11.64 0.90 0.88 0.92 0.83–1.00

GSE42026 8.27 1.00 0.94 0.95 0.90–1.00

GSE25504 10.34 1.00 0.89 0.96 0.86–1.00

GSE60244 9.75 0.72 0.95 0.90 0.84–0.96

GSE63990 6.83 0.93 0.88 0.93 0.88–0.97

GSE69529 792.62 0.75 0.65 0.76 0.69–0.82

Training set 439.56 0.81 0.87 0.86 0.84–0.89

Test set 439.77 0.82 0.86 0.87 0.83–0.92
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We further evaluated the performance of the 3-transcript model to differentiate viral
from bacterial cases in each individual study; AUC values calculated ranged from 0.76 to
0.96 (Table 2, Figure 2). The lower value of AUC (AUC: 0.76 (95%CI: 0.69–0.82); sensitivity:
0.75 and specificity: 0.65) was achieved in the Mexican cohort (RNA-seq data; GSE69529),
and this low value probably reflects the heterogeneous nature of the cohort, which included
patients affected by a mild disease.

3. Discussion

Both viral and bacterial infections occur with unspecific clinical symptoms, especially
in early stages of the disease. In fact, viral and bacterial infections are often indistinguish-
able when considering only clinical settings and, therefore, empirical therapies are often
administered as a preventive measure. The excessive use of antibiotics has led to an alarm-
ing increase in bacterial resistance and, in parallel, healthcare costs. The first step towards
more precise antibiotic administration is the availability of faster, more sensitive, and
accurate diagnostic tests. However, the tests currently available have several limitations;
for instance, the gold standard of using bacterial cultures usually takes a long time to
produce results. Although microbiological diagnosis has improved since the emergence of
PCR-based assays, these tests do not always detect the causative pathogen, as available
panels only interrogate the most frequent pathogens (requiring a priori suspicion of the
pathogen), and sometimes they detect residual remains of a past infection.

In the present study, we conducted a multi-cohort meta-analysis using high-throughput
(microarray and RNAseq) data available in public databases (n = 1209 samples) from blood
transcriptomic studies including virus and bacteria-infected patients to find the best mini-
mum gene expression signature that differentiates between both types of infections in all
possible scenarios. Meta-analysis of transcriptomic data has proven to be a useful approach
to discover gene expression signatures specific to different infectious diseases [5,18,20], rais-
ing the statistical power compared with individual studies, and finding common trends in
transcriptomic response under different conditions, pathogens, and demographic features.
Using a gene signature candidate approach following a PReMS algorithm, we obtained a
biosignature of 3-gene transcriptomics that accurately distinguishes viral from bacterial
infections with high sensitivity and specificity. This signature also performed well when
validated in all individual studies (Table 3; Figure 2), pointing to the functional versatility
of the three-transcript signature in very different infection contexts. Two of the three genes
in the signature, namely BAFT and ISG15, are both related to immune processes and, while
the former is involved in several differentiation processes of some immune cells, the latter
plays a key role in the immune response to RNA and DNA viruses [30–32]. On the other
hand, the DNMT1 gene encodes for a protein that is responsible for maintaining DNA
methylation patterns after replication and it has been shown that some viral [33,34] and
bacterial [35] infections can induce the expression of this gene.

Table 3. Genes included in the viral vs bacterial 3-gene transcriptomic signature. LRC = logistic
regression coefficient.

Gene Symbol Gene Name LRC

BATF Basic Leucine Zipper
ATF-Like Transcription Factor −1.16

ISG15 ISG15 Ubiquitin Like Modifier 0.64

DNMT1 DNA Methyltransferase 1 1.24

Although knowledge of the functional features of these genes is of great interest,
the most important issue in the context of biomarker discovery research is their capabil-
ity to differentiate both types of infections, regardless of their role in the context of the
pathophysiology of the disease. It occurs very often that candidate genes have unknown
function, but this fact does not invalidate its potential to have specific diagnostic biomark-
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ers. For instance, Herberg et al. [4] discovered a two-transcript signature from microarray
expression data, which discriminated between viral and bacterial infections with no known
function of the genes involved. Despite this, the two-transcript signature was successfully
tested and validated in prospective and other retrospective cohorts, and using different
gene-expression technologies [5,6,36]. In the same line, two long non-coding RNAs have
been recently proposed as biomarkers associated with viral infections, showing high per-
formance capability in separating viral from healthy phenotypes [36]; their role, however,
is completely unknown.

The main advantages of a 3-gene signature are its easy implementation in a diagnostic
test, given the low number of genes needed, and its functionality under different conditions
derived from the multi-cohort study. Even though RNA-seq and microarrays are emerging
as the most powerful screening approaches to discover host RNA signatures related to
infectious diseases, both have inherent problems such as a higher error rate than traditional
Sanger sequencing, standardization, and reproducibility issues [10]. Therefore, before any
biomarker is translated into a clinical test, it needs to be validated using well-standardized
technologies [6] in proper clinical settings. Consequently, further effort is needed to validate
the three-biomarker signature using robust molecular techniques such as real time-PCR
(qPCR) [6] or nCounter (Nanostring®) [10]. The qPCR is currently the “gold standard”
in gene expression studies. Many studies have proven that qPCR is a suitable method
to validate microarrays and RNA-seq findings, reporting a strong correlation between
microarray and qPCR results [37]. Furthermore, qPCR-based assays are already widely
used in hospital settings because this is a technique with high accuracy, which is also
relatively cheap and fast [6]. However, establishing a detailed laboratory qPCR protocol
that includes a careful selection of reference genes for each specific condition and good
laboratory practices is crucial to successfully convert a host transcriptional signature into a
qPCR assay that can be used in a diagnostics laboratory routinely [6].

Even though the development of a bedside test based on host transcriptomic biomark-
ers is highly desirable, this goal is not easy to achieve due to technical limitations. Nonethe-
less, this situation will most probably change soon thanks to new emergent technologies
that will allow for sensitive and qualitative detection of gene expression within a short
time frame. It is likely that in the next few years, we will see the application of the first
host gene expression diagnostic tests for infectious diseases in clinical settings and, more
importantly, an improvement in the diagnosis and treatment of infectious diseases [10].

4. Conclusions

Our results suggest that different infectious diseases are associated with different
patterns of genes that turn on or off, constituting specific molecular signatures, which can
be used to quickly identify viral or bacterial infections. We found three genes, namely
BATF, ISG15 and DNMT1, which can distinguish viral from bacterial infections in a wide
range of cohorts including different pathogens, ages and populations, and with potential
to become clinical biomarkers for infectious diseases in a clinical setting. As occurred in
previous studies [4–6,15,36], the role of biomarkers of infection is often unknown; this
fact, however, does not diminish the importance of their capability to distinguish viral
from bacterial infections. In our study, the concurrence of these biomarkers in a significant
number of independent studies points to their important role in the process of infection,
and this observation strongly suggests the need for further investigations.

The present study represents a step forward towards the use of host gene expression
signatures in clinical settings. Due to the nature of our meta-analysis that uses retrospective
data from 11 previously published studies, a validation cannot be done using the original
samples. Therefore, further effort will be needed to collect new samples from viral and
bacterial infected patients to further explore the 3-transcript signature in a new prospective
cohort. Moreover, the translation of the selected transcriptomic biomarkers into a clinical
test for diagnosis, prognosis or risk assessment needs further validation, as well as con-
sideration of different scenarios, including illness severity, time points in the course of the
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infectious disease, parasitic infections, and other inflammatory diseases. In this context, a
3-transcript qPCR validation assay or alike (e.g., using the Nano String platform) might be
also of interest before developing a point-of-care test.

There are still many challenges to overcome before host gene expression signatures
can be introduced into a point-of-care molecular diagnostic test. However, signatures based
on host gene expression biomarkers have a great potential for the diagnosis of infectious
diseases; we envisage that their use in clinical diagnostic tests will skyrocket in the next
few years.

5. Material and Methods
5.1. Sample Groups

We queried the public gene expression microarray repository Gene Expression Om-
nibus (GEO) for human gene expression datasets using the following terms: “viral”
and/or “bacterial”. We retained only those studies containing microarray expression
or RNA-seq data from whole blood samples of virus- or bacteria-infected patients. Eleven
studies (n = 1209 samples) were included in the metanalysis (see details in Table 1):
GSE64456 [19] (n = 279), GSE72829 [4] (n = 144), GSE6269 [22] (n = 24), GSE20346 [23]
(n = 45), GSE40012 [24] (n = 100), GSE40396 [25] (n = 43), GSE42026 [26] (n = 59), GSE25504 [27]
(n = 12), GSE60244 [28] (n = 93), GSE69529 [21] (n = 220) and GSE63990 [29] (n = 190), in-
cluding patients with bacterial and viral infections (Table S1).

5.2. Data Processing and Statistical Analysis

To merge and integrate the public viral vs. bacterial transcriptomic studies, we first
normalized and pre-processed each dataset separately using the package Lumi [38] for
Illumina® microarrays data and the package Oligo [39] for Affymetrix® datasets. RNA-seq
data were pre-processed as described in [5].

We first merged these databases keeping only common genes included in all of them.
Subsequently, we used the R package COCONUT (COmbat CO-Normalization Using
conTrols) to combine all datasets into one and reduce batch effects in the meta-analysis [20].
After that, we only used for the follow-up analyses the candidate biomarkers reported
in these studies as capable of differentiating between viral and bacterial infections. Only
64 out 163 candidate genes were present in all databases (Table S2) and, therefore, these
64 candidate genes were used as input to explore the minimum specific transcript signature
for distinguishing viral from bacterial infection. We used PReMS [40] in a randomly split
dataset removing healthy controls: training set (n = 914) and validation set (n = 295). PReMS
investigates different logistic regression models built from optimal subsets of the candidate
genes while increasing the model size iteratively. PReMS was the preferred method as it
tends to choose signatures with a smaller number of genes without losing model accuracy,
which would facilitate its future translation into a point-of-care test [10]. We tested first a
model with a maximum of 15 genes and then explored how the predictive log-likelihood
values change with the number of genes to find the signature with the minimum number of
transcripts with optimum performance and facilitate its translation into the clinical routine.

Finally, the accuracy of the model estimated by PReMS was calculated as the AUC
using the R package pROC [41] in both training and test cohorts as well as in all independent
studies from the multi-cohort study. The Wilcoxon test was used to assess statistical
significance between viral and bacterial groups. Functional pathways analysis was carried
out through the Clusterprofiler [42] R package. We used the package enrichplot [43] for
graphically displaying the results obtained. Heatmap representation of the top 14 genes
from the optimal model was carried out with the ComplexHeatmap R package [44].

All analyses and graphical representations were conducted using R software version
3.6.4 (www.r-project.org/, accessed on 26 January 2021).

www.r-project.org
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