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Abstract

Phototrophic microbial mats dominated terrestrial ecosystems for billions of years, largely 

causing, through cyanobacterial oxygenic photosynthesis, but also undergoing, the great oxidation 

event (GOE) at ca. 2.5 Ga. Taking a space-for-time approach based on the universality of core 

metabolic pathways expressed at ecosystem level, we studied gene content and co-occurrence 

networks in high-diversity metagenomes from spatially close microbial mats along a steep redox 

gradient. The observed functional shifts suggest that anoxygenic photosynthesis was present but 

not predominant under early Precambrian conditions, being accompanied by other autotrophic 

processes. Our data also suggest that, in contrast to general assumptions, anoxygenic 

photosynthesis largely expanded in parallel to the subsequent evolution of oxygenic 

photosynthesis and aerobic respiration. Finally, our observations might represent space-for-time 

evidence that the Wood-Ljungdahl carbon fixation pathway dominated phototrophic mats in early 

ecosystems, whereas the Calvin cycle likely evolved from pre-existing variants before becoming 

the dominant contemporary form of carbon fixation.
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Phototrophic microbial mats were the forests of the past. Fossil stromatolites, their fossil 

remnants, constitute the oldest reliable traces of life on Earth1,2. These microbial 

ecosystems dominated shallow aquatic and terrestrial habitats before large multicellular 

organisms expanded ca. 550 Ma ago3–5. As such, early Archaean mats, likely built by 

anoxygenic photosynthetic bacteria3, witnessed the atmospheric oxygen rise that occurred at 

2.4-2.5 Ga (Great Oxidation Event, GOE). It is widely assumed that the GOE was promoted 

by the evolution of oxygenic photosynthesis in the cyanobacterial lineage3 (including the 

phylogenetic ancestors of extant cyanobacteria), although oxygen derived from atmospheric 

water photolysis or released from the Earth’s mantle might have also contributed6. Today, in 

addition to several coastal settings, microbial mats are restricted to a few, mostly extreme 

(e.g. hot or salty) environments7, where they are not outcompeted, and are commonly 

considered as analogs of major Precambrian ecosystems3,8,9. The idea that phototrophic 

mats prior to the GOE were built by anoxygenic photosynthetic bacteria and later by 

cyanobacteria is actually simplistic, since these stratified microbial communities are 

phylogenetically and metabolically diverse. Microbial diversity studies of both calcifying10–

13 and non-calcifying7,14–18 phototrophic mats reveal a wide variety of members from the 

three domains of life, although most often bacterial and sometimes also archaeal lineages 

dominate. Metagenomic analyses show a variety of potential associated metabolic functions, 

including oxygenic and anoxygenic photosynthesis, sulfate reduction and sulfur 

oxidation19–23, which are consistent with the steep redox gradients that these communities 

both endure and contribute to maintain24.

Yet, how good are modern microbial mats as analogs of past ecosystems? From a 

phylogenetic perspective, there is a severe limit to actualism (the idea that the present is the 

key to the past) because biological evolution is at work. Species and lineages are not static 

but change through time and, with them, their phenotypic properties, including most 

metabolic abilities. This is further complicated by the prevalence of horizontal gene transfer, 

especially among prokaryotes and involving metabolism-related genes25. Even long-

distance (e.g. bacteria-to-archaea) transfers affecting genes involved in key metabolic 

processes, such as aerobic respiration, have repeatedly occurred26. Thus, despite some 

general trends27 and the notable exception of oxygenic photosynthesis (exclusive of 

cyanobacteria and their plastid derivatives) and possibly methanogenesis (exclusive of some 

archaea, and perhaps ancestral to the domain), inferring ancient functions from 

contemporary microbial diversity data might be risky. Nonetheless, from the perspective of 

core metabolism the situation is radically different. Despite the incredible diversity of life28, 

only a handful of core metabolic processes is known. Cell bioenergetics is universally 

sustained by the generation of electrochemical potential across biological membranes 

(though using a wide variety of electron donors and acceptors) and/or fermentative 

substrate-level phosphorylation29,30. Likewise, only seven pathways of C fixation are 

known31,32. Even if new C fixation pathways (or variants thereof) might still be discovered 

in novel candidate divisions, their number will likely remain low. At the same time, classical 

ecologists observe functional redundancy in ecosystems33, at least at some level34. Such 

observations were long inaccessible for microbial communities but recent metagenomic 

analyses suggest that functional stability exists across various microbial communities despite 

high taxonomic variability35,36. This reinforces the idea that metabolic phenotypes are 
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reliably seen at the level of ecosystems37. Consequently, using a pathway-centric approach 

opens the possibility to retrace early core metabolisms from modern microbial mats 

subjected to environmental conditions similar to those prevailing in the past.

Since we cannot directly observe historical changes in past microbial communities, applying 

a space-for-time approach might be a reasonable alternative. Space-for-time substitution 

modeling is widely used in ecology to infer past or future trajectories of ecosystems from 

contemporary spatial patterns38 and can be applied to genomic variation moving beyond 

species-level variation39. Because modern phototrophic mats are stratified following redox 

gradients where oxygen is rapidly depleted and nitrate, sulfide and methane increase with 

depth9, they might in principle be thought to represent relevant model systems to carry out 

space-for-time substitution studies of core metabolism. However, the physical separation of 

different functional mat layers is challenging and, most importantly, the presence of oxygen 

in the atmosphere and upper mat layers can significantly affect the nature and availability of 

redox pairs and organics in deeper layers. Therefore, ideally, the best-suited model systems 

would be microbial mats that are as a whole exposed to an anoxic-oxic gradient mimicking 

the evolution of the Earth’s atmosphere. With this aim, we use here metagenomic 

approaches to study the metabolic potential of several microbial mats uniquely located 

spatially close (few cm away) in a small shallow pond along a strong vertical redox gradient, 

from oxic down to oxygen-deprived waters.

Results and discussion

We studied microbial mats from a shallow pond (LLA9) located in the Salar de Llamara 
(Atacama Desert, Chile) along vertical redox, salinity (3.1-8.7%) and temperature (28-53°C) 

gradients17 (Supplementary Fig. 1). We collected mat samples (with replicates) at four 

different depths: LLA9-A and LLA9-B (oxic zone), LLA9-C (transition zone) and LLA9-D 

(anoxic zone)17. Interestingly, mat D was hot (53-54°C). Although solar irradiation and the 

absence of water mixing below the chemocline might contribute, the temperature increase 

seemed largely due to heat production by the actively growing thick mat.

We generated metagenomes for mat samples, including replicates for the most diverse 

(LLA9-C2/C3, LLA9-D1/D2; Supplementary Table 1)17. Estimates of average coverage as 

a function of sequencing effort suggested that they were rather complete (Supplementary 

Fig. 2). Average GC content appeared bimodal for LLA9-A1/B1 but tended to unimodal and 

increased in deeper mats (Supplementary Fig. 3a-b). Average GC values were higher than 

50%, consistent with the idea that more complex environments, with more competition, 

correlate with higher GC content40. Proteobacteria, Acidobacteria and PVC-supergroup 

genomes had higher GC content (Supplementary Fig. 3c). We identified clusters of 

orthologous genes (COGs), PFAMs and KEGG orthologs (KOs)(Supplementary Tables 2-4). 

To characterize mat microbial diversity, we used conserved marker genes usually present in 

single copy in sequenced genomes (universal single copy genes). Based on their 

phylogenetic affiliation (COGs and PFAMs; Supplementary Tables 5-6), we inferred a wide 

microbial diversity (Fig. 1a and Supplementary Fig. 4), as reflected by high Shannon 

(3.68-4.61) and Simpson (0.97-0.98) indices (Supplementary Table 1), confirming previous 

metabarcoding analyses17. As expected, prokaryotes largely dominated; eukaryotes, mainly 
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photosynthetic organisms (Bacillariophyta, Chlorophyta), were essentially found in the 

uppermost mats. Although bacteria dominated, archaea were abundant in the deepest layers 

representing up to ca. 20% of annotated sequences (Fig. 1a). Euryarchaeota were 

particularly profuse, followed by DPANN members and occasionally Thorarchaeota 

(Asgard), while Crenarchaeota and Thaumarchaeota had minor proportions (Supplementary 

Fig. 4b). Bacteria were highly diverse. Proteobacteria (especially Alpha-, Gamma- and 

Deltaproteobacteria), was the most abundant phylum together with Firmicutes in the deepest 

layers. Lineages of photosynthetic bacteria were abundant in mats LLA9-A1, B1 and C1. 

Although cyanobacteria were present, members of Chloroflexi, some Chlorobi and likely 

photosynthetic Alpha/Gammaproteobacteria were collectively more numerous (Fig. 1). 

These lineages, including cyanobacteria (in minor proportions), were also present in the 

photosynthetic D1 layer and in deeper, in principle not photosynthetically active (between 2 

and 10 cm depth), LLA9-C2/C3 and D2 layers. In the anoxic D1, cyanobacteria affiliated to 

Oscillatoriales, many of which can use H2S as electron donor for photosynthesis to cope 

with fluctuating redox gradients41, but Chloroflexi were relatively more abundant (most 

Bacteroidetes/Chlorobi did not affiliate to known photosynthetic lineages). The presence of 

typical photosynthetic lineages in deeper layers (carefully collected to avoid cross-

contamination and in replicates) may indicate that their decay during burial is low under the 

prevailing anoxic and salty conditions. Unlike in most classically studied ecosystems, 

candidate bacterial phyla were remarkably abundant (12-27% bacteria; Fig. 1) and diverse, 

Patescibacteria being dominant (Supplementary Fig. 4c). Many of these lineages presumably 

include parasites or episymbionts28,42,43. Patescibacteria are most likely strict fermenters, 

lacking the tricarboxylic acids (TCA) cycle and electron transport chain components44. 

Based on known functions for described phylogenetic groups27, cyanobacteria, eukaryotic 

algae and many Chloroflexi, Chlorobi and Alpha/Gammaproteobacteria lineages are likely 

responsible for most primary production in these phototrophic mats, whereas most other 

bacterial and archaeal lineages are likely heterotrophic and intervene at different steps in the 

degradation cascade of organic matter.

To compare the functional potential of metagenomes and see whether local environmental 

conditions correlate with functional shifts, we applied multivariate statistical analyses based 

on COGs and KOs. Canonical correspondence analysis (CCA) of normalized COG (4,717 

COGs; Fig. 1b and Supplementary Fig. 5a) and KO (12,082 KOs; Fig. S5c) frequencies in 

individual metagenomes recurrently grouped replicate datasets closely. Mats A1-B1-C1, 

correlating with exposure to oxic surface conditions, aligned on axis 1, which explained 

most of the variance (73.3%), although they separated on axis 2 (Fig. 1b). Mat layers LLA9-

C2-D1 and C3-D2 respectively grouped in two CCA quadrants (Fig. 1b, Supplementary Fig. 

5c). Clustering analysis of COGs and KOs yielded very similar results (Supplementary Fig. 

5b and d), which were also similar to those of 16S rDNA-based operational taxonomic unit 

frequencies17.

To further compare functional properties, we carried out co-occurrence network analyses on 

the three categories of mats grouped by CCA analyses. For simplicity, we named these 

networks Upper Mat Layers (UML; A1/B1/C1), ‘Middle’ Mat Layers (MML; C2/D1) and 

Bottom Mat Layers (BML; C3/D2). Although D1 is the upper photosynthetic layer of the 

anoxic zone mat, it clustered with the transition-zone mat middle layer based on COGs and 
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KOs (Fig. 1b; Supplementary Fig. 5), suggesting more shared metabolic traits (which 

networks might reveal). COG-based co-occurrence networks were extremely complex 

(‘hairballs’; Supplementary Fig. 6). Nonetheless, the UML network was more compact, 

MML was composed of two highly anti-correlated modules and BML exhibited an 

intermediate topology. Interestingly, many orthologous genes without known function were 

abundant and highly inter-connected in the three networks (Supplementary Fig. 6), 

suggesting important core functions. COGs involved in anoxygenic photosynthesis, sulfur 

oxidation (SOX system), fermentation and several C fixation pathways (Wood-Ljungdahl, 3-

hydroxyproprionate, 3-hydroxypropionate/4-hydroxybutyrate cycles) were also relatively 

abundant and connected in the three networks. Because global networks were complex, we 

next focused on a selection of diagnostic genes involved in primary energy, N and C fixation 

processes (Supplementary Table 7; Fig. 2).

We compared the normalized abundance of metabolic genes across the different 

metagenomes. Fermentation was the most abundant energy-generating process followed by 

sulfate reduction, aerobic respiration, sulfide/sulfur oxidation, dissimilatory nitrate reduction 

and H-dependent redox reactions (Fig. 2a). Different bacterial and archaeal phyla 

contributed to those functions (Fig. 2b). Genes for anoxygenic photosynthesis were more 

abundant than those for oxygenic photosynthesis in all mats. Cyanobacteria and 

photosynthetic eukaryotes contributed oxygenic photosynthesis-related genes, whereas 

Chloroflexi (better detected using bacteriochlorophyll synthesis genes) and diverse 

Proteobacteria accounted for anoxygenic photosynthesis-related genes (Fig. 2b). Regarding 

C fixation pathways, present in diverse (including candidate) phyla, the Wood-Ljungdahl 

(reductive acetyl-CoA) pathway and the Calvin cycle dominated, followed by the 

dicarboxylate/hydroxybutyrate (DC/HB) and 3-hydroxyproprionate/4-hydrobutyrate 

(HP/HB) cycles, and the 3-hydroxypropionate bicycle. Calvin and 3-hydroxypropionate 

cycles were most abundant in upper mats, whereas Wood-Ljungdahl and DC/HB-HP/HB 

cycles dominated in deeper mats/mat layers. Wood-Ljungdahl is considered the most 

ancestral pathway of C fixation45, sometimes together with the reverse TCA (rTCA) 

cycle31,46. ATP-dependent citrate lyase (ACL), deemed diagnostic for rTCA, is virtually 

absent from our mats. However, we cannot rule out the possibility that the core TCA cycle, 

highly represented in our mats (Supplementary Fig. 7), is operating in reverse using the 

classical citrate lyase (reverse oxidative TCA, roTCA), as recently shown for thermophilic 

sulfur-reducing bacteria47,48. Thermophilic sulfate reduction indeed occurs in mat D, 

mainly by Deltaproteobacteria, Firmicutes and Archaeoglobi (Fig. 2b). Deltaproteobacteria, 

many of which appear to fix C using the Wood-Ljungdahl pathway, seem major sulfate-

reducers in upper mats, although other phyla are also involved, including candidate phyla. 

Sulfur oxidation is largely contributed by anoxygenic photosynthetic Alphaproteobacteria 

(and little-abundant Chlorobi in A1/B1), using H2S as electron donor. Regarding the N 

cycle, dissimilatory nitrate reduction and denitrification (nitrite reduction to N2) are, like N 

fixation, important processes, especially in upper mats. By contrast, nitrification barely 

occurs (and only in mats from the oxic zone; Fig. 2a). Dominant N fixers shifted from 

Cyanobacteria and phototrophic Alpha/Gammaproteobacteria to non-phototrophic 

Deltaproteobacteria, Firmicutes and Methanomicrobia below the chemocline. We only found 

a few methanogenesis marker genes (Fig. 2b) in the deeper mats, belonging to 
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Thermoplasmatales (likely Methanomassilicoccales) and Methanomicrobia. This suggests 

that, as in other microbial mats and sediments9, methanogenesis mostly occurs deeper.

Co-occurrence networks reconstructed with core metabolic functions (KOs) reflected 

similar, albeit simplified, topologies compared with global COG networks (Fig. 3; 

Supplementary Fig. 8). The oxic UML mats (A1/B1/C1) appear more connected. By 

contrast, MML (C2/D1) comprises two anti-correlated modules plus a third module 

exhibiting less correlations (all negative) with them. BML (C3/D2) comprises two anti-

correlated modules positively connected through one fermentation-related protein (Fig. 3a). 

Although the biological interpretation of gene networks must be cautious, positively 

correlated modules might imply preference for similar local conditions or potential 

synergistic interactions between specific metabolisms (syntrophy, metabolic cascading). 

Because oxygen is a key determinant in redox gradients, we also reconstructed networks 

excluding genes involved in aerobic respiration (essentially cytochrome oxidase genes; 

Supplementary Table 7) to see whether and how this affected the observed patterns of 

potential metabolic interactions. Interestingly, these genes appear responsible for the high 

connectivity in UML. Indeed, when excluded, the UML network splits in two clearly anti-

correlated modules; one includes most genes involved in oxygenic and anoxygenic 

photosynthesis, N fixation, the Calvin cycle and sulfur oxidation whilst the other connects 

nitrate reduction, denitrification and Wood-Ljungdahl-related genes (Fig. 3b). By contrast, 

MML and BML network topologies are not significantly impacted, showing the same two 

highly anticorrelated modules (plus the small loose anticorrelated module in MML). One of 

these modules is enriched in Wood-Ljungdahl, fermentation and, sometimes, denitrification 

genes (Fig. 3). In apparent paradox, RuBisCO genes, typically involved in the Calvin cycle, 

appear in the BML module connecting Wood-Ljungdahl with many fermentative enzymes. 

This module displays a clear anaerobic core, being always strongly anti-correlated with 

oxygen-related enzymes in mats (Fig. 3). Many of these genes affiliate to candidate phyla 

and, especially in deep mats, archaea (Fig. 2). Many archaea are known to contain a 

RuBisCO form involved in nucleoside synthesis49,50. Moreover, some RuBisCO-containing 

archaea also possess phosphoribulokinase and perform the newly described reductive 

hexulose-phosphate pathway (RHP) for C fixation, which differs only in a few steps from 

the Calvin cycle32. Indeed, it has been proposed that the photosynthetic Calvin–Benson 

cycle may have originated from a primitive carbon metabolic pathway utilizing RuBisCO, 

such as the archaeal RHP pathway, by replacement of some steps without release of 

carbon32. RuBisCO might have even first worked as an oxygenase before evolving its 

carboxylase activity51. The presence of oxygen-type cytochrome oxidases in deep, anoxic 

mats/mat layers, although less abundant than in surface, seems also puzzling. They might 

result from the progressive burial of aerobic organisms before decay (LLA9-C2, C3, D2), 

from the presence of microaerophilic microbes using trace oxygen levels in LLA9-D1 

and/or, hypothetically, microbes using as final electron acceptor nitric oxide (NO) generated 

in deep mats during denitrification (Fig. 2). Cytochrome oxidases belong to the same 

superfamily as NO reductases and it has been proposed that, in the early Archaean, NO, 

instead of O2, was the terminal electron acceptor for the cytochrome oxidase/NO reductase 

family before later evolution by subfunctionalization52.
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Because i) iron is a key component of photoreaction centers and electron transporters during 

photosynthesis, ii) some anoxygenic photosynthesizers can use Fe2+ as electron donor53 and 

iii) Fe2+ was very abundant before the GOE (which also marked the transition from a ferrous 

to a sulfidic ocean)3, we also studied genes involved in iron uptake and reduction. 

Hierarchical networks showed a prominent position of iron uptake regulation in UML. Iron 

uptake positively correlated with both oxygenic and anoxygenic photosynthesis but 

negatively with sulfur oxidation. N fixation and nitrite and sulfite/sulfate reduction appeared 

also important in UML but were only indirectly connected to iron uptake (Supplementary 

Fig. 9a). Iron uptake regulation was also prominent in MML, but unrelated to photosynthesis 

(Deltaproteobacteria; Supplementary Fig. 9b). Finally, iron uptake was absent from co-

occurrence networks in BML, consistent with the decrease in photosynthesis-related 

processes in these layers. Sulfate reduction and H-related redox reactions were the more 

connected and abundant processes in BML (Supplementary Fig. 9c). Given the prevalence of 

sulfur reduction/oxidation processes, our mats appear to reflect more the conditions of early 

sulfidic environments3. Iron reduction was present in all mats at moderate levels, and 

exhibited many connections with other metabolic activities in BML.

The normalized abundance of diagnostic genes in mat metagenomes along the vertical redox 

gradient shows marked shifts (Fig. 4a). In mats/layers exposed to oxic conditions (LLA9-

A1, B1, C1), aerobic respiration, sulfur oxidation and N fixation genes were more abundant 

than in deeper, anoxic mats. Likewise, oxygenic photosynthesis genes increased in oxic mat 

layers, but were almost negligible in deeper mats. Surprisingly, anoxygenic photosyntheses-

related genes were more diverse (Fig. 2b) and relatively much more abundant in oxic than in 

anoxic layers (Fig. 4a), along with a slight fermentation rise and a strong increase in Calvin 

cycle-related enzymes. The latter likely reflects the succession from the RHP pathway 

associated to some anaerobic metabolisms to the Calvin-Benson cycle typical of oxygenic 

photosynthesizers. In addition, C fixation pathways show a remarkable inversion in the 

deepest, anoxic part of the redox gradient as compared with oxygen-exposed mats, with 

dicarboxylate/hydrobutyrate and 3-hydroxiproprionate/4-hydrobutyrate and, most 

importantly, Wood-Ljungdahl pathways becoming more abundant. These metabolic shifts 

were noticeable within mat C located at the transition zone, which could support the idea 

that functional changes within a single mat displaying an inner redox gradient might reflect 

historical metabolic transitions. However, the comparison of mat LLA9-C with mat LLA9-D 

suggests that that inference is not as straightforward. Indeed, despite LLA9-D is the thickest 

mat, apparently highly active, and exhibiting conspicuous dark green areas in the upper 

sampled layer (D1), the normalized (Fig. 4) and net (Fig. 2 and Supplementary Fig. 10) 

abundance of anoxygenic photosynthesis-related genes was very limited in comparison with 

LLA9-C and upper mats. Why? The fact that the two replicate metagenomes show very 

similar results suggests that this observation is not due to local subsampling heterogeneity. 

Because this was the more glutinous mat and high polysaccharide content usually lowers 

DNA yield during purification, DNA-extraction bias could be partially invoked. However, 

this does not really explain the selectivity against photosynthetic organisms since 

heterotrophic and fermentative organisms are intimately embedded (consuming) in the 

exopolymeric matrix. It might also be that the anoxygenic photosynthesis genes are highly 

divergent in LLA9-D or, more speculatively, that new anoxygenic photosynthesis variants 
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are at play. The most likely explanation is that mat LLA9-D is extremely phylogenetically 

(Fig. 1) and metabolically diverse, such that the relative proportion of anoxygenic 

photosynthesis genes is low in a huge (meta)genomic diversity. This suggests that, despite 

high solar irradiation, anoxygenic photosynthesis in this mat is a relatively minor process 

and that other autotrophic metabolisms operate in parallel and sustain primary production. A 

low efficiency of anoxygenic photosynthesis in this layer might partly correlate with the mat 

thermogenicity. Local heat production might come from fermentative processes54 (but these 

seem even higher in upper, non –or less– thermogenic mats), or simply be due to a partial 

uncoupling with the electron transport chain, photon-derived energy being dissipated in the 

form of heat. Applying a space-for-time logic, this could suggest that anoxygenic 

photosynthesis was less active in early Archaean phototrophic mats growing in anoxic 

atmospheric conditions, as has been previously suggested55, raising in addition the 

intriguing possibility that early microbial mats were thermogenic. Anoxygenic 

photosynthesis would have further evolved and got optimized in parallel to oxygenic 

photosynthesis. Part of this evolution might have dealt with the development of encoded 

abilities to cope with reactive oxygen species (ROS). One such mechanisms is provided by 

alternative oxidases, which are non-energy conserving terminal oxidases best studied in 

mitochondria and chloroplasts but present in many bacteria, notably cyanobacteria and 

diverse Proteobacteria, playing key roles in ROS management, thermogenesis and 

homeostasis56. Interestingly, alternative oxidase (AOX) genes are only detected in upper 

Llamara mats, associated to cyanobacteria and chloroplasts, but also to several 

Proteobacteria, including anoxygenic photosynthesizers (Supplementary Table 7 and Fig. 

11).

Taking into account the universal conservation of core metabolic functions and assuming 

that a space-for-time approach can be applied, the metabolic shifts observed in metagenomes 

of spatially close phototrophic mats across this redox gradient may well represent core 

metabolic transitions that occurred across the GOE. Our data support two major hypotheses. 

First, anoxygenic photosynthesis was relatively modestly abundant (perhaps with limited 

efficiency) in early phototrophic mats under global anoxic conditions; counterintuitively, 

anoxygenic photosynthesis diversified, appearing in various phylogenetic lineages, and 

became more prolific in parallel to oxygenic photosynthesis. This might have been partly 

due to the evolution of adaptive mechanisms to cope with reactive oxygen species. Second, 

the Wood-Ljungdahl pathway was the early dominant carbon fixation pathway, accompanied 

to a lesser extent by the dicarboxylate/hydrobutyrate and 3-hydroxiproprionate/4-

hydrobutyrate pathways; its primacy was then supplanted by the Calvin cycle as 

photosyntheses evolved, increasing their ecological success. The Calvin cycle likely evolved 

from predating variants potentially resembling the archaeal RHP pathway. Further 

comparative analyses of core metabolic pathways in phototrophic mats from similar 

contextual environments should help to validate and refine these ideas.
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Methods

Sample collection, DNA purification and sequencing

Mat samples were collected in March 2012 in a small pond (LLA9) of the Salar de Llamara, 

in the North of the Atacama Desert (21°16'7.37"S, 69°37'4.01"W), as previously 

described17. Mats were collected in pond LLA9 along a steep vertical gradient spanning ca. 

30 cm depth, with a chemocline at 25 cm, which was accompanied by salinity (3.1-8.7%) 

and temperature (28-53°C) gradients (Supplementary Fig. 1). This mat was highly 

irradiated, the Salar de Llamara being located at 750 m of altitude in one of the driest deserts 

of the planet17. We collected mat fragments (with replicates) of ca. 10 x 15 cm of surface, 

and up to 10 cm depth at four different depths: LLA9-A and LLA9-B at increasing depth in 

the oxic zone, LLA9-C in the transition zone and LLA9-D in the anoxic zone. Mats A and B 

were thinner (1-3 cm), mat A having poor consistency, and were therefore not subsampled 

(equally referred to as A1, B1). Mats C and D were much thicker (7-10 cm) and were 

subsampled in three (C1-C3) and two (D1-D2) broad sub-layers, C1 and D1 comprising all 

the observable photosynthetic layers which, in the case of D1, displayed green pinnacles of 

2-3 cm high at the surface (Supplementary Fig. 1). Mat D was hot (53-54°C within the mat). 

Temperature decreased below mat LLA9-D to 30°C (Supplementary Fig. 1). 

Physicochemical parameters (conductivity, oxygen and temperature) were measured using a 

multi-parameter probe Hanna HI9828. Mat samples were fixed in ethanol (>70%) and stored 

at -20°C until DNA extraction. DNA was extracted using the Power Biofilm™ DNA 

Isolation Kit (MoBio, Carlsbad, CA, USA) according to manufacturer’s instructions. 

Duplicate mat subsamples were collected from distant ends of each mat sample. For each 

duplicate, the collected material was thoroughly mixed prior to DNA purification; several 

independent purification reactions per duplicate were performed in parallel and then pooled 

to minimize potential biases due to sample and/or process heterogeneity. Total DNA yield 

ranged from 0.6 (LLA9-C3) to 3.1 µg (LLA9-D1). DNA libraries for Illumina paired-end 

sequencing were prepared for each sample without any amplification step. DNA from 

LLA9-D1, LLA9-D2 and LLA9-B1 metagenomic libraries were sequenced using Illumina 

HiSeq2000 v3 (2x100 bp paired-end reads) by Beckman Coulter Genomics (Danvers, MA, 

USA). DNA from LLA9-A1, LLA9-C1, LLA9-C-2, LLA9-C-3 and LLA9-D-1 

metagenomic libraries were sequenced using Illumina HiSeq2500 (2x125 bp paired-end 

reads) by Eurofins Genomics (Ebersberg, Germany). DNA from LLA9-C2, LLA9-C3, 

LLA9-D1 and LLA9-D2 duplicate samples were also sequenced in an independent run using 

Illumina HiSeq2500 (2x125 bp paired-end reads) by Eurofins Genomics (Ebersberg, 

Germany). Replicate mat samples are noted as, e.g., D1.I and D1.II. The total number of 

paired-end reads per metagenome ranged from ca. 43 to 120 million, i.e., 4.3–12.0 Gbp per 

library and orientation (forward and reverse). Various statistics of the 11 generated 

metagenomes, as well as merged replicates are given in Supplementary Table 1. Estimates of 

average coverage as a function of sequencing effort suggested that Llamara metagenomes 

were rather complete (70-92%; Supplementary Fig. 2a); merged replicate metagenomes 

exhibited a slight coverage increase as compared to individual metagenomes 

(Supplementary Fig. 2b, Supplementary Table 1).
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Prediction and affiliation of rRNA genes

The metagenomic reads were mined for 16S rRNA genes with the EMIRGE software57. 

Statistics regarding the total number of reads and paired-end sequences per sample, the 

number of predicted 16S rRNA genes and the average sequence lengths retained are 

presented in Supplementary Table 1.

Assembly and annotation

The level of coverage of the community achieved by each metagenomic dataset was 

estimated and projected using Nonpareil version 2.4 with default parameters58 and after 

preprocessing the reads with Trimmomatic and a minimum Phred quality score of 3059. For 

each metagenomic dataset, the reads were assembled into contigs using stringent criteria to 

facilitate gene prediction. Forward and reverse reads were assembled using MEGAHIT 

(version 1.3.060 with default parameters but a minimum length of 200 bp for the assembled 

contigs and a starting kmer size of 23 up to 93 with an increasing step of 10. Gene prediction 

was performed on the newly assembled contigs using Prokka61. For functional annotation 

purposes, reads from replicate metagenomes were merged for assembly with the same 

above-mentioned parameters (LLA9-C2.m, LLA9-C3.m, LLA9-D1.m and LLA9-D2.m in 

Supplementary Table 1). For taxonomic affiliation, we compared the amino acid sequence of 

our metagenome predicted genes to a home-made non-redundant protein database (RefSeq 

nr release 74; March, 2017 + a customized database of manually added Candidate Phyla) 

through the DIAMOND software (version 0.7.9.5862). For subsequent analyses, we retained 

only the best hit to represent each annotated gene, with a minimum amino acid identity of 

50% over at least 80% of the query length. For each defined best hit of an annotated gene, 

their taxid was retrieved through NCBI e-fetch via an ad hoc Perl script. Various statistics 

regarding contig assembly and annotation are provided in Supplementary Table 1. Predicted 

clusters of orthologous genes (COGs), PFAMs and KEGG orthologs (Supplementary 

Methods; Supplementary Tables 2-4) were used to characterize and compare the different 

metagenomes. COGs were assigned by profile hidden Markov model (profile HMM) 

searches using the hmmsearch program of the HMMER3 package63. For every COG, a 

multiple sequence alignment of bona fide representative sequences were generated using the 

Muscle program64 and, then, the corresponding Hidden Markov Model was built using the 

hmmerbuild program, also provided in the HMMER3 package63. The cut-off E-value in the 

hmmsearch process varies largely for every COG. For each COG, we defined a high 

confidence cut-off E-value value as the highest E-value (smallest bit score) observed for the 

members of that COG. None of the COG cut-off E- values was greater than 1e-10. 

Additionally, all PFAMs (Pfam-A) were predicted with hmmersearch tool from HMMER 

(version 3.1b165 and KEGG orthologs (KOs) were assigned via GhostKOALA web 

server66. Abundance matrices for six ribosomal protein PFAMs were used to calculate 

diversity (Shannon and Simpson), evenness (Pielou) and richness (Chao1) indices using the 

Vegan package in R. The distribution of COGs, PFAMs and KOs identified in the different 

Llamara metagenomic assemblies can be found in Supplementary Tables 2-4. COGs, 

PFAMs and KOs were given a taxonomic assignation via their best hit’s taxid. A subset of 

40 COGs corresponding to single copy gene families universally distributed in prokaryotic 

genomes67 was initially used to characterize the phylogenetic structure of the communities 

(Supplementary Table 5), which was very similar to community structure derived from 
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16S/18S rRNA gene metabarcoding analyses17. In addition, we also mined for this purpose 

237 single copy genes (PFAMs) previously used to characterize the diversity of archaea42 

and bacteria68 in the Llamara metagenomic assemblies (Supplementary Table 6). These 

yielded a comparable community structure to that observed by 16S/18S rRNA gene 

metabarcoding17 and single-copy genes (COGs; Fig. 1 and Supplementary Fig.4).

Mining of diagnostic metabolic genes

Orthologous protein-coding genes exclusively involved in one particular energy or carbon 

metabolic pathway in the KEGG database (KOs69 were considered as diagnostic for that 

pathway (Supplementary Table 7). For example, for the Calvin cycle, only the two RuBisCO 

subunits and phosphoribulokinase (PRK) were considered as diagnostic. We looked for 

diagnostic KOs involved in all known pathways for C fixation, oxygenic and anoxygenic 

photosynthesis (biosynthesis of bacteriochlorophylls and/or genes for the photosystem 

reaction centers) (Supplementary Table 7) and fermentation35. In the case of green non-

sulfur anoxygenic photosynthesis, we used as diagnostic only the genes involved in the last 

two steps of the bacteriochlorophyll a/b biosynthesis to follow KEGG annotation, although 

this bacteriochlorophyll is present in small concentrations in other anoxygenic 

photosynthetic organisms (e.g. green sulfur phototrophs). In addition, we looked for 

diagnostic genes for energy metabolism involved in N and S cycling (i.e. dissimilatory 

nitrate reduction, nitrification, denitrification, dissimilatory sulfate reduction, SOX system) 

and nitrogen fixation. Genes were assigned to major taxa as described previously and gene 

abundance was graphed in stack bars for comparison (Fig. 2). To be able to estimate the 

relative abundance of diagnostic metabolic genes within metagenomic assemblies regardless 

of the taxa involved, and to compare it across metagenomic datasets, we corrected KO 

abundances by that of single-copy genes with the program MUSiCC (Metagenomic 

Universal Single-Copy Correction)70. Total and average diagnostic gene abundances are 

used in Figs. 2 and 4.

Statistical analyses

Statistical analyses were conducted with the R software71 (http://cran.r-project.org). The 

comparison of the taxonomic distribution inferred from protein-coding marker genes with 

results obtained either by mining of 16S rRNA genes in metagenomic reads or by amplicon 

sequencing17 was done using Bray-Curtis dissimilarity distances. They were calculated on 

frequencies of high-rank bacterial and archaeal taxa using the 'Vegan' R package (version 

2.0-1072) with no prior transformation of the data. Raw counts of high-rank taxa 

corresponding to replicate samples were pooled before the computation of Bray-Curtis 

distances shown in Fig. 1 (see de-replicated frequencies in Supplementary Fig. 4a). The 

influence of the environmental conditions on the functional capacities of the different 

Llamara metagenomes was estimated by Canonical Correspondence Analysis (CCA). They 

were conducted using a Euclidean matrix containing a set of environmental factors (depth 

below water level, depth below mat surface, temperature, oxygen concentration and salinity) 

and a matrix of Bray-Curtis distances based on the normalized abundance of individual 

COGs and KOs (as corrected by MUSiCC). CCAs were carried out with the Vegan package 

in R, wherein sample ordinations were constrained and co-plotted by environmental 

parameters with significance using an Analysis of Variance (ANOVA) with 999 
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permutations (P < 0.001 for both KOs and COGs). For KOs, CCA global inertia was 

68.13%; 62.7% for axis CCA1 and 19.6% for axis CCA2. For COGs, CCA global inertia 

was 56.3%, axis CCA1, 73.3% and axis CCA2, 14.5%. Clustering of COGs and KOs was 

also performed with ad hoc scripts in R and visualized in heatmaps (Supplementary Fig. 5). 

Regardless of whether CCA or clustering for heatmaps are performed, and regardless the use 

of KOs or COGs, mat layers always showed the same broad clusters. These were noted as 

Upper Mat Layers (UML), including LLA9-A1, LLA9-B1 and LLA9-C1 (in CCA, only 

along axis CCA1); ‘Middle’ Mat Layers (MML), including LLA9-C2.I, LLA9-C2.II, LLA9-

D1.I and LLA9-D1.II; and Bottom Mat Layers (BML), including LLA9-C3.I, LLA9-C3.II, 

LLA9-D2.I and LLA9-D2.II.

Metabolic network reconstruction

Co-occurrence networks involving energy and carbon fixation pathways were performed on 

metagenomes of microbial mats that grouped according to their COG and KO metabolic 

similarity based on CCA and clustering analyses (Figs. 2 and Supplementary Fig. 5), 

namely, upper mat layers (UML, 3 metagenomes), correlating with oxygen, ‘middle’ mat 

layers (MML, four metagenomes) and bottom mat layers (BML, four metagenomes), 

correlating with depth, temperature and salinity. Initially, we reconstructed networks based 

on COGs (Supplementary Fig. 6). Given their complexity, we also reconstructed networks 

based on two different sets of diagnostic genes (105 KOs; 50 PFAMs) (Supplementary Table 

7). The abundance of these diagnostic genes was first arranged in matrices for UML, MML 

and BML groups. Low frequency genes (less than 5% for PFAMs and less than 1% for KOs) 

were removed from each matrix. The new matrices were used to reconstruct the correlation 

and p-values matrices with SparCC73. Ten iterations were used to estimate the median 

correlation of each pair and the statistical significance of the correlations was calculated by 

bootstrapping with 500 iterations. Correlations were then sorted according to their statistical 

significance; we retained only those with p < 0.001 and R > 0.7 or R < -0.7. Networks were 

built using ad hoc scripts in R and visualized with the aid of the igraph package (http://

igraph.org/) and Cytoscape74. Taxa affiliations at phylum level were assigned to each node 

(this information is collectively summarized in Fig. 2b and, for dominant groups, is 

indicated at the level of PFAMs in Supplementary Fig. 9). Network properties are given in 

Supplementary Table 8. Networks were visualized with Cytoscape either in perfused forced 

directed layout based on their correlation values (e.g. Fig. 4) or as hierarchical networks 

(e.g. Supplementary Fig. 9), where upper nodes have higher degree and betweenness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Microbial diversity in microbial mat metagenomes along a redox gradient in a pond from the 

Salar de Llamara (Atacama Desert, Chile). (a) Overall community composition of 

metagenomic assemblies inferred from the phylogenetic assignment of PFAMs 

corresponding to 237 single copy genes. Layers LLA9-C2, C3, D1 and D2 correspond to 

merged metagenomes (see Supplementary Fig. 4a for individual replicates). Relatively 

abundant Candidatus Omnitrophica and Archaeoglobi are highlighted independently from 

their respective bacterial and archaeal clades. Detailed classification of archaea and bacterial 

candidate divisions is shown in Supplementary Fig. 4b-c. (b) Canonical correspondence 

analysis (CCA) plot based on normalized COG frequencies in individual metagenome 

datasets showing the similarity between replicate metagenomes and how the different 

metagenomes correlate with local environmental conditions (see also Supplementary Fig. 5).
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Fig. 2. 
Major energy and carbon metabolisms in Llamara microbial mats based on diagnostic genes. 

(a) Normalized abundance of diagnostic KEGG orthologs (KOs) involved N and S cycling 

(mostly dissimilatory), photosynthesis, C fixation pathways, Ni-Fe hydrogenases, oxygen 

respiration (cytochrome oxidases) and fermentation, as corrected by the presence of single-

copy genes by the MUSiCC software70. (b) Stacked bar histogram showing the abundance 

of metabolic genes corrected by the total number of diagnostic KOs selected per pathway. 

BC, bacteriochlorophylls; most of these genes corresponded to green non-sulfur bacteria 
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(Chloroflexi). PRC, photoreaction center; most of these genes affiliated to purple bacteria 

(Proteobacteria). RHP, reductive hexulose-phosphate pathway; DC/HB, dicarboxylate/

hydrobutyrate; HP/HB, 3-hydroxyproprionate/4-hydrobutyrate; rTCA, reverse tricarboxylic 

acid cycle; ACL, ATP-dependent citrate lyase.
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Fig. 3. 
Co-occurrence networks of diagnostic KOs involved in major energy and carbon fixation 

metabolic pathways in Llamara microbial mats from pond LLA9. Networks were built 

including (a) and excluding (b) cytochrome oxidase genes (O2/NO respiration). Upper Mat 

Layers (UML) networks derive from metagenomes LLA9-A1, B1 and C1. ‘Middle’ Mat 

Layers (MML) networks derive from metagenomes LLA9-C2.I, C2.II, D1.I and D1.II. 

Bottom Mat Layers (BML) networks derive from metagenomes C3.I, C3.II, D2.I and D2.II. 

Each node represents a KO; node size is proportional to abundance. Node color alludes to 
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the type of metabolic pathway (color code indicated). Edges depict KO co-occurrence in mat 

layers; reddish edges mean a negative correlation (R < -0.7) and blue edges depict positive 

correlations (R > 0.7). The distance between nodes is proportional to R values; edges shown 

in dotted lines have been shortened for visualization purposes (real size networks are shown 

in Supplementary Fig. 8). Network properties are detailed in Supplementary Table 8.
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Fig. 4. 
Distribution of key energy and carbon fixation metabolisms in microbial mats across a redox 

gradient and, likely, time. (a) Spatial distributions of diagnostic genes (KOs) for selected 

core energy and carbon fixation pathways in microbial mats across a redox gradient in the 

Salar de Llamara. Carotenoid biosynthesis genes were plotted with photosynthesis-related 

genes. Plots represent mean normalized abundances of diagnostic KOs for each kind of 

metabolism corrected by single-copy gene abundance by MUSiCC70. The Calvin-Benson 

enzymes detected in the anoxic zone likely correspond to the new reductive hexulose-

phosphate (RHP) pathway32. (b) Space-for-time metabolic transitions (indicated by 

background colors) represented on a plot of atmospheric oxygen concentrations along the 

Earth history. O2/NO respiration correspond to cytochrome oxidase genes. BC, 

bacteriochlorophylls; PRC, photoreaction center. DC/HB, dicarboxylate/hydrobutyrate; 

HP/HB, 3-hydroxyproprionate/4-hydrobutyrate; rTCA, reverse tricarboxylic acid cycle; 

ACL, ATP-dependent citrate lyase.
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