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There is currently a dearth of accessible whole genome sequencing (WGS) data for indivi-

duals residing in the Americas with Sub-Saharan African ancestry. We generated whole

genome sequencing data at intermediate (15×) coverage for 2,294 individuals with large

amounts of Sub-Saharan African ancestry, predominantly Atlantic African admixed with

varying amounts of European and American ancestry. We performed extensive comparisons

of variant callers, phasing algorithms, and variant filtration on these data to construct a high

quality imputation panel containing data from 2,269 unrelated individuals. With the exception

of the TOPMed imputation server (which notably cannot be downloaded), our panel sub-

stantially outperformed other available panels when imputing African American individuals.

The raw sequencing data, variant calls and imputation panel for this cohort are all freely

available via dbGaP and should prove an invaluable resource for further study of admixed

African genetics.
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Genome-wide association studies (GWAS) have greatly
improved our understanding of human genetics over the
past decade. To date, GWAS have largely been conducted

in cohorts of European descent, leaving the genetic architecture of
complex traits in non-Europeans underexplored1,2. A crucial
component of GWAS is genotype imputation3, which requires a
large reference panel of sequenced individuals with similar
ancestry to the cohort being studied. Existing publicly available
panels are predominantly composed of individuals of European
descent. For example, the public release of the Haplotype Refer-
ence Consortium (HRC)4 panel consists of 27,166 individuals
who are largely of European descent, except for 2001 individuals
included from the 1000 Genomes Project (1KGP)5, only 661 of
whom have substantial African ancestry. There are two imputa-
tion panels that focus on African genomic content: the Con-
sortium on Asthma among African-ancestry Populations in the
Americas (CAAPA)6 and the African Genome Resources
(AGR) panel7. CAAPA contains individuals with African ancestry
residing in the Americas and some Atlantic African individuals,
making it very relevant for imputing African Americans
(AFAMs) but it is a relatively small panel (N= 883). AGR has
limited data from Atlantic African individuals, making it less
appropriate for imputation of AFAM individuals. The recently
available TOPMed8 imputation server provides imputation with
substantially more individuals with African ancestry (over 20,000
individuals9) but the TOPMed panel is not downloadable due to
consent restrictions, limiting its utility to data that can be
uploaded for imputation. A full (to our knowledge) list of
imputation panels with African content is available in Supple-
mentary Table 1.

This biased reference panel composition generally leads to
substantially poorer imputation quality for non-Europeans rela-
tive to Europeans. To help remedy this situation, we introduce an
AFAM reference panel, composed of 2,269 American individuals
with high amounts of (mainly Atlantic) African ancestry
sequenced at ~15× coverage. We evaluated multiple single-sample
variant callers, joint genotyping methods, and imputation panel
creation methods, and ultimately generated an optimized refer-
ence panel using DeepVariant for single-sample calling, GLnexus
for joint calling, and SHAPEIT-4 for genotype phasing. The
optimized reference panel contains 45,802,366 single-nucleotide
polymorphisms (SNPs) and 9,160,064 indels, after excluding all
singleton variants. Many of the remaining SNP and indel calls are
not present in publicly available panels such as 1KGP/HRC and
impute well. This reference panel substantially improves impu-
tation accuracy for individuals with Atlantic African ancestry
compared to other publicly available panels, in particular for
lower frequency variants. The panel and its associated sequencing
data are publicly available on the database of Genotypes and
Phenotypes (dbGaP) (study accession: phs001798.v2.p2).

Results
A reference panel enriched for haplotypes derived from
Atlantic Africa. We re-contacted 71,455 customers who met the
following criteria: had consented to participate in 23andMe
research, identified as having African ancestry, were over 18 years
of age, joined 23andMe after 2010, had answered >100 survey
questions, and who were residing in the United States. From this
pool of re-contacted candidates, 5,404 individuals further con-
sented to have their individual-level sequencing data made
available via dbGaP. We then sequenced the 2,294 individuals
with the highest amount of estimated Sub-Saharan African
ancestry to produce the final cohort. Finally, we uploaded their
sequence data to dbGaP after removing quality control (QC)
failures. Sequencing was performed to an average aligned

coverage of 14.8× (Supplementary Fig. 1). After pruning close
relatives (see “Methods”), there were 2,269 unrelated samples in
the final imputation panel, hereafter denoted as the “AFAM
panel”.

Country of birth was reported for 1,853 members of the AFAM
panel. Of these, the majority were born in the United States
(91.7%), with a small number of individuals from Caribbean
countries (4%), Africa (2%), and Europe (1.7%), and fewer than
five individuals from each of Canada, Asia, South America, and
Oceania (Supplementary Table 2). Hence, although the vast
majority of this cohort were born in the Americas, small numbers
of individuals were not; this is corroborated by ancestry analysis
in the next section, which highlights some small clusters of non-
admixed individuals.

The ancestral composition of individuals in the AFAM panel
was estimated by the most recent iteration of 23andMe’s local
ancestry inference algorithm, which assigns ancestry to short
genomic segments of phased genotype microarray data using a
support vector machine, followed by smoothing using a Hidden
Markov Model10. It uses a reference panel containing over 14,000
unadmixed unrelated individuals (including 1,991 African
individuals; see Supplementary Table 3) and has been successfully
used in previous studies of AFAM ancestry11,12. The distribution
of ancestry within individuals (Fig. 1a) and aggregated ancestry
proportions across the entire cohort (Fig. 1b) show that the
majority of individuals have varying degrees of Sub-Saharan
African (average 82.3%), European (average 15.4%), and East
Asian & Native American (average 1.2%) ancestry. The Sub-
Saharan African ancestry was mainly Atlantic African (66.8%)
with a substantial contribution from Congo/South East Africa
(10.9%). There were also small numbers of individuals with little
or no European admixture and of Northern East African descent.
This is broadly comparable to previous studies12 with some
notable outliers that are also highlighted via the dimension
reduction and clustering described next.

We performed UMAP (Uniform Manifold Approximation and
Projection) dimensionality reduction on the first 15 principal
components of the AFAM samples along with six ethnicities from
1KGP as an unsupervised complement to our ancestry
classifier13,14 (Supplementary Fig. 2). The AFAM samples
predominantly cluster with the admixed African Caribbean in
Barbados (ACB) and African Ancestry in Southwest US (ASW)
populations from 1KGP, although a small number of individuals
(~2%) cluster with Yoruba in Ibadan, Nigeria (YRI)/Esan in
Nigeria, Mende in Sierra Leone, or Luhya in Webuye, Kenya.
Detailed ancestry proportions for manually curated clusters show
that the 23andMe ancestry classifier is concordant with this
unsupervised technique (Supplementary Table 4).

Development of an optimized reference panel. Imputation
reference panel quality depends on both the breadth of haplo-
types represented within the panel and the accuracy of the var-
iants called in the individuals. With a fixed sequencing budget (as
was the case in this project), these are competing requirements.
Total sequencing cost is driven largely by total sequencing cov-
erage and higher per-individual sequencing coverage produces
more accurate variant calls but reduces the number of individuals
able to be sequenced. At the ~15× coverage level chosen for this
reference panel, we sought to optimize reference panel quality by
performing three independent experiments to identify the best-
performing single-sample variant caller and joint genotyping
method.

First, we evaluated single-sample variant-calling accuracy as a
function of autosomal sequencing coverage using the well-
characterized HG002 sample from NIST Genome in a Bottle15,16.
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Given that GIAB benchmark currently does not include any
individual of African ancestry, we used the most extensively
characterized and reliable truth set of HG002 for the evaluation of
the bioinformatics pipelines. We synthetically downsampled
HG002 sequence coverage to all coverages from 15 to 50×,
performed variant calling on the downsampled BAM with
GATK417, DeepVariant v0.1018, and Strelka219, and assessed
the resulting variant-calling accuracy in the HG002 v4.1 truth set
using hap.py20. At all sequence coverages, the total number of
errors produced by DeepVariant was lower than either GATK or
Strelka2, with a more pronounced impact at lower coverages
(Fig. 2a). Notably, DeepVariant at ~21× coverage achieved the
same accuracy as 30× samples processed through GATK4,
suggesting that DeepVariant can be used to increase accuracy
of individual samples in smaller cohorts, or to expand the scale of
cohorts while maintaining high accuracy. Further, we found a
greater dependency on coverage for Indels vs. SNPs (Supple-
mentary Fig. 3) and observed that lower coverages increase false
negative and genotype errors more than false positives (Supple-
mentary Fig. 4).

Second, we evaluated single-sample variant-calling accuracy on
a subset of the 23andMe AFAM panel samples (N= 292) using
truth data carefully curated from a 23andMe microarray

containing 387,493 SNPs and 73 indels after stringent quality
control (“Methods”). Based on the above downsampling analysis,
we evaluated GATK-3.5, GATK-4.1.0.0, and DeepVariant-0.10.0
pipelines for single-sample performance in each of the 292 AFAM
samples (Table 1). DeepVariant has substantially higher F1
metrics for both SNPs (Fig. 2b) and indels, with the caveat that
there were only a small number of high-quality indels available on
our microarray. DeepVariant’s greater F1 score is largely driven
by higher sensitivity, with 0.74% and 0.96% higher sensitivity
than the next best method (GATK4) for SNPs and indels,
respectively (Table 1). Precision was comparable across all three
methods. Differences were particularly pronounced at lower
coverages; the average SNP F1 metric for samples with coverage
between 10× and 15× was 99.0% for DeepVariant vs. 98.1% for
GATK4 (Fig. 2b).

Third, we evaluated the imputation performance of the
23andMe AFAM panels in samples with Atlantic African
ancestry. The evaluation samples were all 240 individuals from
the populations ASW, ACB, and YRI in 1KGP, who possessed
both deep-sequencing data and Illumina Omni2.5 genotype array
calls. Imputation was performed with Beagle 5.121 using the
publicly available Omni2.5 genotype array calls as input. To fairly
evaluate the imputation performance of the candidate panels, we

Fig. 1 The ancestry composition of the AFAM panel. a Estimated ancestry proportions for each of the 2,269 sequenced individuals in the AFAM panel.
Only African regions and other regions that contributed substantially to admixture were included. Each column represents an individual colored by their
respective estimated ancestry. Columns were ordered first by cluster membership identified in Supplementary Fig. 2 and second by proportion of African
ancestry. To ensure anonymity, each individual’s predicted ancestry proportions were multiplied by random numbers drawn uniformly from [0.9, 1.1] and
the resulting values were normalized to sum to 1. b Average percentage of ancestry contribution across the entire AFAM panel for 13 different African
regions and the two largest non-African admixed contributions (European and Native American/East Asian). Individual ancestry contributions were
estimated by the 23andMe ancestry classifier.
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evaluated the imputation results against two publicly available
sets of “ground truth” calls, one generated with GATK Best
Practices (generated by New York Genome Center, https://
www.internationalgenome.org/data-portal/data-collection/30x-
grch38) and the other generated with the DeepVariant-GLnexus
(DV-GLx) Best Practices optimized pipeline18,22,23 (“Methods”)
(Supplementary Fig. 5). Imputed genotypes were binned by
alternate allele frequency computed in the ground truth 1KGP
cohort with all 2,504 samples included and, within each bin, the
squared Pearson’s correlation between all imputed genotype
dosages and the hard genotypes from the “ground truth”
sequencing data was calculated (often referred to as “aggregate
R2”). For these analyses, we treated variants that were present in
the truth set but missing from a panel as being imputed to
homozygous reference, which penalizes panels with missing
variation.

We joint-called the 2,269 unrelated AFAM samples to generate
candidate reference panels based on two methods: GATK Best
Practices17 and DV-GLx18,22,23. For quality control, we measured
the distributions of read coverage depth, duplication rate, variant
call confidence, and transition-transversion ratio, and found that
the majority of samples had similar properties (Supplementary

Fig. 1). For each of the two joint-called data sets, we first
evaluated the impact of genotype refinement and different
phasing algorithms on imputation performance, restricted to
chromosome 20 only for computational considerations. As the
AFAM samples were sequenced at intermediate coverage (~15×),
with 5.8% of samples having <10× coverage, we investigated the
utility of applying the computationally intensive step of refining
genotype likelihoods into discrete genotypes, as was used in low-
coverage (~7×) projects such as the 1KGP5, UK10K24, and HRC4

studies. In addition, we compared the relative performance of two
state-of-the-art phasing algorithms Eagle-2.4.125 and SHAPEIT-
4.1.326. Imputation performance was evaluated for all eight
resulting chr20 panels using the 240 1KGP samples described
above. For both the GATK and DV-GLx chr20 panels, SHAPEIT-
4.1.3 phasing yielded better imputation performance (Supple-
mentary Fig. 6). Notably, the DV-GLx chr20 panels performed
better without genotype refinement, whereas the GATK chr20
panels performed better with genotype refinement, although the
difference was modest for both callers.

Based on the chr20 results, we evaluated genome-wide
imputation performance for two candidate reference panels: a
DV-GLx panel directly phased with SHAPEIT-4.1.3 (hereafter

Fig. 2 Single-sample variant-calling accuracy as a function of sequence coverage. a Total errors (SNP+ indel; lower is better) in HG002 in the Genome
in a Bottle v4.1 truth regions as a function of sequence coverage for DeepVariant-0.10.0, GATK-4.1.0.0, and Strelka-2.9.10. b F1 metric (harmonic mean of
precision and recall; higher is better) per sample for SNPs as a function of sequence coverage in a subset of 23andMe AFAM samples (N= 292). Each
sample produces three points at a single coverage level, indicating the F1 performance of that sample using each of the three variant callers. DeepVariant
substantially outperforms both versions of GATK, in particular on lower coverage data.

Table 1 Single-sample variant caller accuracy in 292 23andMe AFAM samples.

Caller Type F1 Recall Precision TP FN FP FP.gt FP.al

DV-0.10.0 SNP 0.993608 0.990577 0.996658 60,491,423 575,433 202,836 180,075 5
GATK-3.5.0 SNP 0.983289 0.970674 0.996237 59,275,997 1,790,859 223,902 213,815 5
GATK-4.1.0.0 SNP 0.989730 0.983305 0.996240 60,047,371 1,019,485 226,652 214,521 6
DV-0.10.0 INDEL 0.988898 0.982188 0.995701 2,316 42 10 5 5
GATK-3.5.0 INDEL 0.975557 0.956319 0.995585 2,255 103 10 10 0
GATK-4.1.0.0 INDEL 0.984338 0.972858 0.996092 2,294 64 9 9 0

Truth data were curated from microarray data, which contained predominantly SNPs. Accuracy metrics were computed using hap.py.
Bold cells in the F1, Recall, and Precision columns indicate the best caller performance for that metric in the given variation type.
DV DeepVariant, F1 the harmonic mean of recall and precision, FN false negatives, FP false positives, FP.al allele mismatches, FP.gt genotype mismatches, TP true positives.
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“DV-GLx AFAM panel”) and a GATK panel with genotype
likelihoods refined into discrete genotypes using Beagle 4.127 and
then phased with SHAPEIT-4.1.3 (hereafter “GATK AFAM
panel”). For SNPs, genotypes imputed with the DV-GLx AFAM
panel showed higher aggregate R2 with the ground truth than
variants imputed with the GATK AFAM panel, consistently in all
allele-frequency bins and regardless of whether the ground truth
used was generated with DV-GLx or GATK (Fig. 3a, b). For
indels, the results are subtler; the DV-GLx AFAM panel
consistently outperformed the GATK AFAM panel when using
the DV-GLx ground truth, but when using the GATK ground
truth, the GATK AFAM panel achieved better performance in the
mid-AF ranges, while the DV-GLx AFAM panel outperformed in
the lowest and highest AF bins (Fig. 3c, d).

Imputation performance relative to existing panels containing
African ancestry. We further evaluated the DV-GLx AFAM
panel imputation performance using a high-coverage whole-
genome sequencing (WGS) truth set from 103 individuals in
GTEx v828, who identified as AFAM (“Methods”). Microarray
genotypes for these individuals were emulated for the current
23andMe microarray from WGS data and were pre-phased with

SHAPEIT-4 (510,513 autosomal SNPs). Imputation was then
performed with five different reference panels: (1) the DV-GLx
AFAM panel (N= 2,269), (2) the HRC panel (N= 27,165)4, (3)
the 1KGP phase 3 panel (N= 2,504)5, (4) the TOPMed panel
(N= 97,256)8, and the CAAPA panel (N= 883)6. Imputed gen-
otypes were binned by alternate allele frequency taken from the
AFAM allele frequency in gnomAD r329. TopMED and CAAPA
results used their respective imputation servers, whereas AFAM,
HRC, and 1KGP panels were imputed locally using Minimac 430

(the imputation software used by the imputation servers). We
calculated aggregate R2 in two ways: first, treating variants
missing from the truth set as being imputed as homozygous
reference (Fig. 4a) and, second, only calculating correlation on
genotypes from truth variants that intersect each panel (Fig. 4b).
The former penalizes panels with putatively missing variation.
We also provide overall genotype discordance and non-reference
discordance, which produce qualitatively similar results (Sup-
plementary Tables 5 and 6).

As expected, the TOPMed panel produces the strongest results
across the allele-frequency spectrum for SNPs, followed by the
DV-GLx AFAM panel. For example, consider SNPs at 0.5% allele
frequency, TOPMed achieves an aggregate R2 of 0.75, followed by
DV-GLx AFAM (0.59), 1KGP (0.49), HRC (0.35), and CAAPA

Fig. 3 Imputation accuracy of candidate AFAM reference panels with 1KGP individuals of African ancestry. Aggregate R2 using DeepVariant-GLnexus
optimized reference panel (DV panel) and GATK Best Practices (GATK panel) when imputing Illumina HumanOmni 2.5 genotype array calls and evaluating
on deeply sequenced (30×) “ground truth.” Variants present in the “ground truth” but missing from the reference panel are imputed as homozygous
reference calls, which penalizes panels that have missing variation. a SNP R2 using ground truth generated with DeepVariant+GLnexus (DV truth), b SNP
R2 using ground truth generated with GATK Best Practices (GATK truth), c Indel R2 using ground truth generated with DeepVariant+GLnexus, and d Indel
R2 using ground truth generated with GATK Best Practices. See also Supplementary Fig. 6.
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(0.35), when using the more stringent performance metric
(Fig. 4a). Surprisingly, HRC imputation performed worse than
1KGP on these individuals, despite HRC being a superset of
1KGP. This may be due to the more intricate phasing pipeline
employed in 1KGP or may be an artifact of the imbalance of
ethnicities in HRC. Figure 4b shows the accuracy of each panel
when not penalizing missing variation. Accuracies are largely
unchanged at higher frequencies (say >1%), suggesting all panels
are capturing most common SNPs. Accuracy is substantially
higher in Fig. 4b vs. 4a at frequencies lower than ≈0.1% (except
for TopMED), highlighting the lack of completeness of the
smaller panels at the rarer end of the frequency spectrum.

The performance for indels is more complicated. Due to an
apparently large amount of missing indels in the TOPMed panel,
it performs worse than DV-GLx AFAM for common indels with
frequency approximately >0.5% (Fig. 4a). When evaluating
correlation only for variants within a given panel, TOPMed
imputation is systematically more accurate across the allele-
frequency spectrum (Fig. 4b). Indels are not present in the HRC
or CAAPA panels.

We investigated the completeness of variation in each panel by
looking at the proportion of alleles in our truth set that were
found in each panel, stratified by allele count (Fig. 4c). Singletons
were most revealing, with TOPMed containing 90% of singleton
SNPs and 74% of singleton indels, followed by AFAM (71% and
73%), 1KGP (57% and 41%), HRC (43% and 0%), and lastly
CAAPA (55% and 0%). For SNPs with allele count > 2, both
AFAM and TOPMed contained nearly all SNPs (>97%) in the
GTEx truth set. Indels in the TOPMed panel appear to have been
aggressively filtered, with only 71% the GTEx indels present in
the TOPMed panel compared to 91% for AFAM.

Discussion
Increasing the representation of samples of non-European
ancestry in genomic data sets is critical for reducing the poten-
tial of polygenic risk scores to exacerbate health disparities1 and
discovering disease-associated variants specific to non-European
samples31. The deep human history in Africa results in lower
levels of linkage disequilibrium in African populations. Conse-
quently, populations of recent African origin (such as AFAMs)
are efficient for identification of causal polymorphisms within a
candidate sequence32, but further emphasize the need for African
haplotypes in imputation reference panels. Here we have

introduced an imputation reference panel that is enriched for
Atlantic African ancestry as a resource for researchers investi-
gating AFAM genetics. Extensive evaluations of single-sample
variant calling showed that DeepVariant consistently out-
performed GATK across a spectrum of sequencing coverage on
these data. These improvements in single-sample variant calling
yielded a modest improvement in downstream imputation per-
formance. In particular, due to greater sensitivity, the DV-GLx
reference panel provided a much larger set of variants for asso-
ciation testing than the GATK Best Practices reference panel.
When contrasted with the 1KGP, HRC, and CAAPA panels, the
DV-GLx panel provided substantially better imputation perfor-
mance for rarer variants. The TOPMed imputation server yielded
far better imputation for SNPs than our panel due to its much
larger sample size. However, the TOPMed panel cannot be
downloaded due to consent restrictions, so only data consented to
be uploaded to a cloud imputation service can take advantage of
the large TOPMed panel. The TOPMed indel set also appeared to
be very stringently filtered, perhaps at the cost of sensitivity.

Refinement of genotype likelihoods into hard genotypes is a
common practice for generating imputation panels from low-
coverage sequencing data4,5,24,33,34. However, it is a computa-
tionally expensive step that introduces substantial complexity into
the processing pipeline to parallelize efficiently genomewide
(“Methods”). The DV-GLx panels evaluated here showed no
performance improvement from genotype refinement, likely
owing at least in part to the relatively high accuracy of single-
sample DeepVariant calls and well-calibrated genotype likelihood
estimates on low-coverage samples, enabling more accurate joint
genotyping by GLnexus22,23, mitigating the need for further
refinement using linkage disequilibrium-based context. This
somewhat surprising result further increased the relative com-
putational efficiency to create the DV-GLx AFAM panel com-
pared to the GATK AFAM panel.

Although this study demonstrates the importance of increasing
genetic diversity in imputation panels, there are limitations that must
be taken into account. Evaluation of imputation panels generated by
different variant-calling pipelines is sensitive to selected metrics and
the ground truth calls used. Ground truth variants generated using a
particular joint-calling method bias result toward imputation panels
generated with the same method. Restricting the evaluated sites to
those called consistently among all calling pipelines ignores differ-
ences in variant detection sensitivity and biases toward easily called

Fig. 4 Imputation performance for five different panels using a truth set containing 103 GTEx WGS individuals imputed with an emulated 523 K
23andMe microarray. a Aggregate R2 between the imputed dosages and sequence genotypes as a function of the alternate allele frequency reported for
African Americans in the gnomAD r3 data set. We treat variants missing from the panel to be imputed as homozygous reference here, which penalizes
panels that have missing variation. b Aggregate R2 for variants only within a given panel (a more lenient measure than in a). c The proportion of GTEx
variants present at different allele counts in each panel. All panels have good sensitivity for SNPs with >2 copies of the allele in GTEx, whereas substantial
numbers of indels appear missing from both TOPMed and 1KGP (HRC/CAAPA have no indels). The same legend is shared across all three figure panels.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02777-9

6 COMMUNICATIONS BIOLOGY |          (2021) 4:1269 | https://doi.org/10.1038/s42003-021-02777-9 | www.nature.com/commsbio

www.nature.com/commsbio


variants. To mitigate these issues, we evaluated candidate panel
performance on multiple ground truth sets generated using both
candidate panel joint-calling methods and binned aggregate R2

metrics based on allele frequencies computed in an independent
data set.

The DV-GLx AFAM imputation panel and related sequencing
data are available via NCBI dbGaP. As a standalone imputation
panel, it can freely be used to improve imputation in AFAM
cohorts. In addition, combining the raw data with other publicly
available data such as the recently released high-coverage 1KGP
individuals would increase the European and American content,
and the resulting multi-ethnic panel would likely lead to even
better imputation for underrepresented admixed populations, in
particular AFAM and Latino cohorts. We believe that these
resources are a valuable contribution to further research of
complex trait genetics in non-European populations.

Methods
Sample selection and sequencing. The full study was approved by the Ethical &
Independent Review Services Institutional Review Board (IRB). Individuals were
sequenced to an expected 17 × coverage. Reads were aligned to GRCh3835

(including alt contigs) using BWA-MEM36 (version 0.7.16a-r1181) and PCR
duplicates were marked with Picard (version 2.1.0). As DNA was extracted from
saliva, bacterial contamination resulted in an average aligned coverage of 14.8 ×
with high variation in coverage (Supplementary Fig. 1). We excluded samples with
aligned coverage < 3 × or estimated contamination37 (from other human DNA) >
5% from downstream analysis. This resulted in 2,294 individuals passing (relatively
liberal) single-sample QC.

We estimated robust kinship coefficients and IBD0 proportions using AKT38,39.
These were used to remove 25 individuals with close relatives (first cousin or
nearer) to create a panel of 2,269 unrelated individuals. There were 15
parent–child pairs (including one full trio), three sibling pairs, and seven first
cousin (or similar) pairs. Relatedness pruning was simple; children in duos/trios
were first excluded (as these can be useful for validation). After this, only familial
cliques of size two remained; we chose the higher coverage individual from each
clique to maximize data quality. It is noteworthy that although these related
individuals are not in the imputation panel, their raw sequencing data are available
in dbGaP.

Evaluation of genotype refinement and phasing of reference panels. Joint-
called data sets generated using GATK Best Practices17 (GATK-3.5.0) and DV-GLx
(DeepVariant v0.10.0, GLnexus version 1.2.6)-optimized pipeline18,22,23 were
restricted to chromosome 20. Refinement of genotype likelihoods into hard gen-
otype calls was performed with Beagle 4.127 in approximate chunks of 1.4 Mbp
(chunk size varied to keep the number of markers constant) with a 400 kbp overlap
between each chunk. SHAPEIT-4.1.3 and Eagle-2.4.1 were then applied to the
resulting hard genotypes in ~10Mbp chunks with a 400 kbp overlap between each
chunk. Chunks were ligated into whole chromosomes using bcftools40. Code for
this analysis is included in our repository41 (Supplementary Table 7).

GATK-3.5.0 reference panel creation. We applied GATK-3.5.0 best practices for
joint calling, including recommended variant quality score recalibration (VQSR)
thresholds. In addition to VQSR filtering, we removed singletons and variants
where >10% of genotypes were missing. The resulting reference panel contained
36.1 million SNPs and 7.7 million indels across all autosomes. Based on the results
in the previous section, we refined genotype likelihoods using Beagle 4.1 followed
by phasing with SHAPEIT-4.1.3. See the script in Supplementary Table 7 for full
details of the phasing pipeline.

DV-GLx reference panel creation. The reference panel using DeepVariant-0.10.0
and GLnexus-1.2.6 was created independently of the GATK panel. We used results
from a previous study on DV-GLx best practices22 to determine the optimal
GLnexus merging parameters for ~15× coverage reads. After merging, we removed
singletons and applied additional variant-level filters using (1) the Hardy-Weinberg
equilibrium p-value (≥10−20), (2) the proportion of missing genotype calls in all
samples (≤20%), and (3) the expected proportion of correct genotypes computed
using Genotype Qualities (GQs) of all genotype calls (≥60%). Then, 43.7 million
SNPs and 8.8 million indels were retained after filtering across the autosomes.
Finally, we phased the variants with SHAPEIT-4.1.3 to generate the imputation
reference panel. Notably, we did not perform genotype refinement with Beagle for
DV-GLx, as it is computationally expensive and did not improve quality for DV-
GLx calls. See Supplementary Methods for the specific commands used.

WGS truth set used in imputation panel evaluations. We sought to create a fair
truth set using high-coverage WGS data that could be imputed on the TOPMed

imputation server. We extracted the 103 individuals who identified as AFAM from
the GTEx V8 database28. For each individual, we took to the intersection of GATK-
3.5 variants and DeepVariant-0.10.0 variants, then set genotypes where the variant
callers disagreed or either caller had GQ < 20 to missing. Any resulting variants
with >10% missing genotypes across the cohort of 103 samples were excluded. We
only considered HG001/HG002/HG005 GIAB regions that were outside of seg-
mental duplications. Variants were then lifted to hg19 using Picard to accom-
modate the older 1KGP/HRC/CAAPA panels. Only the set of successfully lifted
variants were considered in the final evaluation (on both hg19 and GRCh38).
Finally, to provide an objective estimate of AFAM allele frequency, we evaluated
accuracy within frequency bins from gnomAD r3. This meant that the variant set
was further limited to mutations present in gnomAD. The resulting truth set
contained 21,642,652 SNPs and 1,939,396 indels.

Microarray data used as truth in hap.py evaluations. We applied stringent
filtering to create a high-quality truth set from 23andMe genotype microarray data
for evaluating the performance of single-sample variant calling. It is noteworthy
that these filters are much more stringent than what would typically be applied in a
GWAS setting. In addition to typical filters on allele frequency and call rate, probes
were aligned with BWA-MEM to ensure high specificity to the reference genome,
and that the vendor-provided coordinates were consistent with alignment. We also
excluded variants whose probes overlapped other common variants. This was due
to the inability of probes to distinguish between certain alleles at multi-allelic sites
and because a probe may fail to hybridize if it overlaps a flanking variant near the
targeted variant.

The following filters were applied to a custom 23andMe genotype microarray
(version 4):

● Located on autosome.
● ≥90% Call rate across entire research-consented database.
● ≥0.001% Minor allele frequency across the entire research-consented

database.
● Minor allele count ≥ 1 within our cohort of 2,294 sequenced individuals.
● Probes aligned by BWA had Mapping Quality (MAPQ field)= 60, edit

distance to reference (NM tag)= 0, and no clipping.
● BWA alignment agreed with vendor-provided coordinates.
● Entire 50-mer probe did not overlap any variant occurring in TOPMed

with >1% MAF.
● Probes did not overlap one another on the chip.

The resulting truth set contained 387,493 SNPs and 73 indels. Genotypes from
these variants were provided to hap.py as both a Variant Call Format (VCF) file
(for non-reference genotypes) and a confident region Browser-Extensible Data
(BED) file (derived from both homozygous reference and non-reference genotypes)
for evaluation of single-sample variant calling.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imputation panel and associated sequencing data described here are available on
dbGaP (phs001798.v2.p2) for Human Genetic Variation Research. Raw data underlying
all main text figures, except Fig. 1a, are available in Supplementary Data 1. Other
individual-level data from 23andMe participants used in the analyses are not publicly
available due to participant confidentiality and in accordance with the IRB-approved
protocol under which the study was conducted. Aggregate-level data will be made
available on reasonable request to dataset-request@23andme.com.

Code availability
Analysis scripts are available at: https://doi.org/10.5281/zenodo.552724741.
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