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AbstrAct
The cyclic AMP response element binding (CREB) protein has pleiotropic activities 

in physiologic processes. Due to its central position downstream of many growth 
signaling pathways CREB has the ability to influence cell survival, growth and 
differentiation of normal, but also of tumor cells suggesting an oncogenic potential 
of CREB. Indeed, increased CREB expression and activation is associated with tumor 
progression, chemotherapy resistance and reduced patients’ survival. We summarize 
here the different cellular functions of CREB in tumors of distinct histology as well 
as its use as potential prognostic marker. In addition, the underlying molecular 
mechanisms to achieve constitutive activation of CREB including structural alterations, 
such as gene amplification and chromosomal translocation, and deregulation, which 
could occur at the transcriptional, post-transcriptional and post-translational level, 
will be described. Since downregulation of CREB by different strategies resulted in 
inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB 
as a promising target for cancer therapy will be also discussed.

IntroductIon

The 43 kD cyclic AMP (cAMP)-responsive element 
binding protein (CREB), first identified 1987, belong to 
the large family of basic leucine zipper (bZIP)-containing 
transcription factors (TF) including c-jun, c-fos and c-myc. 
It is a crucial transcription factor, which regulates a wide 
range of biological processes to orchestrate proper cell 
differentiation and cell growth. Genome wide analyses of 
the CREB-binding sites identified more than 4.000 genes 
with cAMP-responsive elements (CRE) in their promoters 
suggesting that CREB controls not only the regulation of 
immediate early genes as primarily expected [1, 2]. 

CREB is currently viewed as a multifaceted protein 
that associates with diverse proteins to direct biological 
distinct activities in a context-dependent manner. Its 
importance for basic cellular function and homeostasis 
is further strengthened by the lethality of CREB knock 
out mice [3]. In addition, its overexpression is associated 
with an increased cell proliferation, reduced apoptosis 
and enhanced migration. Thus, there exists evidence for 
a causal link between CREB activation, tumor initiation 

and progression. This review focusses on (i) how CREB 
expression is controlled and (ii) how protein-protein 
interactions dynamically regulated in a spatiotemporal 
manner have endowed the CREB protein with a plethora 
of functions with particular emphasis on the tumor 
promoting properties of CREB. In addition, its use as a 
prognostic biomarker and therapeutic target of tumors is 
discussed.

EssEntIAl fEAturEs And 
functIons of crEb

CREB is a modular protein consisting of a 
kinase-inducible domain (KID), two glutamine-rich 
domains and a bZIP domain. The KID- and glutamine-
rich domains are essential for the transactivation and 
phosphorylation of CREB. The transcriptional activity 
of CREB is induced upon a reversible phosphorylation 
at various serine residues, in particular at serine 133 and 
serine 142, by various kinases, such as protein kinase 
A (PKA), protein kinase B (PKB/AKT), the mitogen-
activated kinase (MAPK) and the 90 kD ribosomal S6 
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kinase [4-10]. Phosphorylated CREB (pCREB) interacts 
with diverse transcriptional co-activators including the 
histone acetyltransferase CREB-binding protein CBP/
p300 via the kinase-inducible domain (KID) in CREB 
and the KID-interacting domain (KIX) in CBP [11-13] 
thereby subsequently increasing its transcriptional activity. 
The CREB/CBP complex recruits the transcriptional 
machinery at the CRE site of gene promoters for the 
initiation of the CREB-dependent gene transcription [2]. 

Since CREB is a general transcriptional activator 
involved in the modulation of the histone H3 and H4 
methylation leading to the initiation and maintenance of 
the chromatin recruitment to the transcriptional apparatus 
[13], it could regulate a large number of physiological 
processes dependent on its cellular localization and 
time-dependent phosphorylation pattern. These include 
cell proliferation, cell cycle, metabolism, DNA repair, 
differentiation, inflammation, angiogenesis, immune 
responses and survival. 

rolE of crEb In thE tumor 
dEvElopmEnt

Next to its physiological role CREB is also involved 
in the malignant transformation of cells, since its frequent 
and persistent activation is sufficient to convert normal 
cells into tumor cells. This is mediated by an aberrant 
activation of components of the cAMP signal transduction 
relevant pathways, such as G-coupled, receptor tyrosine 
kinase (RTK) and cytokine/JAK/STAT signaling pathways, 
but also downstream signaling pathways (Figure 1). 

CREB overexpression was found in many solid 
tumor types like non-small lung carcinoma (NSCLC), 
glioblastoma, mammary carcinoma, melanoma and diffuse 
malignant mesothelioma when compared to adjacent 
normal tissues [8, 10, 14-22] as well as in hematopoietic 
malignancies [23-26]. This was accompanied by 
enhanced cell proliferation, reduced sensitivity to undergo 
apoptosis, increased angiogenesis and radiation-induced 
differentiation [27]. Furthermore, CREB overexpression is 
associated with clinicopathological parameters including 
tumor stage, grade, metastasis, enhanced development 
of recurrences, a worse prognosis and a reduced survival 
of tumor patients [17, 28-31]. This was due to a CREB 
overexpression-mediated upregulation of downstream 
target genes of CREB carrying CRE elements in their 

promoters. Chromatin immunoprecipitation (ChIP) and 
a combination of ChIP with SAGE identified a large 
number of CREB targets involved in the neoplastic 
phenotype, clonogenic potential, apoptosis resistance, 
and abnormal growth properties [32-35]. Furthermore, 
CREB overexpressing transgenic mice developed 
myeloproliferative disorders [23].

In addition, CREB has been shown to play a key 
role in the development of resistances against inhibitors 
of the Raf-MEK-ERK and PI3K/AKT signal pathways 
[36, 37]. The resistance against MAPK inhibitors could 
be enhanced by CREB in mammary carcinoma, which was 
moreover associated with an altered histone acetylation 
[36, 38]. Furthermore, downregulation of CREB caused 
an altered expression of BRAC1 and an increased 
expression of aromatase, a key enzyme of the estrogen 
biosynthesis, which is transcriptionally regulated by 
CREB and associated with the development of resistances 
to tamoxifen treatment [37]. 

molEculAr bAsIs of crEb 
rEgulAtIon

The expression and activity of CREB is dynamically 
regulated by diverse mechanisms (Figure 2). CREB 
responds to cAMP, intracellular Ca2+, various growth 
factors, such as nerve growth factor (NGF), fibroblast 
growth factor (FGF) and the insulin growth factor 
1 as well as cytokines, like IL-4, IL-10, IL-13 and 
transforming growth factor (TGF)-β thereby activating 
gene transcription [39-41]. The FGF- and stress-mediated 
regulation of CREB occurs via the MAPK kinase pathway 
[9, 42]. 

Both in vitro and in vivo studies of tumors and 
corresponding non-malignant tissues as well as of 
tumor cell lines demonstrated high levels of CREB 
expression. The underlying molecular mechanisms 
of CREB overexpression in tumors have not yet been 
identified in detail. In contrast to the CREB-binding 
protein (CBP), which is often mutated in tumors [43, 44] 
amplifications and/or deletions in CREB have only been 
rarely detected [21] suggesting that deregulation processes 
might be the major cause of increased expression and 
function of CREB in tumors. Although in most tumors 
a concordant upregulated CREB mRNA and protein 
expression was found, this linear correlation was not 

Table 1: Identification of CREB-regulating miRs in human tumors
Name Cell line/Tumor Reference
miRNA-181b adenocarcinoma [104]
miRNA-34b AML [20]
miRNA-181a PC12 (pheochromocytoma) [57]
miRNA-9 glioblastoma [21]
miRNA-200b glioblastoma [45]
miRNA-372 hepatocellular carcinoma [105]
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always detected in tumors suggesting additional regulatory 
mechanisms affecting protein levels [45]. Thus next to the 
transcriptional regulation, the expression of CREB could 
be also controlled at the post-transcriptional level.

Post-transcriptional regulation of CREB by 
microRNAs

MicroRNAs (miRs) representing small non-coding 
RNA molecules interact with the 3’ untranslated region 
(UTR) of their target mRNAs and are involved in the 
regulation of > 50 % of all genes. Thus, miRs might control 
many cellular and pathophysiologic processes including 
the initiation and progression of tumors. During the last 
years miRs have been identified, which are deregulated 
by CREB or have CREB as direct target due to binding 
to its regulatory sequences at the 3’-UTR (Table 1). 
Using in silico prediction by different algorithms CREB 
expression could be regulated by different miRs known to 

be frequently downregulated in tumors, such as miR-181b, 
miR-128, miR-124, miR-34b, miR-23a, miR-200b, miR-
203 and miR-301 [21, 46-49]. In some studies luciferase 
reporter assays confirmed the interaction of these miRs 
with the 3’-UTR of CREB. Overexpression of these 
miRs significantly modulated the expression of CREB, 
which was associated with altered growth properties of 
tumor cells thereby suggesting that the miR-mediated 
deregulation of CREB contributes to tumorigenesis. For 
example miR-200b, miR-301 and miR-343 have tumor 
suppressive activity by targeting CREB. Overexpression 
of these miRs caused an inhibition of tumor cell growth 
and/or soft agar colony formation in vitro and a reduced 
tumorigenesis in vivo [49]. This could be associated with 
suppressed expression levels of CREB target proteins 
and their related pathways [47]. Furthermore, the inverse 
expression of CREB and miR-200b had also a prognostic 
value in astrocytoma [49]. 

CREB could also regulate the expression of miRs, 
such as miR-9, which modulates different physiologic and 

Figure 1: Signal transduction pathways modulating CREB expression. Growth factors (GF) can bind to a membrane-bound 
receptor, which activates the PI3K-AKT or Ras-MEK-ERK pathways. Ca2+ influx increases the activity of calcium dependent kinases. 
Hormone receptors and G protein coupled receptors stimulate cAMP synthesis by adenylate cyclase leading to the activation of PKA. All 
signal transduction pathways can phosphorylate CREB at different serine residues.
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pathophysiologic processes including the differentiation 
and function of myeloid-derived suppressor cells (MDSC) 
[50]. Loss of miR-9 suppresses proliferation, promotes 
migration of progenitor cells in vitro [51] and coordinates 
the proliferation of glioma cells [21]. In pancreatic cancer, 
the CREB-dependent induction of miR-373 promotes 
pancreatic tumor growth in vitro and in vivo [52]. In 
melanoma cells CREB has been shown to suppress the 
expression of the RNA-editing enzyme ADAR1 in vitro 
and in situ, while the restoration of its expression reduced 
melanoma growth and metastasis formation in vivo. This 
was accompanied by RNA-editing of miR-455-5p, which 
occurs in less aggressive, but not in strong aggressive 
metastatic melanoma [53]. In addition, the RNA-binding 
protein tristetraprolin (TTP), a tumor suppressor gene, 
regulates CREB activity suggesting that low TTP levels 
represent a potential biomarker for human cancers with 
poor outcome [54]. 

Post-translational modifications

Recently it has been described that CREB 
expression could be regulated by miRs [20, 21, 55-57]. 
Next to its post-transcriptional control, CREB expression 
can be also post-translationally regulated by different 
extracellular signals, in particular by factors of the tumor 
microenvironment, like hypoxia, pH and oxidative 
stress [58]. So far, the best analyzed post-translational 
modifications (PTMs) of CREB are phosphorylation and 
ubiquitination, which have been also shown to be altered 
in tumor cells.

In addition, other PTMs, like methylation, 
glycosylation and SUMOylation, have also been shown 
to influence the activity of CREB [55, 59-67]. This might 
have functional consequences due an altered CREB-
regulated gene transcription, including that of nuclear and 
mitochondrial genes, which is accompanied by changes of 
protein degradation as well as protein/protein interactions. 
However up to now, a direct link to tumor initiation and 
progression has not yet been found.
Phosphorylation

CREB is a substrate of various kinases. Although 
the phosphorylation of CREB can occur at different 
serine residues, its phosphorylation at Ser133 and its 
functional consequences have been investigated in great 
detail. In particular, CREB Ser133 has been often shown 
to be overexpressed in human tumors. This modification 
might result in conformational changes, which might be 
associated with its functional activity, localization and/
or stability. In addition, there exist a number of other 
serine residues in the KID domain, which could be also 
phosphorylated. However, neither their expression pattern 
nor their functions have yet been described in detail. 
CREBSer108/111 and CREBSer114/117 can be phosphorylated 
by CK1B [68], CREBSer121 by the ATM kinase/ATR 

kinase [61] and Ser129 by GSK3beta [69]. In contrast, 
CREBSer133 could be phosphorylated by various kinases, 
such as CaMK4, MAPKSPK2, MSK1, p90RSK or PKD1 
[63]. It is noteworthy that phosphorylation is not always 
sufficient to stimulate CREB-dependent transcription 
suggesting the existence of additional modifications 
coordinating CREB activity [2, 70]. The identification of 
an alternative factor, which can bind CREB independent of 
its phosphorylation status led to the hypothesis that CREB 
phosphorylation is not essential for all its physiologic 
activities.
Ubiquitination

Proteasomal degradation represents the primary 
mechanism of controlled proteolysis and is necessary 
to maintain cellular function and viability [71, 72]. 
Targeted proteasomal degradation is also important in 
the regulation of the expression levels of a number of 
transcription factors, such as NF-κB and HIF-1 [73]. In 
addition, CREB can also be targeted for ubiquitination  
and therefore subsequently degraded by the proteasome. 
This is important for the quality control of CREB 
expression and might reflect a mechanism of its fine tuning 
in response to different stimuli. Recently, a cross talk 
between different PTMs of CREB has been shown linking 
hyperphosphorylation of CREB with ubiquitination and its 
proteasomal degradation [74]. 
Acetylation

CREB protein has been shown to be acetylated 
by CBP/p300, which in turn affects its transcriptional 
activity by promoting its DNA-binding capability 
thereby enhancing its transactivation activities [75, 76]. 
Furthermore, acetylation of CREB has been linked to its 
increased protein stability. Although mutations in p300 
have been frequently found in human tumors [77, 78], it 
has not yet been analyzed whether defects in CBP/p300 
have a direct effect on the expression level and function 
of CREB. 
Glycosylation

Different studies suggested that 
N-acetylglucosamine (O-GlcNAc) glycosylation can 
regulate the activity of transcription factors and other 
proteins in the nucleus [79]. CREB has been shown to be 
modified by O-GlcNAc at Serin 40, which impairs basal 
and activation-induced CREB-mediated transcriptional 
activities [80], thereby modulating important cellular 
functions. Glycosylation can function as a constant 
repressor of CREB, which controls its basal expression 
pattern along with the levels of CREB-regulated genes, 
such as e. g. Wnt2 and c-fos [81], but this mechanism has 
not yet been linked to tumorigenesis.
SUMOylation

The small ubiquitin-like modifier (SUMO) 
modification (SUMOylation) is an important mechanism 
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in post-transcriptional control. In most cases SUMOylation 
suppress the activity of targeted transcriptional activators 
by altering their sub-compartmentalization and/or protein 
interaction properties [82, 83]. The short isoform of CREB 
has been shown to be SUMOylated by the SUMO E3 
ligase protein inhibitor of activated STAT1 [55]. Recently, 
SUMOylation of AKT has been shown to regulate 
substrate SUMOylation specificity including the targeting 
of CREB [84].

CREB can also be modified by SUMOylation in 
response to hypoxia. Overexpression of SUMO1 stabilizes 
CREB and enhances CREB-dependent gene reporter 
activity in hypoxia [60]. Lysine residues K304 and K285 
of CREB are SUMO1 acceptors demonstrating that 
SUMOylation represents an important PTM of CREB. The 
CREB SUMOylation is dependent on its phosphorylation, 
but lasts longer. The distinct of phosphorylation 
status and SUMOylation kinetics suggests that CREB 

phosphorylation is responsible for signal transduction 
during early responses, while CREB SUMOylation 
sustains long-term processes [55]. This might also lead to 
changes within the cellular metabolism by affecting the 
expression of e.g. mitochondrial genes. Therefore, analysis 
of the SUMOylation status of CREB in tumor cells is 
suggested.

Subcellular localization of CREB

Next to the temporal control by post-translational 
modifications (PTMs) the CREB activity might be also 
controlled by its subcellular localization. Although 
primarily localized in the nuclear compartment, CREB can 
also be found in the cytoplasm as well as in mitochondria 
[85]. The importance of the compartment-specific 
translocation of CREB is in particular demonstrated by 
monitoring CREB expression in tumors of distinct origin 

Figure 2: Regulation of CREB (The CREB regulon). Cytokines and growth factors as well as the tumor microenvironment can 
influence the CREB activity by different signal transduction pathways. Post-transcriptional alterations, like micro-RNAs or RNA-editing, 
can influence the CREB protein expression, while post-translational modifications regulate the stability or degradation of CREB. In in vitro 
cell culture CREB increases the migration and invasion potential of the cells and is important for the cell proliferation and cell survival. 
CREB activity can further induce the Warburg effect. Additionally, in vivo the transcription factor CREB is linked with the immune 
responses, tumorgenicity as well as angiogenesis and therefore with tumor progression.
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as well as in tumor cells cultured under various conditions 
mimicking the tumor microenvironment, such as hypoxia 
and altered pH [86, 87]. Furthermore, PTMs have also 
been linked to the subcellular localization of CREB. This 
alters CREB function as shown for mitoCREB [88, 89]. 

crEb downstrEAm tArgEts And 
thEIr cEllulAr functIons In 
cAncEr

The transcriptional activator CREB enhances the 
expression of many target genes, which are involved in 
various cell functions including metabolism, cell cycle, 
survival and DNA repair suggesting that CREB is of 
critical importance for the growth, survival, migration, as 
well as for viral responses (Figure 3; [90-92]). This raised 
the question how CREB acts under pathophysiological 
circumstances e.g. initiation and progression of tumors 

and viral infection. The effects of CREB, in particular 
distinct cellular processes, depend on the proper activation 
of a specific gene expression program. A distinct set of 
genes is regulated by CREB under different circumstances 
as demonstrated by chromatin immunoprecipitation and 
DNA microarray techniques [32]. The CREB-mediated 
gene transcription is critical in maintaining a homeostatic 
cellular environment under pathological conditions. 
Indeed, there exist a large number of putative CREB 
target genes, which include genes that are involved in 
signal transduction, cellular structure, differentiation, 
cell proliferation as well as metabolism. All target genes 
exhibit the presence of one or more CRE consensus 
sequences in their promoter regions. Despite these 
characteristics the CREB target genes only share a few 
other similarities reflecting the highly variable activities of 
CREB under different conditions. The functional diversity 
of CREB target genes has also intriguing mechanistic 
implications and their activity may not coordinately be 

Figure 3: Strategies inhibiting CREB expression. Different approaches were used to inhibit/silence CREB expression and/or 
activity in vitro and in vivo. These include (i) upstream inhibitors of CREB blocking different receptor tyrosine kinases, like HER-2/neu 
and EGF-R, with e.g. trastuzumab or lapatinib, (ii) inhibition of the ion transporter (NMDA) by treatment with ketamine, (iii) inactivation 
of G-protein coupled receptors with beta blockers, (iv) activity of kinases or substrates using various signal transduction inhibitors, (v) 
inhibition of the interaction between CREB and the co-activators CBP/p300 with KG-501, (vi) influencing binding of CREB at the CRE 
site by treatment with surfenhydrate and (vii) blocking the interaction with the gene promoter using an artificial CRE element.
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turned on when CREB is phosphorylated or turned off 
when CREB is de-phosphorylated. 

tArgEtIng crEb In tumor cElls

Based on its central role in the development, 
maintenance as well as progression of tumors CREB 
has been suggested as an excellent target structure for 
the treatment of cancers. This is further underlined by 
the expression analysis of the early inducible cAMP 
repressor (ICER; inducible cyclic AMP early repressor), 
an inhibitor of CREB [93]. ICER is downregulated in bone 
marrow cells of patients with acute myeloid leukemia 
(AML) leading to an altered CREB expression level. An 
advantage of CREB as a target is its regulation by different 
signal transduction pathways, known to be involved in 
tumor development. So far, different strategies have been 
developed to inhibit CREB function in tumor cells (Figure 
3). These include the use of dominant-negative CREB 
mutants (KCREB), which could inhibit the transcription 
of CREB by heterodimerization of KCREB with wild type 
CREB. Overexpression of KCREB in metastatic tumor 
cells leads to a reduced potential of metastasis formation 
both in vitro and in vivo [94]. Recently, an inhibitor of 
CREB created by the fusion of the dominant negative 
inhibitor A-CREB with a photoactive yellow protein was 
designed controlling CREB function [95]. Thus the link 
of CREB with optogenetic domains enables the analysis 
of spatiotemporal control of CREB and its therapeutic use.

Furthermore, a number of CRE „decoy“ 
oligonucleotides have been established, which not only 
efficiently inhibit CREB gene transcription, but also tumor 
growth [96]. Using RNA interference CREB expression 
was silenced, which was associated with altered growth 
properties and cell viability. In tumor cells the shRNA-
mediated inhibition of CREB caused a reduced tumor 
cell proliferation and migration anchorage-independent 
growth, suppression of cell cycle arrest and induction of 
apoptosis accompanied by a reduced in vivo tumor growth 
and enhanced tumor immunogenicity [48, 97].

In addition, an advantage of CREB as a target is its 
regulation by different signal transduction pathways, which 
have been shown to be involved in the tumor development. 
Since these „proof of concept“ studies demonstrated 
a therapeutic effect of CREB inhibition, alternative 
strategies using small molecules have been developed 
to inhibit the CREB-mediated gene transcription. These 
include the development of different kinase inhibitors, 
which inhibit the phosphorylation and thus the activation 
of CREB as well as of chemical inhibitors, which were 
able to inhibit the interaction between CREB-CRE or 
CREB-CBP [98-102]. The inhibitor KG-501 is able to 
reversibly and dose-dependently inhibit the interaction 
between the KID domain of CREB and the KIX domain 
of CBP. This inhibition was already obvious at micromolar 
concentrations without inhibiting the general transcription 

machinery. Another option is the use of miRs to inhibit 
CREB expression and activity. Indeed, miRs directly 
blocking CREB activity and thus the neoplastic phenotype 
of tumor cells have been recently identified [30], but so far 
their implementation in vivo has not yet been established. 

conclusIons

It is noteworthy that the disruption of CREB activity 
has severe consequences and is lethal in mice [103]. The 
use of sophisticated genetic models might be suitable 
tools for increasing the knowledge of CREB in survival 
and maintenance of the cellular fate as well as in its role 
in many diseases including cancer. The identification of 
the molecular mechanisms involved in CREB expression 
and regulation will lead to strategies to inhibit persistent 
CREB activity in tumors thereby reverting the CREB-
induced transformation processes. Thus, CREB might not 
only serve as a prognostic marker, but also as a therapeutic 
target for cancers associated with increased activity of 
signal transduction pathways.
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