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abstract

 

Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in mi-
crovascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in al-
veolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in
wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the
moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% effi-
cient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper
airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice
breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min,
and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liq-
uid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway

 

surface liquid depth was 45 

 

�

 

 5 

 

�

 

m and [Na

 

�

 

] was 115 

 

�

 

 4 mM in wild-type mice, and not significantly different in
AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sam-

 

ple method, was reduced by 

 

�

 

40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel
amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by
aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that
aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption.
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I N T R O D U C T I O N

 

The water-transporting properties of the airways are
thought to be important for humidification of inspired
air and for maintaining the volume and composition of

 

the airway surface liquid (ASL)

 

1

 

, the thin fluid layer
covering airways. Abnormalities in ASL composition
and volume have been proposed to play a major role in
the pathophysiology of cystic fibrosis (Quinton, 1994;
Noone et al., 1994; Boucher, 1999; Pilewski and Friz-
zell, 1999; Wine, 1999) and other diseases of the air-
ways such as asthma and bronchitis (Anderson et al.,
1982; Yager et al., 1995; Freed and Davis, 1999). Evapo-
rative water loss in the airways is thought to drive water
influx from capillaries and interstitium into the ASL by
the creation of an osmotic gradient. The depth and
ionic composition of the ASL should depend theoreti-
cally on the ion transporting properties of the airway
epithelium and the rate of evaporative water loss, as

well as the water permeability of the airway–capillary
barrier. Similarly, the efficiency of airway humidifica-
tion should depend on the water transporting proper-
ties of the airways (Jayaraman et al., 2001a). Measure-
ments of osmotic water permeability by our laboratory
(Folkesson et al., 1996; Farinas et al., 1997) and by Mat-
sui et al. (2000) indicate that large and small airways
have moderately high osmotic water permeability. How-
ever, there is no direct evidence that high water perme-
ability is important in normal airway physiology or in
the pathophysiology of cystic fibrosis or other diseases.

Aquaporin water channels are responsible for the
high water permeability across many epithelial and en-
dothelial barriers in multiple organ systems. Aquapor-
ins AQP3 and AQP4 are expressed in airway epithelia
(Frigeri et al., 1995; King et al., 1997; Nielsen et al.,
1997): AQP3 in basal cell plasma membranes in na-
sopharnyx, trachea, and large bronchi; and AQP4 at
the basolateral plasma membrane of columnar surface
epithelial cells in small and large airways. AQP1 is ex-
pressed throughout the microvascular endothelia in
airways and lung (Nielsen et al., 1993, 1997; Hasegawa
et al., 1994), and AQP5 is expressed at the luminal
membrane of type I alveolar epithelial cells (Nielsen et
al., 1997; Funaki et al., 1998). We reported previously
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that osmotic water permeability across the airspace–
capillary barrier in mouse lung is 

 

�

 

10-fold reduced by
AQP1 or AQP5 deletion, and 

 

�

 

30-fold reduced by
AQP1/AQP5 deletion together (Bai et al., 1999; Ma et
al., 2000a). AQP4 deletion in AQP1 null mice further
reduced water permeability (Song et al., 2000b), impli-
cating a role for AQP4 and the small airways in lung wa-
ter movement as predicted from earlier microperfu-
sion measurements (Folkesson et al., 1996).

The original purpose of this study was to investigate
the role of the four major lung aquaporins in two key
airway functions related to fluid transport: airway hu-
midification and regulation of ASL volume and compo-
sition. Quantitative in vivo methods were developed to
measure humidification in upper and lower airways,
ASL volume and salt concentration, and water trans-
port in the upper airways. The hypotheses were tested
that aquaporin deletion is associated with defective air-
way humidification and a hypertonic, dehydrated ASL.
In the course of making fluid transport measurements
in the upper airways, we discovered amiloride-sensitive
isosmolar fluid absorption in upper airways, and so the
hypothesis was also tested that aquaporin deletion re-
sults in defective fluid absorption by upper airway sur-
face epithelia. Comparative measurements were made
in wild-type mice and mice deficient in each of the four
lung aquaporins individually and in pairs. The aqua-
porin knockout mice have been informative in defin-
ing the role of aquaporins in peripheral lung physiol-
ogy (Verkman et al., 2000a) and in extrapulmonary or-
gans (Ma and Verkman, 1999; Verkman et al., 2000b).
For example, mice lacking AQP1, AQP2, or AQP3 man-
ifest nephrogenic diabetes insipidus with a severe uri-
nary concentrating defect (Ma et al., 1998, 2000b; Yang
et al., 2001a); mice lacking AQP4 have altered cerebral
water balance (Manley et al., 2000); and mice lacking
AQP5 have defective saliva production (Ma et al.,
1999). We find here that although aquaporins facilitate
osmotically driven water transport in the airways, they
play a minimal role in the physiological important pro-
cesses of airway humidification, ASL hydration, and
isosmolar fluid absorption.

 

M A T E R I A L S  A N D  M E T H O D S

 

Transgenic Mice

 

Transgenic knockout mice deficient in AQP1, AQP3, AQP4, and
AQP5 in a CD1 genetic background were generated by targeted
gene disruption (Ma et al., 1997, 1998, 1999, 2000b). Measure-
ments were done in litter-matched mice (8–10 wk of age, 20–25 g
body weight) produced by intercrossing of heterozygous mice.
AQP1/AQP5 and AQP3/AQP4 double knockout mice were gen-
erated by serial breeding of single knockout mice to yield double
heterozygous mice and then double knockout mice (Ma et al.,
2000a; Yang et al., 2001b). The investigators were blinded to gen-
otype information for all measurements. Protocols were ap-
proved by the UCSF Committee on Animal Research.

 

Mouse Preparation for Airway Humidification Measurements

 

Mice were anesthetized with pentobarbital (50 mg/kg, intraperi-
toneal), and body temperature was maintained at 37 

 

�

 

 1

 

�

 

C using
a heating pad. For lower airway humidification measurements, the
midtrachea (0.2–0.3 mm below thyroid gland) was cannulated
with a short length (12 mm) of PE-90 tubing attached to a Y-con-
nector. For upper airway humidification measurements, the low
trachea (8–9 mm below the thyroid) was cannulated with PE-90
tubing to permit spontaneous breathing. A second tracheotomy
was made 3–4 mm proximal to the lower site for inflow of dry air
into the upper airways. Gas exiting the upper airways was collected
by a tight-fitting plastic mask that covered the nares. The mask was
secured with veterinary adhesive (Jorgensen Laboratories, Inc.),
and the mouth was separately sealed to force gas exit from the
nares. At the completion of the measurements, mice were killed
by an overdose of pentobarbital (150 mg/kg, intraperitoneal).

 

Lower Airway Humidification Measurements

 

A ventilator circuit was constructed using a constant volume venti-
lator (model 687; Harvard Apparatus) as shown in Fig. 1 A. In-
spired air was dehumidified by passing through a Drierite

 

TM

 

 car-
tridge (Hammond Drierite Co.) or sulfuric acid (no SO

 

2

 

 gas in in-
spired air). Inspired air was heated to 37

 

�

 

C by passage through a
40-cm-long stainless steel coil (inner diameter, 1.5 mm) main-
tained at 37

 

�

 

C. The ventilator output was directed using short non-

Figure 1. Instrumentation for measurement of airway humidifi-
cation in mice. (A) Measurement of lower airway humidification.
After anesthesia, the mouse trachea is cannulated for mechanical
ventilation with dry air. Expired air is directed into a chamber con-
taining a humidity sensor. (inset) System efficiency measured us-
ing an artificial lung system delivering 100% humidified air. See
results for details. (B) Measurement of upper airway humidifica-
tion. After anesthesia, a cannula is inserted in the low trachea to
permit spontaneous breathing. Dry air from a ventilator or air
pump (for rapid constant flow) is passed into a second cannula in-
serted in the proximal trachea. Air exiting the nares passes into a
chamber containing the humidity probe.
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compliant tubing into a machined Lucite Y-connector with dead
space 

 

�

 

0.01 ml. A pressure transducer (model TSD104A; Biopac
Systems, Inc.) was used to monitor airway pressure. Expired air
passed through the ventilator into a 10-ml Lucite chamber into
which was inserted a temperature/relative humidity probe (Cole-
Parmer Instrument Co.) having 

 

�

 

15-s response time and better
than 1% accuracy in relative humidity determination. Gas exiting
the chamber was bubbled under water to set end expiratory pres-
sure. The output arm of the apparatus was maintained at 37

 

�

 

C us-
ing an insulated housing into which 37

 

�

 

C dry air was blown. Airway
pressure, expired air humidity, and temperature were measured
continuously (100 points/s) using an MP100 Biopac workstation.

 

Upper Airway Humidification Measurements

 

For measurement of upper airway humidification, the ventilator
output or a constant flow of air was directed into the upper tra-
cheostomy (see above) using noncompliant tubing (Fig. 1 B). In
most experiments the gas was dry air as described above. The
partially humidified air exiting the nares was passed directly into
the chamber housing the temperature/humidity probe. Airway
pressure was monitored by a pressure transducer, and air flow ex-
iting the Lucite chamber was monitored by an in-line flow sensor
(model TRN3300; Kent Scientific Corp.). After ventilation of the
upper airways with dry air (8 ml/kg, respiratory rate 100/min)
for 10 min, flow was increased to 60, 120, 180, and 220 ml/min
using the constant flow pump. Airway pressure, air flow, expired
air humidity, and temperature were monitored continuously.

 

Measurement of ASL Depth and Salt Concentration

 

Mice were anesthetized with pentobarbital and the trachea was
exposed by a midline neck incision. For measurement of ASL
depth, a rectangular window (

 

�

 

2 

 

�

 

 3 mm) was cut into the ante-
rior tracheal wall 

 

�

 

3 mm below the thyroid gland (see Fig. 5 A,
left). Short transverse incisions were made through adjacent car-
tilaginous rings. After instillation of fluorescent dye (see below),
the tracheal window was sealed using plastic wrap and veterinary
tissue adhesive. For measurement of ASL sodium concentration,
the fluorescent dye was introduced via a feeding needle, and
fluorescence was measured through the translucent tracheal
wall. Fluorescence was observed with a Nipkow wheel-type confo-
cal microscope (Leitz, with Technical Instruments K2-Bio coaxial
confocal module) using a 50

 

�

 

 objective (numerical aperture
0.55, working distance 8.5 mm), appropriate filter sets, and pho-
tomultiplier detector. ASL depth was measured by z-scanning
confocal microscopy in which fluorescence was recorded contin-
uously during linear translation of the z-focus by 100 

 

�

 

m in 

 

�

 

5 s.
The ASL was fluorescently stained with tetramethylrhodamine
dextran (40,000 D; Molecular Probes) using a dispersion in vola-
tile perfluorocarbon (type FC72, boiling point 56

 

�

 

C; 3M Com-
pany) prepared by brief probe sonication. 10 

 

�

 

l of the dispersion
was applied onto the ASL using a plastic micropipet. ASL depth
was fitted to better than 2 

 

�

 

m accuracy using a reconvolution
procedure based on the axial point spread function of the objec-
tive as described by Jayaraman et al. (2001b). ASL sodium con-
centration was determined by ratio imaging using polystyrene
beads conjugated with sodium red (Molecular Probes) and Bo-
dipy-fl as described previously (Jayaraman et al., 2001b). In some
experiments, a tracheal cannula was inserted above the measure-
ment site and mice breathed dry air (see Fig. 5 B, left).

 

Osmotic Water Permeability and Isosmolar Fluid Absorption 
in Upper Airways

 

Mice were preinjected with atropine (0.2 mg/kg, intraperito-
neal), and 5–10 min later anesthetized with pentobarbital (50

 

mg/kg). After exposure of the trachea by a midline incision, the
distal part of trachea (6–8 mm from the thyroid) was cannulated
with PE-90 tubing to permit spontaneous respiration. A blunt
feeding needle was inserted 5 mm below the thyroid gland
through which 50 

 

�

 

l of PBS (325 mOsm containing 1% BSA, for
isosmolar fluid absorption) or hyperosmolar saline (325 mOsm
plus containing 200 mM sucrose and 1% BSA, for osmotic water
permeability) was instilled to fill the upper trachea and nasopha-
ryngeal cavity (see Fig. 6 A). Solutions instilled into the upper
trachea/nasopharyngeal cavity contained 

 

131

 

I-albumin (1 

 

�

 

Ci/
ml) as a volume marker. After specified times, fluid was expelled
through the nares by forcing air through the feeding needle and
collected in small preweighed vials. Care was taken to avoid evap-
orative water loss. The vial was weighed and sample 

 

131

 

I radioac-
tivity was measured for computation of 

 

131

 

I-albumin concentra-
tion and, hence, fluid dilution or concentration. Mice were
killed by pentobarbital overdose after completion of the experi-
ment.

 

RT-PCR and Immunocytochemistry

 

Lungs and trachea were harvested from wild-type and aquaporin
null mice after euthanasia by pentobarbital overdose. Tissues
were immediately homogenized in Trizol reagent (GIBCO BRL)
for mRNA isolation using Oligotex mRNA mini kit. After reverse
transcription, PCR was carried out using gene-specific primers
designed to amplify portions of the coding sequences of each of
the nine mouse aquaporins as described previously (Song et al.,
2000c). Immunofluorescence localization of aquaporins in 3-4-

 

�

 

m thick cryostat sections of paraformaldehyde-fixed airways
and lung was done using purified rabbit polyclonal antibodies as
described previously (Frigeri et al., 1995).

 

R E S U L T S

 

Aquaporin Expression in Airways and Lung

 

Reverse transcriptase (RT)–PCR and immunofluores-
cence were done to determine the location of aquapor-
ins in mouse airways/lung for design of functional
studies. Fig. 2 A shows RT-PCR detection of transcripts
encoding mouse aquaporins 1, 3, 4, 5, 7, and 8 in tra-
chea and aquaporins 1, 4, 5, and 8 in peripheral lung.
Fig. 2 B shows immunofluorescence of airways (first
column) and lung (third column) from wild-type mice
with appropriate control tissues from knockout mice
lacking each of the aquaporins being stained (second
and fourth columns). In airways, AQP1 was expressed
in microvascular endothelia, AQP3 in basal airway epi-
thelial cells, and AQP4 was expressed at the basolateral
membrane of columnar airway epithelial cells. In air-
ways, AQP1 was expressed in microvascular endothelia,
AQP4 at the basolateral membrane of airway epithelial
cells, and AQP5 was expressed in alveolar epithelial
cells. Staining with anti-AQP7 and AQP8 antibodies was
negative (not shown). The results are summarized in
Fig. 2 C, and are in agreement with reported data in rat
airways and lung. A recent report localized AQP3 to the
alveolar epithelium of human lung (Kreda et al., 2001),
however, we did not detect AQP3 in peripheral mouse
lung by immunofluorescence or RT-PCR. Also, air-
space–capillary osmotic water permeability, as mea-
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sured by our pleural surface fluorescence method
(Carter et al., 1996), was not different in wild-type ver-
sus AQP3 null mice (not shown), whereas AQP1 or
AQP5 deletion reduced water permeability by 

 

�

 

10-fold
(Bai et al., 1999; Ma et al., 2000a).

 

Humidification in Lower Airways

 

Lower airway humidification was measured in anesthe-
tized mice that were mechanically ventilated with warm

 

dry air through a tracheotomy as shown in Fig. 1 A. The
relative humidity of expired air was monitored continu-
ously by a humidity transducer maintained in a 37

 

�

 

C
housing. The system was fitted with air-tight valves, a cus-
tom miniature Y-connector, and noncompliant tubing to
ensure accurate measurements. The system was tested by
verifying relative humidity readings of 

 

�

 

2% and 

 

�

 

96%
when the Y-connector was bypassed and dry or fully hu-
midified air was introduced into the ventilator. In a more
stringent test, an artificial lung consisting of a rubber sac

Figure 2. Aquaporin water
channel expression in mouse
airways and lung. (A) RT-PCR
analysis of aquaporin tran-
script expression in trachea
(T) and peripheral lung (L).
Transcripts corresponding to
�0.3-kb coding sequence
fragments of each mouse
aquaporin were PCR-ampli-
fied using specific primers.
Lanes labeled C correspond
to amplifications done using a
mixture of cDNAs from brain,
lung, liver, and kidney, which
contained all mouse aquapor-
ins. (B) Immunofluorescence
localization of aquaporins 1,
3, 4, and 5 in trachea (wild-
type mice, column 1; corre-
sponding knockout mice, col-
umn 2) and lung (wild-type
mice, column 3, knockout
mice, column 4). (arrow-
heads) Luminal membrane
of tracheal epithelium. (C)
Schematic of aquaporin ex-
pression in airways and lung.

Figure 3. Role of aquaporins in lower airway humidification. (A) Time course of expired air humidity (top) and airway pressure (mid-
dle) in response to indicated PEEPs. Tidal volume was 8 ml/kg body weight, and the ventilatory rate was 100/min. Bottom curve shows ex-
pired air humidity after pentobarbital overdose and cessation of circulation by transection of the abdominal aorta. (B) Representative time
courses of expired air humidity in wild-type and double knockout mice of indicated genotype. Also shown (left, bottom) is corresponding
airway pressure for wild-type mouse. Initially, mice were ventilated at 100 breaths/min with 8 ml/kg tidal volume. Where indicated, tidal
volume was increased to 15 ml/kg and ventilatory rate to 160 per minute. (C) Summary of experiments as done in B (mean � SEM, n 	
4–5 mice) showing expired air humidity at different minute ventilation (top) and at indicated times after ventilation with dry air (bottom).
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with similar compliance to the intact lung was mechani-
cally ventilated with dry air under the same conditions as
used in mice. When fully humidified/warmed air was
passed into the rubber sac to simulate 100% lung hu-
midification, the recorded relative humidity was in the
range of 90–95% (Fig. 1 A, inset), indicating minimal
dead space and shunting of dry air through the circuit.
Temperature (maintained at 37 

 

�

 

 0.5

 

�

 

C in the detector
circuit) and airway pressure were monitored along with
relative humidity in all experiments.

Fig. 3 A shows representative recordings from a wild-
type mouse. Initially, a sealed rubber sac was ventilated
with dry air, giving a relative humidity of 

 

�

 

2% (top).
Replacement of the rubber sac by a mouse resulted in
increased exhaled air relative humidity to 55–60%. In-
creased positive end expiratory pressure (PEEP) from 5
to 10 or 15 cm H

 

2

 

O (Fig. 3 A, middle curve) produced
reversible small decreases in relative humidity, proba-
bly as a consequence of impaired thoracic venous re-
turn. Fig. 3 A (bottom) shows that cessation of circula-
tion (by abdominal aortic transection) during the mea-
surement resulted in a slow decrease in expired air
humidity as the lung progressively dehydrated. From
the measured initial water loss rate of 0.5 

 

�

 

l/min (com-
puted from relative humidity and minute ventilation)
and a mouse lung total water content of 

 

�

 

120 

 

�

 

l (gross
weight 150 mg), 10% lung dehydration should occur in

 

�

 

24 min, in general agreement with the measured
time of 

 

�

 

15 min.
Fig. 3 B shows the effects of changing tidal volume

and ventilatory rate on exhaled air humidity (left, top)
and airway pressure (left bottom; see figure legend for
ventilatory parameters). Representative data for double
knockout mice lacking the airway water channels

AQP3/AQP4 (Fig. 3 B, right, top) and the alveolar wa-
ter channels AQP1/AQP5 (Fig. 3 B, right, bottom) are
shown. Summarized averaged data for a series of wild-
type and aquaporin knockout mice indicated a small
but significant reduction in lower airway humidifica-
tion of 2–5% for AQP3/AQP4 deletion, and 4–7% for
AQP1/AQP5 deletion (Fig. 3 C).

 

Humidification in Upper Airways

 

To measure upper airway humidification, a cannula was
inserted in the low trachea to permit spontaneous
breathing. Dry air from a ventilator or constant air
pump was introduced into the upper airways through a
second cannula, and the relative humidity of air exiting
the nares was measured (Fig. 1 B). Instrument function
was tested by showing identical air flows entering the
trachea and exiting the nares, and finding 

 

�

 

98% rela-
tive humidity when 100% humidified air was intro-
duced into the trachea in place of dry air. Fig. 4 A (left)
shows representative curves of relative humidity (top),
air flow (middle), and airway pressure (bottom) in a
wild-type mouse. Initially, dry air was passed directly
into the detection chamber, giving a relative humidity
of 

 

�

 

2%. Dry air was passed into the trachea from the
ventilator, and subsequently, to obtain higher flows,
from a constant flow air pump. Upper airway humidi-
fication was very efficient (

 

�

 

90%) at physiological
minute ventilation, and decreased progressively to

 

�

 

50% at an air flow of 220 ml/min mimicking maxi-
mum exercise. The dashed curve in Fig. 4 A (top)
shows the rapid decline in humidity after cessation of
circulation, as expected from the small total water con-
tent of airway tissue compared with lung. A representa-

Figure 4. Role of aquapor-
ins in upper airway humidifi-
cation. (A, left) Representa-
tive time course of humidity
(top), air flow (middle), and
airway pressure (bottom) in
a wild-type mouse. (right)
Same study done on an
AQP3/AQP4 double knock-
out mouse. (B) Averaged rel-
ative humidity (mean � SEM,
n 	 5 mice) in wild-type mice,
and AQP3/AQP4 and AQP1/
AQP5 double knockout mice
as a function of minute venti-
lation.
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tive experiment for an AQP3/AQP4 double knockout
mouse is given in Fig. 4 A (right) and data from a series
of wild-type and AQP3/AQP4 and AQP1/AQP5 double
knockout mice are summarized in Fig. 4 B. There was a
small 3–9% impairment of upper airway humidification
in the aquaporin knockout mice.

 

Hydration of the Airway Surface Liquid

 

ASL hydration was measured in anesthetized mice in
which a transparent window was created in the anterior
tracheal wall to permit fluorescent dye introduction and
direct visualization of the posterior wall mucosa (Fig. 5
A, left). ASL thickness was measured by z-scanning con-
focal microscopy, and ASL [Na

 

�

 

] was measured using a
ratiometric [Na

 

�

 

] indicator as described previously (Ja-
yaraman et al., 2001b). Fig. 5 A (right) shows that nei-
ther ASL depth nor [Na

 

�

 

] were significantly affected by
deletion of the airway aquaporins AQP3 and AQP4. To
maximally stress the system by increasing evaporative
water loss, the tracheal mucosa was exposed to dry air
that was breathed spontaneously through a tracheal
cannula (Fig. 5 B, left). ASL [Na

 

�

 

] was measured

through the translucent tracheal wall below the can-
nula. Although ASL [Na

 

�

 

] increased in response to ex-
posure to dry air as evaporation occurred, there was lit-
tle effect of AQP3/AQP4 deletion (Fig. 5 B, right).

 

Upper Airway Osmotic Water Permeability and Isosmolar 
Fluid Absorption

 

An in vivo model was developed to determine whether
aquaporins facilitate water transport in the upper air-
ways. It was important to maintain normal circulation to

Figure 5. Role of aquaporins in hydration of the airway surface
liquid (ASL). (A, left) Schematic of approach to measure ASL depth
and [Na�] in anesthetized mice in which a window was created in
the trachea for fluorescent dye instillation and z-scanning fluores-
cence confocal microscopy. (right) ASL depth and [Na�] in wild-
type and AQP3/AQP4 double knockout mice (mean � SEM, n 	 4
mice). (B) Measurement of ASL [Na�] during dry air breathing.
(left) Fluorescence was measured through the translucent tracheal
wall (“measurement area”) below the tip of a tracheal cannula.
(right) Time course of ASL [Na�] in wild-type and AQP3/AQP4
double knockout mice (mean � SEM, n 	 4 mice) in response to
dry air breathing. Differences in A and B are not significant.

Figure 6. Osmotically driven water transport and isosmolar fluid
absorption in upper airways. (A) Sagittal section of mouse head
showing air spaces in the nasopharnyx and trachea. The trachea
was cannulated to permit spontaneous breathing, and isosmolar
or hyperosmolar fluid was instilled into the nasopharyngeal cavity
by a feeding needle. Fluid was collected into preweighed vials at
specified times by passing air through the feeding needle to expel
fluid through the nares. The instilled fluid contained 131I-albumin
as a volume marker. Data shown as mean � SEM, with 6–8 mice
per condition. See results for details. (B) Osmotically driven vol-
ume influx measured from dilution of the 131I-albumin marker af-
ter instillation of 50 �l of a hyperosmolar solution (500 mOsm).
(C) Isosmolar fluid absorption (clearance) measured from the in-
creased 131I-albumin concentration at 5 min after instillation of 50
�l of an isosmolar solution (0 min control shown also). Where in-
dicated, 1 mM amiloride was present in the instillate. See results
for explanations. *P � 0.01.
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measure osmosis without unstirred layer effects, as well
as active fluid transport. Fig. 6 A shows a sagittal section
of a mouse head. A cannula was inserted into the distal
trachea of an anesthetized mouse to permit spontane-
ous breathing, and fluid containing 

 

131

 

I-albumin (as a
volume marker) was introduced into the nasopharynx
via a feeding needle inserted through the wall of the
proximal trachea. Fluid volume, assessed from 

 

131

 

I-albu-
min concentration, was determined at a specified time
by forcing air through the feeding needle to expel the
nasopharyngeal fluid through the nares.

Initial experiments were done by instilling 50 

 

�

 

l of a
physiological solution matched to the mouse serum os-
molality of 325 mOsm. Immediate expulsion of fluid af-
ter instillation (Fig. 6 C, 0 min) gave no significant
change in 

 

131

 

I-albumin concentration, indicating little
fluid in the nasopharyngeal cavity under the conditions
of the experiments. Osmotically driven water transport
across the nasopharyngeal epithelium was measured
from the dilution of 

 

131

 

I-albumin at 1 min after instilla-
tion of hypertonic fluid (PBS containing 200 mOsm su-
crose, 500 mOsm; Fig. 6 B). Prompt 

 

131

 

I-albumin dilu-
tion was observed, which was significantly slowed by
aquaporin deletion. The absolute osmotic water perme-
ability coefficient (P

 

f

 

) in wild-type mice was estimated
from the osmotic gradient (200 mOsm), the rate of wa-
ter influx (8.5 �l/min), and estimated nasopharyngeal
surface area (�1.8 cm2) to be �0.02 cm/s, similar to wa-
ter permeability of the alveolar–capillary barrier. AQP3
deletion produced an �35% inhibition of Pf, with no
significant further effect of AQP4 deletion. In measure-
ments with instilled isosmolar saline, unexpectedly, the
131I-albumin concentration increased over time, and the
increase was inhibited by amiloride (Fig. 6 C), indicat-
ing that the nasopharyngeal epithelium can carry out ac-
tive isosmolar fluid absorption. However, AQP3 dele-
tion, which inhibited osmotically driven water transport,
did not affect the rate of active fluid absorption.

D I S C U S S I O N

The goal of this study was to define the role of aqua-
porin water channels in airway physiology. We studied a
set of airway functions that were postulated to require
aquaporins, including humidification in upper and
lower airways, hydration of the airway surface liquid,
and fluid absorption by upper airways. Quantitative
measurement of each of these functions in mice re-
quired the development and validation of novel meth-
ods. We conclude that although aquaporins facilitate os-
motically driven water transport in airways, they appear
to be of, at most, minor importance in humidification of
upper and lower airways, hydration of the airway surface
liquid, and isosmolar fluid absorption in upper airways.

The humidification and warming of inspired air has
been a subject of long-standing interest. Mammals must

adapt to breathing air having widely varying moisture
content and temperature, and at rates that can increase
more than 10-fold with exercise. Making assumptions
about airway geometry, airflow patterns, and blood
flow, mathematical models have attempted to predict
the efficiency of humidification along the airways
(Daviskas et al., 1990; Tsu et al., 1991). Additional com-
plexities are introduced by mouth versus nose versus
tracheotomy breathing, and changes in local tempera-
ture accompanying evaporation. Although controversy
remains, the consensus of the modeling and experi-
mental studies is that the upper airways efficiently
warm and humidify air at normal respiratory rates and
temperature/moisture content, and that the lower air-
ways complete the humidification process (McFadden,
1992; Williams et al., 1996). However, humidification
becomes less efficient during rapid breathing, breath-
ing of dry/cold air, tracheotomy breathing, and in air-
way disease (Tabka et al., 1988; McFadden, 1992; McRae
et al., 1995). Altered airway humidification and ASL hy-
pertonicity have been proposed to play a role in asthma
based on the induction of airway reactivity with inhaled
hypertonic saline (Willumssen et al., 1994; Freed and
Davis, 1999). Motivated by the paucity of data in mice,
the conflicting views in the literature, and the complex-
ity of the humidification process, we developed meth-
ods to quantify humidification in the upper and lower
airways of mice.

Humidification of the lower airways was measured by
mechanical ventilation of anesthetized paralyzed mice
with dry air. Our instrument accurately measured the
relative humidity of expired air to better than 1% accu-
racy. The lower airways were �60% efficient at humidi-
fying dry inhaled air. The exact efficiency depended on
respiratory rate, tidal volume, and end expiratory pres-
sure, presumably because of differences in airway con-
tact time and secondary changes in venous return and
pulmonary blood flow. Humidification efficiencies were
quite reproducible from mouse to mouse. Comparison
of humidification efficiencies from wild-type and dou-
ble knockout mice lacking airway water channels
(AQP3 and AQP4) or alveolar water channels (AQP1
and AQP5) indicated a small but significant impairment
in lower airway humidification. Although the 3–4% im-
pairment in humidification probably has no physiologi-
cal consequences, the results suggest that both airway
and lung aquaporins provide a route for water transport
during humidification through a tracheotomy.

Humidification of the upper airways, which is the
more relevant parameter for normal nose/mouth
breathing, was measured by passing dry air through a
tracheostomy and assaying moisture content of air exit-
ing the nares. The mice were allowed to breath sponta-
neously through a tracheostomy created below the site
of dry air entry. As predicted from previous work in
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larger animals, we found that the upper airways were
highly efficient (�85%) in humidification at physiolog-
ical ventilatory rates. However, efficiency dropped to
�50% when minute ventilation was increased 10-fold
to simulate maximum exercise. AQP3/AQP4 or AQP1/
AQP5 deletion in double knockout mice reduced the
efficiency of upper airway humidification significantly
by �5%. As above, this small effect of aquaporin dele-
tion is probably of little physiological consequence, but
it does provide evidence for participation of aquapor-
ins in the humidification process.

The properties of the ASL are thought to be impor-
tant in the pathophysiology of cystic fibrosis and other
diseases of the airways. Two key parameters are the
depth and salt concentration of ASL. Our laboratory re-
cently developed noninvasive methods to quantify these
parameters in mice using aqueous phase fluorescent in-
dicators that are introduced into the ASL (Jayaraman et
al., 2001b). ASL depth was measured by z-scanning con-
focal microscopy while visualizing the posterior surface
of the trachea through a transparent window. ASL depth
was 45 � 5 �m in wild-type mice, not significantly differ-
ent from 41 � 3 �m in mice lacking airway water chan-
nels AQP3 and AQP4 together. Sodium concentration
in the ASL was measured by ratio imaging using a so-
dium-sensitive fluorescent indicator that was bright, so-
dium-selective, and sensitive to sodium concentrations
in the physiological range. ASL sodium concentration
was not significantly different in the double knockout
mice. Increasing evaporative water losses by ventilation
with dry air resulted in comparable ASL dehydration in
wild-type and AQP3/AQP4 double knockout mice.
These results provide direct evidence against the hy-
pothesis that aquaporin deletion produces a dehydrated
ASL with decreased depth and increased salt concentra-
tion. Other factors such as convective fluid transport
and intrinsic regulatory processes may be more impor-
tant than transcellular osmosis in the maintenance of
ASL depth and tonicity (Boucher, 1999).

Upper airway water permeability was determined from
the dilution of a volume marker in a hyperosmolar instil-
late introduced into the nasopharynx of living mice. Os-
motic water permeability (�0.02 cm/s) was greater than
that of trachea and lower airways (0.003–0.006 cm/s)
and significantly decreased by AQP3 deletion. An unan-
ticipated finding was that the upper airways in the na-
sopharynx actively absorb fluid. Isosmolar fluid absorp-
tion is well-characterized in peripheral lung (Matthay et
al., 1996), but to our knowledge has not been reported
in nasopharynx. Physiologically, isosmolar fluid absorp-
tion may protect the upper airways from fluid overload
resulting from upward ciliary convection of fluid, gland
secretions, and aspiration. The rapid fluid absorption
may also protect the glottis and maintain upper airway
patency during ventilation. As found for isosmolar fluid

absorption in peripheral lung (Bai et al., 1999; Ma et al.,
2000a), aquaporin deletion did not affect fluid absorp-
tion in the nasopharynx. The substantially slower rates of
active fluid transport in nasopharnyx and alveolus com-
pared with proximal tubule (Schnermann et al., 1998)
and salivary gland (Ma et al., 1999) probably account for
the lack of effect of aquaporin deletion.

We previously examined the roles of AQP1, AQP4,
and AQP5 in peripheral lung physiology, where the
proposed aquaporin functions included alveolar fluid
clearance, gas exchange, and adaptation to acute and
subacute lung injury. The principal finding was that al-
though these aquaporins provide a major route for os-
motically driven water transport among the airspace,
interstitial, and capillary compartments, they are not
required for physiologically important lung functions
(Verkman et al., 2000a). Whereas osmotic water perme-
ability was �30-fold reduced by deletion of AQP1 and
AQP5, active near isosmolar alveolar fluid clearance
was not affected (Ma et al., 2000a). The rapid reabsorp-
tion of fluid from the airspace just after birth was not
impaired by aquaporin deletion (Song et al., 2000a).
Further, aquaporin deletion did not affect the response
of the adult lung in models of lung injury, including
acid-induced epithelial injury, thiourea-induced endot-
helial injury, and hyperoxic subacute lung injury (Song
et al., 2000a). Lung carbon dioxide transport, which
was proposed from oocyte expression studies to be fa-
cilitated by AQP1 (Nakhoul et al., 1998), was not im-
paired in AQP1 null mice (Yang et al., 2000). Recently,
the role of aquaporins in pleural fluid physiology was
examined (Song et al., 2000c). Deletion of the princi-
pal aquaporin in pleural microvasculature and surface
cells (AQP1) resulted in a substantially decreased os-
motic water permeability of the pleural surface. How-
ever, physiologically important pleural functions, in-
cluding the formation and resolution of pleural effu-
sions, were not affected by AQP1 deletion. Thus, in
peripheral lung and pleura, the aquaporins do not ap-
pear to be physiologically important despite their ma-
jor role in airspace–capillary osmosis.

The airway studies reported here addressed a series of
different physiological functions that are predicted to re-
quire aquaporins: upper and lower airway humidifica-
tion, airway surface liquid hydration, and isosmolar fluid
absorption in upper airways. We conclude that aquapor-
ins are of minor importance in these processes. As dis-
cussed previously (Verkman et al., 2000b), the tissue-spe-
cific expression of an aquaporin does not ensure physio-
logical significance. As in peripheral lung and pleura,
the relatively low rates of fluid movement in the airways,
even under maximal stress, are substantially lower than
those in kidney, salivary gland, and other tissues where
aquaporins are required for normal function. It remains
unclear why aquaporins are expressed in numerous loca-
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tions without a demonstrable physiological function.
The results here provide direct evidence against a role of
aquaporins in airway fluid transport physiology under
normal physiological conditions and in response to se-
lected stresses such as rapid ventilation with dry air. How-
ever, the possibility cannot be excluded that airway aqua-
porins might facilitate airway fluid transport in response
to stresses not tested here or serve alternative functions
to be discovered.
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