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1  |  INTRODUC TION

One of the major challenges in microbial ecology is to gain a pre-
dictive understanding of microbial diversity through elucidating the 
principles, patterns, and interactions that lead to the assembly of 
highly diverse microbial communities as found for example in soil 

(Green et al., 2008). To achieve this, it is essential to consider tempo-
ral and spatial variation in microhabitat conditions. In soil microbial 
ecology, the latter, however, is commonly ignored (Lombard et al., 
2011; Vos et al., 2013). Instead, large composite samples are favored 
to obtain an overview of microbial diversity at the scale of a plot or 
a field. This neglects the fine-scale heterogeneity of soil structure, 
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Abstract
Sequencing PCR-amplified gene fragments from metagenomic DNA is a widely ap-
plied method for studying the diversity and dynamics of soil microbial communities. 
Typically, DNA is extracted from 0.25 to 1 g of soil. These amounts, however, neglect 
the heterogeneity of soil present at the scale of soil aggregates and thus ignore a 
crucial scale for understanding the structure and functionality of soil microbial com-
munities. Here, we show with a nitrogen-depleted agricultural soil the impact of re-
ducing the amount of soil used for DNA extraction from 250 mg to approx. 1 mg 
to access spatial information on the prokaryotic community structure, as indicated 
by 16S rRNA gene amplicon analyses. Furthermore, we demonstrate that individual 
aggregates from the same soil differ in their prokaryotic community compositions. 
The analysis of 16S rRNA gene amplicon sequences from individual soil aggregates 
allowed us, in contrast to 250 mg soil samples, to construct a co-occurrence network 
that provides insight into the structure of microbial associations in the studied soil. 
Two dense clusters were apparent in the network, one dominated by Thaumarchaeota, 
known to be capable of ammonium oxidation at low N concentrations, and the other 
by Acidobacteria subgroup 6, representing an oligotrophic lifestyle to obtain energy 
from SOC. Overall this study demonstrates that DNA obtained from individual soil 
aggregates provides new insights into how microbial communities are assembled.
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and thus loses much information on patterns of community assem-
bly (Thakur et al., 2020).

Soil structure develops as primary particles of different sizes and 
mineral composition, that is, clay, silt, and sand interact with each 
other, and with organic material to build microaggregates and mac-
roaggregates, that are below or above 250 µm in diameter respec-
tively (Six et al., 2000). Most bacterial cells occur inside aggregates 
rather than on their surfaces (Ranjard, Poly, et al., 2000), and bio-
geochemical cycles, which are key ecosystem services driven by an 
interacting microbial community (Smith et al., 2015), are considered 
to mainly occur within aggregates (Wilpiszeski et al., 2019). Soil ag-
gregates have been regarded as “massively concurrent evolutionary 
incubators” (Rillig et al., 2017) or as “microbial villages” (Wilpiszeski 
et al., 2019) that represent small communities separated by distance 
and physical barriers and connected only periodically, for example, 
during wetting events.

DNA-based methods to assess microbial diversity typically start 
with extracting 250 mg to 1 g of soil material (Young et al., 2014). 
This strategy has been useful to investigate the overall microbial 
diversity of soils (Fierer & Jackson, 2006; Roesch et al., 2007), its 
variation across geographical regions (Griffiths et al., 2011; Karimi 
et al., 2018), or its response to land-use change at a continental scale 
(Szoboszlay et al., 2017). However, to understand the processes and 
interactions occurring within soil microbial communities, it would 
be rewarding to increase the spatial resolution of the community 
analysis to individual aggregates and investigate microbial diversity 
in these spatial entities. Approaching the “calling distance” of mi-
crobial interactions (Nunan, 2017) would increase the likelihood of 
detecting interacting microbial partners. Correlation networks have 
increasingly been applied to reveal relationships between microbial 
community members as detected by PCR amplicon sequence analy-
ses (Banerjee et al., 2016; Barberan et al., 2012; Karimi et al., 2020; 
Li et al., 2017). However, to interpret a positive correlation as a mu-
tualistic and a negative correlation as an antagonistic relationship is 
possible only for community members sharing the same microhab-
itat (Weiss et al., 2016). Without distinction of microhabitats, it is 
hard to assign the presence of taxa to niche exclusion (Faust & Raes, 
2012). Analyzing soil DNA extracted from 250 mg to 1 g represents 
mixed DNA from many microhabitats. In contrast, working with indi-
vidual soil aggregates should strongly enhance the ecological signif-
icance of soil microbial network analyses.

The potential impact of the heterogeneous soil constituents on 
structuring microbial communities at a microscale has already been 
demonstrated with pooled soil primary particles, where the majority 
of abundant bacterial and fungal taxa exhibited particular prefer-
ences for clay, silt, or sand-sized fractions with particulate organic 
matter (Hemkemeyer et al., 2018, 2019). Furthermore, comparing 
pooled samples of micro- and macroaggregates revealed that these 
two size classes also differ in microbial community composition 
(Constancias et al., 2014; Davinic et al., 2012; Fox et al., 2018), di-
versity (Bach et al., 2018; Ivanova et al., 2015) and their response 
to stress (Ranjard, Nazaret, et al., 2000). However, information on 
the heterogeneity of microbial communities of individual aggregates 

within specific aggregate fractions is still lacking. A major limitation 
of analyzing individual aggregates is the difficulty of obtaining a suf-
ficient quantity of nucleic acids from small amounts of soil for molec-
ular methods. Attempts made so far, therefore, either pooled several 
aggregates for DNA extraction (Bach et al., 2018; Bailey et al., 
2013; Ivanova et al., 2015), sampled very large aggregates weighing 
20–70 mg (Kravchenko et al., 2014), or applied whole genome ampli-
fication (WGA) (Bailey, McCue, et al., 2013). These solutions, how-
ever, do not deliver data on individual aggregates, provide coarse 
spatial resolution, or generate substantial bias in the results (Direito 
et al., 2014; Wang et al., 2016), respectively. To our knowledge, the 
only study that reported the bacterial community composition in 
smaller, that is below 3 mm, individual aggregates without applying 
WGA utilized taxonomic microarrays; a method of relatively low 
resolution, and focused solely on linking enzyme activity profiles 
with community structure (Kim et al., 2015). Furthermore, applying 
molecular methods to small samples that yield very low amounts of 
nucleic acids require validation to prove the consistent performance 
of the methods and rule out the possibility of contamination and sto-
chastic effects influencing the results.

The tremendous scientific potential that individual soil aggre-
gate-based microbial community analysis should have for character-
izing the heterogeneity of soil microbial communities at a biologically 
and ecologically more meaningful scale motivated us testing the fol-
lowing hypotheses in this study:

1.	 Metagenomic DNA of sufficient quantity and quality for PCR-
based analyses can be extracted from soil samples in the mg-
range, thus representing the scale of macroaggregates

2.	 Increasing spatial resolution reveals heterogeneity in soil bacterial 
and archaeal community structure and abundance

3.	 A higher heterogeneity seen among small soil samples is not a re-
sult of contamination or sub-optimal performance of molecular 
methods

4.	 Comparing individual aggregates from the same soil unveils pat-
terns of microbial co-occurrence within the soil microbial commu-
nity not seen with the commonly used 250 mg soil sample size.

2  |  MATERIAL S AND METHODS

2.1  |  Overview of the experiments

Three experiments were conducted in this study. In the 1st experi-
ment, samples decreasing in size from 250 mg to 1 mg taken from the 
same soil were subjected to DNA extraction. To address the first two 
hypotheses, qPCR and high-throughput amplicon sequencing target-
ing the 16S rRNA gene were conducted to characterize the bacte-
rial, archaeal, and fungal abundance and the prokaryotic diversity in 
these samples. The 2nd experiment addressed the third hypothesis 
by comparing 250 mg soil samples and aliquots of a homogenized 
soil slurry. The volumes of the aliquots were chosen to contain the 
amount of DNA expected from 1, 5, and 25 mg soil samples. Since 
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all aliquots were taken from the same thoroughly homogenized soil 
slurry, differences in prokaryotic community structure between 
these soil homogenate samples must be results of contamination, 
stochastic effects, or sub-optimal performance of the DNA extrac-
tion and PCR. In the 3rd experiment, DNA was extracted from indi-
vidual aggregates and 250 mg soil samples taken from the same soil 
to address the fourth hypothesis. All experiments included several 
control samples to test for the presence of contamination.

2.2  |  Soil sampling and DNA extraction

The soil used in all experiments was loam topsoil of a Haplic 
Chernozem (FAO classification) from the Bad Lauchstädt experi-
mental research station of the Helmholtz Centre for Environmental 
Research in Germany (51°24'N 11°53'E) (Merbach & Schulz, 2013). It 
originated from the Static Fertilization Experiment, initiated in 1902, 
and samples were collected in December from a plot without any 
fertilization since 1903 (treatment NIL) (Ludwig et al., 2011), which 
was under long-term sugar beet—potato—winter wheat—barley rota-
tion. Consequently, the soil was compared with its fertilized variants 
depleted in nitrogen (Blair et al., 2006). The soil samples had a pH 
value of 7.1 (in 0.01 M CaCl2) and 17.7 mg  kg

−1 organic C. It was 
sieved (2 mm mesh size) and stored at 4°C until use.

Before sampling, approximately 100 g of soil was incubated at 
room T in the dark for 24 h. The soil was then spread out in a sterile 
Petri dish and samples were taken with sterilized spatulas directly 
into the bead-beating tubes of the DNA extraction kit. Control sam-
ples were included in all experiments. They were handled together 
with, and the same way as the soil samples. DNA was extracted with 
the Quick-DNA Fecal/Soil Microbe Microprep Kit (Zymo Research, 
Freiburg, Germany) including two 45 s bead-beating cycles in an MP 
FastPrep-24 5G Instrument (MP Biomedicals, Eschwege, Germany) 
at 6.5 m/s speed with a 300 s break in between. The DNA extracts 
were eluted in 30 µl elution buffer. All work was done in a biosafety 
cabinet decontaminated with UV light to minimize the chance of 
contamination. Measurement of the DNA yield was attempted 
with Quant-iT PicoGreen dsDNA Assay Kit (Molecular Probes, Life 
Technologies, Eugene, OR) but accurate quantification was not 
possible for many of the small samples due to results close to the 
background fluorescence in the blank controls. In preparation for 
this study, several DNA extractions methods were tested but were 
not found suitable. This included the Fast DNA Spin kit for soil (MP 
Biomedicals, LLC, Illkrich, France) and variations of the phenol-chlo-
roform protocol (Miller et al., 1999).

In the 1st experiment, five size-groups of soil samples were col-
lected: 250, 125, 25, 5, and 1 mg, respectively. Eight samples were 
taken from each size-group along with six control samples. Sample 
weights from all experiments are listed in Table 1. In the 2nd ex-
periment, ten samples of 250 mg soil and six control samples were 
taken. Eight of the soil samples were processed normally in the DNA 
extraction, while for the other two, the DNA extraction was inter-
rupted after the centrifugation following the bead beating. By this 

point, the samples had been turned into homogenized slurry by the 
bead beating, and the soil debris had been separated from the su-
pernatant that contained the metagenomic DNA. The supernatant 
from the two samples was pooled and homogenized by vortexing. 
The mass of the resulting suspension was 1112 mg and it originated 
from 497 mg soil in total. Accordingly, a 55.9 mg aliquot of this sus-
pension contained the amount of DNA extractable from 25 mg soil, 
an 11.2 mg aliquot the amount from 5 mg soil, and a 2.2 mg aliquot 
the amount from 1 mg soil. Eight aliquots from each of these sizes, 
hereafter 25, 5, and 1 mg soil homogenate samples, were taken and 
mixed with 350 µl BashingBead Buffer from the DNA extraction kit 
to continue the DNA extraction. In the 3rd experiment, 37 individ-
ual soil aggregates, weighing 5.3 mg on average and similar in size 
(ca. 2 mm), were taken for DNA extraction along with 35 samples of 
250 mg soil and nine control samples.

2.3  |  Abundances of microbial groups assessed 
by qPCR

The abundance of Bacteria, Archaea, and Fungi was assessed by qPCR 
targeting the 16S rRNA gene and the ITS region as described previ-
ously (Hemkemeyer et al., 2015). Archaeal and fungal abundance 
were investigated only in the 1st experiment. Reactions were run in 
a Bio-Rad CFX96 real-time PCR system in duplicates from different 
dilutions of the DNA extracts. In the case of the 250 and 125 mg 
soil samples, 50- and 100-fold dilutions were taken; from the 25 mg 
samples 10- and 20-fold dilutions; and from the 5, 1 mg, individual 
aggregate, and control samples undiluted DNA extracts and twofold 

TA B L E  1 Number of samples and soil weights within each 
sample category

Soil weight class or sample 
type

Sample weight (mg) 
±SD

Number of 
soil samples

1st experiment

250 mg 251 ± 1 8

125 mg 125 ± 1 8

25 mg 25.1 ± 0.4 8

5 mg 4.9 ± 0.2 8

1 mg 1.1 ± 0.2 8

Control, no soil 6

2nd experiment

250 mg 252 ± 3 8

25 mg soil homogenate 8

5 mg soil homogenate 8

1 mg soil homogenate 8

Control, no soil 6

3rd experiment

250 mg 251 ± 0 35

Soil aggregate 5.3 ± 1.6 37

Control 9
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dilutions were used. PCR efficiencies were 95.9%–104.6% for the 
bacterial 16S rRNA gene, 94.2%–96.2% for the archaeal 16S rRNA 
gene, and 83.3%–84.3% for the fungal ITS with R2 ≥0.995 in all cases. 
Results were compared with Tukey's HSD tests or Welch's t-test in 
case of the data from the 3rd experiment. The analysis was carried 
out in R 3.4.4 (www.r-proje​ct.org). One of the 250 mg samples from 
the 1st experiment yielded a magnitude higher copy number in the 
fungal ITS qPCR assay than the others. It was treated as an outlier 
and excluded from the analysis.

2.4  |  High-throughput sequencing of 16S rRNA 
gene amplicons and data processing

To characterize the bacterial and archaeal communities in the sam-
ples, DNA extracts were subjected to high-throughput amplicon 
sequencing of the V4 region of the 16S rRNA gene following the pro-
tocol of Kozich et al. (2013) with primers updated to match the modi-
fied 515f and 806r sequences according to Walters et al. (2016). In 
the case of the small soil samples and control samples, due to the low 
DNA yield, 10 µl DNA extract was used as a template in the PCRs. 
Paired-end sequencing was done on Illumina MiSeq instruments at 
StarSEQ (Mainz, Germany). Samples from the same experiment were 
sequenced in the same run. For the availability of all data, see Data 
Availability Statement.

The sequencing data from the three experiments were analyzed 
separately. Raw reads were processed with the dada2 (version 1.6.0) 
pipeline (Callahan et al., 2016) in R 3.4.4. Forward and reverse reads 
were truncated at positions 240 and 90, respectively. Reads with any 
ambiguous bases were discarded as well as forward reads with over 
two and reverse reads with over one expected error. The data from 
the 2nd experiment had higher quality allowing the reverse reads 
to be truncated at position 130 and keeping those with two or less 
expected errors. Error models were constructed from 106 randomly 
selected reads. Sequence variants (SVs) were inferred using the pool 
option. Forward and reverse SVs were merged trimming overhangs, 
and the removeBimeraDenovo function was employed to detect 
chimeras. The SVs were classified according to the SILVA reference 
version 132 (Pruesse et al., 2007) accepting only results with ≥70% 
bootstrap support. SVs shorter than 220 nt or longer than 275 nt, 
or identified as chimeric, mitochondrial, or chloroplast sequences, 
or not classified into Bacteria or Archaea were deleted. Good's index 
was calculated to estimate the coverage of the SVs. SVs with ≥0.1% 
relative abundance in any of the control samples of an experiment 
were regarded as a potential contaminant and removed from the 
dataset of that experiment.

2.5  |  Analysis of sequencing results

Principal component analysis (PCA) plots were created in R using 
the rda function of the vegan package version 2.5-2 (Oksanen et al., 
2018). To decrease the sparsity of the data, SVs not reaching 0.1% 

relative abundance in any of the samples included in the PCA were 
removed. Zeroes were replaced with the count zero multiplica-
tive (CZM) method using the zCompositions package version 1.1.1 
(Palarea-Albaladejo & Martin-Fernandez, 2015), and centered log-
ratio (CLR) transformation was applied to the data to correct for 
compositional effects and differences in sequencing depth (Gloor 
et al., 2016).

Aitchison distances between the samples were calculated as 
Euclidean distances in the CLR transformed dataset (Gloor et al., 
2017). SVs that did not have at least 0.1% relative abundance in any 
of the compared samples were removed and zeroes were replaced 
with the CZM method to allow CLR transformation before calcu-
lating Euclidean distances with the “vegdist” function of the vegan 
package. Results were compared with Tukey's HSD tests.

Plots illustrating the prevalence of abundant SVs among the soil 
samples were prepared in Cytoscape 3.7.1 (www.cytos​cape.org). 
CoNet 1.1.1 beta (Faust & Raes, 2016) in Cytoscape was used to 
construct co-occurrence networks from the data from the 3rd ex-
periment. To limit the number of parallel significance tests and the 
sparsity of the data, only SVs with ≥0.2% relative abundance in at 
least one of the samples were included. Separate networks were 
constructed for the 250  mg soil samples and the soil aggregates. 
However, the selection of SVs was done on the joint data matrix to 
ensure that both networks include the same SVs. The data were rel-
ativized to the total sequence count of each sample. Pearson and 
Spearman correlations, mutual information (jsl setting), and Bray-
Curtis and Kullback-Leibler (with a pseudo count of 10−8) dissimilari-
ties were calculated and the 1 000 highest and 1 000 lowest scoring 
edges from each of the five metrics were kept. The ReBoot method 
(Faust et al., 2012), which mitigates compositional effects, was used 
to assess the significance of the edges based on 1000 permutations 
with renormalization and 1000 bootstrap iterations. In the network 
of the soil aggregates, edges with scores below the 2.5th and over 
the 97.5th percentile of the bootstrap distribution or not supported 
by at least three of the five metrics were considered unstable and 
removed. Brown's method of p-value merging was applied followed 
by Benjamini-Hochberg correction. Only edges with q ≤ 0.05 were 
included in the final network. In the network of the 250 mg samples, 
unstable edges were not removed and the Benjamini-Hochberg cor-
rection was not applied as otherwise no edges were retained. The 
networks were visualized in Cytoscape using the compound spring 
embedder layout. Topological parameters were calculated using 
NetworkAnalyzer version 2.7 (Assenov et al., 2008).

3  |  RESULTS

3.1  |  Microbial DNA can be extracted from soil 
samples in the mg-range

DNA could be extracted from soil samples as little as 0.87 mg as well 
as from intact soil aggregates. In all cases, the extracted DNA was 
sufficient for 16S rRNA gene amplicon sequencing and the qPCR 

http://www.r-project.org
http://www.cytoscape.org
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assays. Accurate quantification of the DNA yield with PicoGreen as-
says was not possible because the fluorescence readings from many 
of the small samples were close to the background fluorescence in 
the blank controls.

To assess whether the DNA extraction could recover microbial 
DNA with similar efficiency from small quantities of soil as from 250 mg 

samples, estimates of the abundances of Bacteria, Archaea, and Fungi 
in 1 g of soil were calculated from the qPCR results (Figure 1; Table 
S1: https://doi.org/10.5281/zenodo.4282475). Similar estimates were 
obtained from the 250 and 5 mg soil samples from the 1st experiment. 
Estimates from the 1 mg samples tended to be lower but were not sig-
nificantly different. In contrast, the estimates of fungal abundance in a 

F I G U R E  1 Estimates of (a) bacterial, (b) archaeal, and (c) fungal abundance in a gram of soil based on qPCR from the samples from the 1st 
experiment (gene copy numbers per g of soil wet weight). One of the 250 mg soil samples was an outlier in the fungal ITS qPCR results and is 
not included in the plot. Sample groups not labeled with the same letter were significantly different in Tukey's HSD tests. Thick lines indicate 
the median values, the upper and lower hinges the 75th and 25th percentile, whiskers extend to the data extremes

https://doi.org/10.5281/zenodo.4282475
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gram of soil were significantly lower from the 1 and 5 mg than from the 
250 mg samples. Estimates of bacterial abundance obtained from the 
25 and 125 mg samples and archaeal abundance from the 25 mg sam-
ples were significantly higher than from the 250 mg samples. Bacterial 
abundance estimates from the single aggregates and 250 mg soil sam-
ples of the 3rd experiment covered the same range (Figure A1), but the 
mean of the estimates from the single aggregates (2.27 × 109 copies/g 
soil) was lower (p < 0.001) than from the 250 mg samples (4.69 × 109 
copies/g soil).

The control samples were amplified in the qPCR assay targeting 
the bacterial 16S rRNA gene but yielded only 3–356 copies per µl 
DNA extract. In comparison, the 1 mg soil samples had 8777–45,534 
copies per µl DNA extract (Table S1: https://doi.org/10.5281/ze-
nodo.4282475). The control samples from the 1st experiment had 0 
to 13 fungal ITS copies per µl DNA extract and none of them showed 
amplification in the archaeal 16S rRNA gene qPCR assays.

3.2  |  Removing potentially contaminant SVs 
from the sequencing results

It was possible to generate sequencing results from all control sam-
ples (the complete dataset with the taxonomic classification of the 
SVs is in Table S2: https://doi.org/10.5281/zenodo.4282475). Good's 
coverage index of the SVs was >0.993 in all of them indicating that 
their complete prokaryotic community was captured by sequencing 
(Table A1). They were similar in their prokaryotic community struc-
tures but very different from the soil samples (Figure A2). Every SV 
that reached 0.1% relative abundance in any of the control samples 
of an experiment was considered as a potential contaminant. There 
were 450, 77, and 591 such SVs in the datasets of the 1st, 2nd, and 
3rd experiments, respectively. In the data from the 1st experiment, 
these SVs together covered 98.9%–99.8% of the sequences ob-
tained from the control samples and 2.5%–6.6% of the sequences 
from the soil samples. In the 2nd and 3rd experiments, 92.5%–99.5% 
and 98.6%–99.6% of the sequences from the control samples, and 
2.9%–17.3% and 5.9%–9.4% of the sequences from the soil samples, 
respectively, were covered by the potentially contaminant SVs. To 
mitigate the effect of contamination on the results, the potentially 
contaminant SVs were deleted from the data matrices before further 
analysis.

3.3  |  Increasing spatial resolution reveals 
heterogeneity in soil bacterial and archaeal 
community structure but not in their abundance

The yield of high-quality 16S rRNA gene amplicon sequences was 
lower from the 1 mg samples than from the 5 and 25 mg samples 
in the 1st experiment (Figure 2a). Apart from this, however, the se-
quencing yield did not differ between the sample groups within any 
of the experiments. Thus, it is possible to compare the number of 
SVs detected in the samples without rarefying the data. The number 

of SVs in the 1st experiment was not significantly different be-
tween the 250, 125, and 25 mg samples, but decreased significantly 
in the 5 mg and even further among the 1 mg samples (Figure 2b). 
An opposite trend was clear in the Good's coverage index (Table 
A1). Similarly, significantly lower numbers of SVs were detected in 
the single aggregates than in the 250  mg soil samples of the 3rd 
experiment.

Principal component analysis from the sequencing results from 
the 1st experiment arranged all 250 and 125 mg samples, and most 
25 mg samples into a single, tight group, indicating high similarity in 
their prokaryotic community structures (Figure 3a). In contrast, sam-
ples from the 5 mg and more so from the 1 mg categories, showed 
higher heterogeneity in community structure. Similarly, PCA indi-
cated heterogeneity between individual aggregates that was not 
seen among the 250 mg samples in the 3rd experiment (Figure 3b).

The abundant SVs (≥0.1% relative abundance in at least one of 
the samples) in the 250, 125, and 25 mg samples from the 1st ex-
periment were almost all detectable in each sample, showing that 
the composition of the soil prokaryotic community appears uniform 
when investigated at such a coarse spatial resolution (Figure 4). In 
contrast, 172 of the abundant SVs detected in the 1 mg samples 
were unique to just one or two of these samples. Among these SVs, 
representatives of Planctomycetes, Proteobacteria, and Acidobacteria 
were especially numerous, while Thaumarchaeota and Actinobacteria 
were dominant among the SVs present in all samples. The 5 mg sam-
ples represented a level of spatial resolution at which some hetero-
geneity in the prevalence of the abundant SVs was clear with 22 of 
them detectable in two or only in a single sample.

In total, 5620 SVs were detected in the eight 1  mg soil sam-
ples of the 1st experiment (Table S2: https://doi.org/10.5281/ze-
nodo.4282475). Of these, 4764 (85%) were also present in at least 
half of the 250 mg samples. The remaining 856 SVs had low relative 
abundance in the 1 mg samples with only 59 reaching more than 
0.1% relative abundance in any of them. The 5 mg samples together 
contained 8010 SVs, of which 6 443 (80%) were also detectable in 
at least half of the 250 mg samples. Of the remaining 1567 SVs, only 
26 reached more than 0.1% relative abundance in any of the 5 mg 
samples.

The qPCR results did not confirm our hypothesis that increas-
ing spatial resolution would reveal heterogeneity in microbial abun-
dance. Bacterial and archaeal 16S rRNA gene and fungal ITS copy 
numbers did not show a larger variation among the 1 and 5 mg sam-
ples than between the 250  mg samples from the 1st experiment 
(Figure 1). Similarly, in the 3rd experiment, bacterial abundance did 
not vary more in the single aggregates than in the 250 mg samples 
(Figure A1).

3.4  |  Impact of stochastic effects and inconsistent 
performance of the methods

The soil homogenate samples from the 2nd experiment served to 
test the influence of stochastic effects and sub-optimal performance 

https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
https://doi.org/10.5281/zenodo.4282475
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of the DNA extraction and PCR when extracting small amounts of 
soil. The estimated bacterial abundance in a gram of soil based on 
the qPCR results was in general higher in the samples from the 2nd 
experiment but followed the same pattern as in the samples from the 
1st experiment with no differences between the 1, 5, and 250 mg 
samples but significantly higher values in the 25 mg samples (Figure 
A3). The small soil homogenate samples did not show the degree of 
heterogeneity in the prokaryotic community structure we observed 
among the small soil samples of the 1st experiment. The abundant 
SVs (≥0.1% relative abundance in at least one sample) in the 25 mg 

soil homogenate samples were all detectable in at least five of the 
eight replicates. Out of the 354 abundant SVs in the 5 mg soil ho-
mogenate samples, one was present in only three of the samples but 
the others were detectable in at least six. The 1 mg soil homogenate 
samples harbored 446 abundant SVs. None of them was unique to a 
single sample and 442 were present in five or more of the eight sam-
ples. The Aitchison distances of the community structure were much 
higher among the 5 mg, and especially among the 1 mg soil samples 
of the 1st experiment compared with the distances between the 
250 mg soil samples (Figure 5). In contrast, the distances between 

F I G U R E  2 Number of (a) sequences and (b) sequence variants (SVs) in the samples after the removal of potentially contaminant SVs. 
Thick lines indicate the median values, the upper and lower hinges the 75th and 25th percentile, whiskers extend to the data extremes. 
Letters indicate significant differences between sample groups of the 1st experiment according to Tukey's HSD tests. * indicates a 
significant difference based on Welch's t-test between the aggregate and the 250 mg soil samples of the 3rd experiment
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5 or 25 mg soil homogenate samples of the 2nd experiment were 
similar to the distances among the 250 mg soil samples, indicating no 
difference in the heterogeneity of prokaryotic community structure 
between these sample groups. The distances between the 1 mg soil 
homogenate samples were only slightly increased.

3.5  |  Bacterial and archaeal co-occurrence patterns 
in 250 mg soil samples and aggregates

Networks of prokaryotic co-occurrence were constructed using the 
272 SVs that reached ≥0.2% relative abundance in at least one of the 
samples of the 3rd experiment. No network was obtained from the 
250 mg samples unless the removal of unstable edges and the correc-
tion of the p-values for multiple testing were skipped. The resulting 
network has 78 edges between 35 nodes (Figure 6a). Thus, this spa-
tial resolution revealed only a small number of putative associations 

many of which are false discoveries. In contrast, a network of 137 
edges and 67 nodes (with the removal of unstable edges and control 
of the false discovery rate) was obtained from the individual soil ag-
gregates (Figure 6b). A total of 54 of the nodes are part of a connected 
component in which there are three nodes with high betweenness 
centrality: SV15 (Verrucomicrobia, Candidatus Udaeobacter), SV31 
(Actinobacteria), and SV36 (Acidobacteria subgroup 6). Their relative 
abundance in the aggregates was 0.46 ± 0.16%, 0.33 ± 0.13%, and 
0.30 ± 0.11%, respectively. These SVs potentially serve a keystone 
function by connecting two clusters in the network. One of the clus-
ters contains several SVs of Thaumarchaeota, Verrucomicrobia, and 
Actinobacteria. The other is dominated by Acidobacteria subgroup 6. 
The hub of the latter cluster is SV58 (Acidobacteria subgroup 6) with 
a relative abundance of 0.23 ± 0.16% that has the highest degree 
in the network being connected to 19 nodes. SV399 (Chloroflexi) 
(0.06 ± 0.05%) and SV123 (Acidobacteria subgroup 6) (0.13 ± 0.06%) 
are linked with negative associations to several members of this 
cluster.

4  |  DISCUSSION

The large disparity between the scale in which the soil microbiota 
is usually studied with molecular methods (0.25–1 g of soil) and the 
distance over which microbial interactions occur, impede the detec-
tion of interacting partners (Nunan, 2017). To gain information on 
the soil microbial diversity at an increased spatial resolution that 
considers soil structure, in this study, we reduced the amount of soil 
used for DNA extraction from 250 to 1 mg and also extracted indi-
vidual soil aggregates. Bacterial and archaeal DNA were recovered 
with not significantly different efficiencies from the 250 mg and the 
5 and 1 mg samples as shown by the qPCR results. This was not 
true for fungal DNA. Either the DNA extraction kit was not efficient 
in isolating fungal DNA from samples below 25 mg, or fungi may 
preferentially colonize larger soil aggregates. Our results show that 
the DNA extraction kit was the most efficient in recovering bacterial 
and archaeal DNA from 25 to 125 mg soil, although the variation in 
the yield of 16S rRNA gene copies was large among these samples. 
Since this increased variation was apparent among the 25 mg soil ho-
mogenate samples of the 2nd experiment as well, it is not an indica-
tion of an uneven distribution of bacterial cells at the scale of 25 mg 
samples but must be due to this particular DNA extraction method 
not working with consistent efficiency with this amount of soil.

As a consequence of sampling small amounts of soil, the DNA 
extracts had low template concentrations for the subsequent PCR 
analyses. Thereby, we had to anticipate a high risk of contamination 
affecting the results (Weiss et al., 2014). Quantifiable amounts of 
Bacteria and Fungi, but not Archaea, were detected in the control 
samples without soil. However, they reached no more than 4% of the 
number of bacterial rRNA gene copies in the smallest soil samples, 
and thus, the influence of contamination on our results is negligible. 
The bacterial community found in the control samples was distinct 

F I G U R E  3 Principle component analyses (PCA) plots from 
the 16S rRNA gene sequencing data from the 1st (a) and 3rd (b) 
experiments
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from the soil communities suggesting that the contamination origi-
nated from the reagents of the DNA extraction and sequencing li-
brary preparation rather than cross-contamination between samples 
(Glassing et al., 2016; Salter et al., 2014). Another concern of work-
ing with small samples is that molecular methods applied to such 
small amounts of a template may perform inconsistently leading to 
artificial variation in the results. The 2nd experiment showed that 
DNA extraction, PCR, and sequencing did not artificially generate 
more variation in the results from 5 mg samples than the variation 
present among the 250 mg samples and the 1 mg samples showed 
only a slightly higher variation. Therefore, the large heterogeneity 
in prokaryotic community composition and structure among the 1 
and 5 mg soil samples from the 1st experiment was not caused by 
stochastic effects or PCR bias.

The samples of 25 up to 250 mg of soil were close to identical 
in prokaryotic community composition, thus they provide a good 
representation of the overall prokaryotic diversity of our soil. This 
is also indicated by the fact that increasing the amount of soil ex-
tracted up to 25 mg increased the number of SVs detected in the 
samples, but larger soil samples did not yield more SVs. Thus, the 
25  mg samples had good coverage of the total prokaryotic com-
munity. In contrast, the 1 and 5 mg samples and single aggregates 
were heterogeneous in community structure. We found that while 
small soil samples could recover some SVs not necessarily detected 
with the conventionally used 250 mg samples; these SVs were typ-
ically low in abundance. Very few exceeded the relative abundance 
threshold we applied to control the sparsity of the data in our anal-
ysis of community structure. Therefore, the large heterogeneity of 

F I G U R E  4 SVs arranged according to how many of the 1, 5, 25, 125, or 250 mg samples from the 1st experiment they were detected in. 
Only SVs that reached at least 0.1% relative abundance in any of the samples are included. Each node represents one SV colored based on 
its phylum-level classification and sized according to its average relative abundance across all samples excluding those in which it was not 
detected
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the prokaryotic community structure we observed among the small 
samples was not because they would have enabled the detection of 
more SVs. Instead, it appears that they contained different subsets 
of the total community present in the 25–250 mg samples. This could 
be explained by the fact that the smaller samples contain fewer mi-
crohabitats, each of which harbors a local community of fewer spe-
cies (Leibold et al., 2004). Interestingly, the 1 and 5 mg samples did 
not significantly differ in the abundance of Bacteria, Archaea, and 
Fungi compared with the 250 mg samples. Similarly, the variation in 
bacterial abundance found with the individual aggregates was not 
different from the 250 mg samples. Microbial abundance in soil has 
a patchy distribution at the scale of a few micrometers (Nunan et al., 
2003) but, for the soil of this study, not at the scale of macroaggre-
gates or 1–5 mg samples.

Network analyses based on microbial co-occurrence have 
been applied to soil samples as large as 10 grams (Khan et al., 
2019) and are typically used with 250 mg–1 g samples (Barberan 
et al., 2012; Karimi et al., 2020). In this study, however, we could 
not detect stable and significant associations between SVs from 
35 samples of 250  mg soil. These samples were taken from the 
same well-mixed batch of soil and were similar in their prokaryotic 
community composition. This is fundamentally different from the 
above-cited studies that compared soil samples taken from differ-
ent ecosystems or across an entire country, thus soil samples that 
can greatly differ in microbial community composition. In contrast, 
our 250 mg samples, coming from the same soil, were similar. It is 
likely that each of them gave a good representation of the overall 
prokaryotic diversity in our soil, in which case, the variation of the 
relative abundance of SVs in these samples was mostly random. 
It is not surprising if small, random differences do not yield stable 

and significant associations in network analysis. The value of using 
much smaller samples is shown by our result that the 1 and 5 mg 
samples contained subsets of the total soil microbial diversity cap-
tured by the 250 mg samples, and with increasing spatial resolu-
tion the heterogeneity in the bacterial and archaeal community 
structure increased among the samples. This results in detectable 
co-occurrence patterns. Furthermore, the smaller spatial scale in-
creases the likelihood that the observed co-occurrences indicate 
interactions (Cordero & Datta, 2016).

From 37 soil aggregates, we obtained a complex network of 
bacterial and archaeal co-occurrence that contained two clus-
ters, one with several Thaumarchaeota, Verrucomicrobia, and 
Actinobacteria SVs, the other mainly with Acidobacteria subgroup 
6 SVs. Three SVs, which could represent keystone taxa, were 
found to connect these clusters. If these putative keystone SVs 
are abundant in an aggregate, we can expect that members of 
both clusters are present there. The two major clusters present 
in the network may provide complementary functions in the soil 
ecosystem. There are indications that Acidobacteria subgroup 6, 
dominating one of the clusters, prefer agricultural soils with low 
nitrogen input where it could be involved in the slower turnover 
of soil organic carbon (SOC) originating from microbial necromass 
or plant material (Hester et al., 2018; Li et al., 2018; Navarrete 
et al., 2013). The soil of this study originated from a long-term ni-
trogen-depleted agricultural soil, thus supporting the preference 
for low nitrogen concentrations and SOC turnover. The other clus-
ter included several abundant SVs from phylum Thaumarchaeota, 
which is known to be a strong contributor to ammonium oxidation 
in agricultural soils (Leininger et al., 2006). Compared to ammoni-
um-oxidizing bacteria, Thaumarcheaota are thought to be adapted 
to lower nitrogen concentrations (Pester et al., 2011); thus, the ni-
trogen-depleted soil of this study is likely a favorable environment 
for them. The two clusters in our aggregate co-occurrence net-
work could represent two distinct types of metabolism adapted to 
a nitrogen-depleted soil: a chemoorganotroph that oxidizes SOC, 
and a chemolithotroph that oxidizes ammonia produced for ex-
ample by ammonification from crop residues. The presence of the 
less abundant Verrucomicrobia and Actinobacteria SVs within the 
Thaumarchaota dominated cluster is possibly linked to an oligo-
trophic lifestyle (Bergmann et al., 2011; Fierer et al., 2007), but 
considering the limited information that 16S rRNA gene analyses 
can provide for these phyla, this remains yet only a hypothesis. 
Shotgun sequencing and metagenomic analysis of DNA extracted 
from individual soil aggregates could shed more light on the nature 
of the associations we detected in the co-occurrence network. 
In general, such aggregate-level analyses of the soil microbiota, 
which we call “aggregatomics,” could inspire new ways of linking 
structure to function in soil microbial communities.

While the spatial scale that we reached in this study is not yet fine 
enough to reveal most microbial interactions as they may occur in mi-
croaggregates (Raynaud & Nunan, 2014), it should be able to support 
the development of hypotheses and experiments to understand the 

F I G U R E  5 Aitchison distances in the bacterial and archaeal 
community structure (16SrRNA gene amplicons) within sample 
groups from the 1st and 2nd experiments. Thick lines indicate 
the median values, the upper and lower hinges the 75th and 25th 
percentile, whiskers extend to the data extremes. Sample groups 
from the same experiment not labeled with the same letter were 
significantly different in Tukey's HSD tests
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patterns and processes shaping the assembly of soil microbial com-
munities and modeling their behavior (Faust & Raes, 2012; Tecon & 
Or, 2017). Developing DNA extraction protocols from even smaller 
soil samples, approaching the microaggregate level, should be a way 

forward to fuel soil aggregate-oriented research (“Aggregatomics”; 
https://www.thuen​en.de/en/bd/field​s-of-activ​ity/feld-und-labor​studi​
en/micro​biolo​gy-and-molec​ular-ecolo​gy/soil-aggre​gatomics) for un-
veiling hidden patterns of functions and ecological interactions.

F I G U R E  6 Co-occurrence networks from the (a) 250 mg samples and (b) the single aggregates from the 3rd experiment. The frames 
mark the two clusters discussed in the text. It should be noted that in (a) unstable edges were not removed and the Benjamini-Hochberg 
correction for multiple comparisons was not applied

https://www.thuenen.de/en/bd/fields-of-activity/feld-und-laborstudien/microbiology-and-molecular-ecology/soil-aggregatomics
https://www.thuenen.de/en/bd/fields-of-activity/feld-und-laborstudien/microbiology-and-molecular-ecology/soil-aggregatomics
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APPENDIX 

TABLE A1 Good's coverage index of the 16S rRNA gene sequence 
variants

Soil weight class or sample type
Good's coverage 
(average ±SD)

1st Experiment

250 mg 0.962 ± 0.014

125 mg 0.965 ± 0.008

25 mg 0.970 ± 0.009

5 mg 0.980 ± 0.010

1 mg 0.992 ± 0.010

Control, no soil 0.997 ± 0.001

2nd Experiment

250 mg 0.939 ± 0.033

25 mg soil homogenate 0.939 ± 0.031

5 mg soil homogenate 0.945 ± 0.029

1 mg soil homogenate 0.923 ± 0.028

Control, no soil 0.994 ± 0.005

3rd Experiment

250 mg 0.950 ± 0.017

Soil aggregate 0.952 ± 0.032

Control 0.998 ± 0.001

Figure A1 Estimates of bacterial abundance in a gram of soil from 
the samples of the 3rd experiment based on qPCR. Thick lines 
indicate the median values, the upper and lower hinges the 75th 
and 25th percentile, whiskers extend to the data extremes
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Figure A2 Principle component analysis (PCA plot) from the 16S rRNA gene sequencing data from the 1st experiment including the control 
samples and without the removal of potentially contaminant SVs

Figure A3 Estimates of bacterial abundance in a gram of soil based 
on qPCR from the soil and soil homogenate samples from the 1st 
and 2nd experiments. Thick lines indicate the median values, the 
upper and lower hinges the 75th and 25th percentile, whiskers 
extend to the data extremes. Sample groups from the same 
experiment not labeled with the same letter were significantly 
different in Tukey's HSD tests


