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Abstract: Recently, different kinds of energy band structures have been utilized to improve the
photoelectric properties of zinc oxide (ZnO). In this work, ZnO nanorods were prepared by the
hydrothermal method and then decorated with silver sulfide (Ag2S)/zinc sulfide (ZnS) via two-step
successive ionic layer adsorption and reaction method. The photoelectric properties of nanocom-
posites are investigated. The results show that ZnO decorated with Ag2S/ZnS can improve the
photocurrent of photodetectors from 0.34 to 0.56 A at bias of 9 V. With the immersion time increasing
from 15 to 60 minutes, the photocurrent of photodetectors increases by 0.22 A. The holes in the
valence band of ZnO can be transferred to the valence band of ZnS and Ag2S, which promotes the
separation and suppresses the recombination of hole-electron pairs generated in ZnO. Moreover,
electrons excited by ultraviolet (UV) light in Ag2S can also be injected into the conduction band of
ZnO, which causes the photocurrent to increase more than the ZnO photodetector.

Keywords: ZnO; Ag2S; successive ionic layer adsorption and reaction; photodetector

1. Introduction

Recently, increasing demand for clean energy, portable electronics, space and astro-
nomical research, optical communications, and fire monitoring has caused UV photode-
tectors to be the subject of considerable attention due to their good flexibility, low-cost
fabrication, and high sensitivity [1–6]. Many wide-bandgap semiconductors associated
with this type of photodetectors have been explored [5,7–12]. Among wide-bandgap materi-
als, zinc oxide has become a good candidate for UV photodetection due to its wide bandgap
(3.37 eV), high exciton binding energy (60 meV), high chemical and thermal stability, low
cost, and strong emission at room temperature [13–16]. To improve the properties of ZnO,
incorporating noble metal nanostructures, compounding with carbon nanomaterials, and
decorating with semiconductor quantum dots are effective approaches [4,17–19]. With
decoration of semiconductors with different band structures, holes or electrons can be
transferred from ZnO, which promotes separation and suppresses the recombination of
hole-electron pairs generated in ZnO [20–23]. Ag2S as a direct, narrow bandgap (1.1 eV)
semiconductor with optical absorption similar to silicon has attracted much attention as a
promising candidate for photocatalysis and photoconduction [24–26]. Studies also proved
that after accompanying Ag2S with ZnO, type-II heterojunctions are formed. Due to the
different valence bands of Ag2S and ZnO, the holes in the valence band of ZnO can be
transferred to the valence band of Ag2S. This process can promote separation and suppress
the recombination of hole-electron pairs generated in ZnO, leading to the improved opto-
electrical properties of ZnO [27–30]. Recently, Li and colleagues prepared Ag2S-coupled
ZnO microspheres with 1.68 µA/cm2 at 0.2 V under visible light [31]. Chen and colleagues
prepared a Ag2S/ZnO core-shell nanoheterojunction with high photosensitivity in the
wide spectral range from 400 to 1100 nm and a response time as short as 5 ms [32].
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In this work, ZnO nanorods are prepared with the hydrothermal method. Then,
ZnS and Ag2S are deposited via successive ionic layer adsorption and reaction method
on the surface of ZnO nanorods. ZnS is an n-type [33–35] material, and Ag2S is a p-
type [36–39] material. The nanocomposites demonstrate potential application in the fields
of photodetection, photocatalysis, and solar cells [31,40–42]. In this work, the optoelectrical
properties of nanocomposites are investigated.

2. Materials and Methods

The ZnO nanomaterials in this paper were prepared by the hydrothermal method on
glass substrates with a conductive thin film of indium-doped tin oxides (ITO) on one side.
The size of substrates was 1 × 1 cm. Before preparation, the substrates were cleaned with
ultrasound successively in acetone, ethanol, and deionized water for 30 min. To prepare
ZnO seed layers on ITO substrates by the sol-gel dip-coating method, the substrates were
immersed in precursor solution for 15 min, and then, the samples were dried for 15 min.
This process was repeated six times. Finally, an annealing treatment was performed
in air at 150 ◦C for 30 min. Then ZnO nanorod arrays were formed on the substrates
in a solution consisting of 0.03 M zinc acetate dehydrate (Zn(AC)2·2H2O) and 0.03 M
hexamethylenetetramine (HMT) at 90 ◦C for 4 h.

S2− was incorporated into ZnO to form ZnS by immersing ZnO samples in aqueous
solution containing 0.02 M Na2S for 5 min, 15 min, 30 min, 45 min, and 60 min, respectively
and rinsing with pure ethanol. The ZnO nanorod arrays were decorated with Ag2S
quantum dots (QDs) through the facile successive ionic layer adsorption and reaction
(SILAR) method. ZnO samples were successively immersed in two different aqueous
solutions, one containing 0.02 M Na2S and the other one containing 0.02 M AgNO3 aqueous
solution for 30 min and different time, respectively. During immersion, the solution should
be stirred. After immersion, the samples were rinsed with pure ethanol to remove excess
precursors and blown dry at room temperature. Then, the Ag2S-modified samples were
fabricated as metal-semiconductor-metal (MSM) photodetectors with indium (In) electrode.
Electrodes were exploited to form ohmic contact between them and the nanocomposites.
One electrode was prepared on the ZnO seed layer and the other one was prepared on the
top of nanorod arrays.

Surface morphologies of the nanocomposites were characterized using scanning elec-
tron microscopy (SEM, HITACH SU70, Tokyo, Japan). Finer details of the nanocomposites
were characterized using transmission electron microscopy (TEM, FEI, Hillsboro, OR,
USA) and high-resolution transmission electron microscopy (HRTEM, FEI, Hillsboro, OR,
USA). The composition and bond band properties of the samples were measured by X-ray
photoelectric spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham, MA, USA).
Ultraviolet–visible spectroscopy (Shimadzu UV1700-visible spectrophotometer) was uti-
lized to characterize the optical properties. I–V characterization of the as-synthesized
devices was measured by an electrochemical workstation (CHI660e, Chenhua instruments
Ins., Shanghai, China) with a three-electrode system under UV led (λ = 365 nm). The
photoresponsivity spectrum of the devices was obtained by measuring the photocurrent
(calibrated with a standard Si photodiode) under the illumination of a UV-enhanced Xe
lamp spectrum from 300 to 600 nm using a scanning monochromator (DSR600, Zolix,
Beijing, China).

3. Results and Discussion

The morphologies of ZnO and ZnS/ZnO heterojunctions array prepared by immersing
ZnO samples in Na2S solution for 5, 15, 30, 45, and 60 min, respectively, are shown in
Figure 1a–f. The hexagonal nanorods are not uniform, and the dominant diameter of the
nanorods is about 260 nm. The XRD spectrum of the as-synthesized samples is shown
in the inset of Figure 1a. Typical peaks belong to the wurtzite hexagonal phase of ZnO
(JCPDS 36-1451), as presented in Figure 1a. When ZnO nanorods are immersed in Na2S
solution, as shown in Figure 1b–f, the solution provides sulfide ions to react with zinc
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ions dissolved from the ZnO nanorods in order to form ZnS. During this process, the
concentration of sulfide ions can be adjusted to influence the formation of ZnS. However, if
the concentration is too large, many defects can be formed on the nanocomposites, leading
to decreased efficiency. The formation of a ZnS shell can be determined by XPS spectra in
Figure 2. The XPS wide-survey spectrum of the sample with an immersion time of 30 min is
shown in Figure 2a. The characteristic peaks in the XPS spectrum can be assigned as Zn, S,
C, or O, respectively. The ratio of S/Zn is about 0.16. No other impurity peaks can be found,
showing that the obtained sample is of high purity. For ZnS/ZnO in Figure 2b, the S peak
located at 162 eV corresponds to S 2p from ZnS. The above XPS analysis demonstrates the
process of the formation of ZnS after immersion. Therefore, ZnO nanorods were covered
by the ZnS shell through immersion.

Nanomaterials 2021, 11, 461 3 of 11 
 

 

the inset of Figure 1a. Typical peaks belong to the wurtzite hexagonal phase of ZnO 
(JCPDS 36-1451), as presented in Figure 1a. When ZnO nanorods are immersed in Na2S 
solution, as shown in Figure 1b–f, the solution provides sulfide ions to react with zinc ions 
dissolved from the ZnO nanorods in order to form ZnS. During this process, the concen-
tration of sulfide ions can be adjusted to influence the formation of ZnS. However, if the 
concentration is too large, many defects can be formed on the nanocomposites, leading to 
decreased efficiency. The formation of a ZnS shell can be determined by XPS spectra in 
Figure 2. The XPS wide-survey spectrum of the sample with an immersion time of 30 min 
is shown in Figure 2a. The characteristic peaks in the XPS spectrum can be assigned as Zn, 
S, C, or O, respectively. The ratio of S/Zn is about 0.16. No other impurity peaks can be 
found, showing that the obtained sample is of high purity. For ZnS/ZnO in Figure 2b, the 
S peak located at 162 eV corresponds to S 2p from ZnS. The above XPS analysis demon-
strates the process of the formation of ZnS after immersion. Therefore, ZnO nanorods 
were covered by the ZnS shell through immersion. 

 
Figure 1. (a)–(f) SEM images of ZnO and ZnS/ZnO nanocomposites with different immersion time 
of 5, 15, 30, 45, and 60 min, respectively. 
Figure 1. (a)–(f) SEM images of ZnO and ZnS/ZnO nanocomposites with different immersion time
of 5, 15, 30, 45, and 60 min, respectively.

Based on the ZnS/ZnO nanocomposites, the ZnS/ZnO samples with the immersion
time of 30 min in Na2S solution were then immersed in 0.02 M AgNO3 aqueous solution for
15, 30, 45, and 60 min, respectively, which allows for the Ag2S/ZnS/ZnO nanocomposites
to be obtained. The morphologies of the as-synthetized Ag2S/ZnS/ZnO nanorod arrays are
shown in Figure 3a–d. It can be seen that after immersion, the nanorods were covered with
spherical nanoparticles at the short immersion time. Because of the difference between the
solubility product constant (Ksp) of ZnS (2.93 × 10−25) and Ksp of Ag2S (6.69 × 10−50) [43],
the cation exchange process occurs where zinc ions are replaced by silver ions, leading
to the formation of Ag2S, which indicates that the spherical nanoparticles are Ag2S. With
the increasing immersion time, the nanorods demonstrate a complete shape change from
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hexagon to ellipse. These results suggest that Ag2S was successfully deposited onto the
surface of the nanorods.
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In order to confirm the formation of Ag2S/ZnS/ZnO composites, TEM and HRTEM
measurements were performed on the nanocomposite with the immersion time of 60 min, as
illustrated in Figure 4. A large number of quantum dots evenly deposited onto the nanorod
surface is shown in Figure 4a,b, which show that densely distributed QDs are formed on the
surface of nanorods, and the diameter of the quantum dots is about 10–15 nm. Figure 4c
shows the HRTEM image of the quantum dots deposited on the nanorod surface. It can be
observed that the quantum dots have a spherical shape with a diameter of about 10 nm.
The obvious lattice arrangement can be found in the quantum dots, and the d-spacing
estimated to be 0.253 nm is indexed to the (−103) orientation of Ag2S crystalline.
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To further investigate the structures of Ag2S/ZnS/ZnO nanocomposites, XPS mea-
surements were measured. Figure 5a shows the Ag 3d region of the XPS spectra. The peak
position of Ag 3d5/2 is located at about 368 eV. This value is in good agreement with the
reported values for Ag2S. Then, the peak area of Ag elements with different immersion time
was calculated, as shown in Figure 5b. It is obvious that the Ag concentration increases with
the increasing immersion time. Meanwhile, according to the XPS spectrum, the Ag/Zn
ratio increasing from 0.08 to 0.22 indicates the same results. This result is consistent with
the SEM images shown in Figure 3. Figure 5c shows the S 2p region of the XPS spectrum
with the immersion time of 60 min. The black line represents the experimental data, and
the red dots correspond to the fitted curve. Four labelled fitting Gaussian peaks were used
to fit the experimental data. The binding energy of the S 2p3/2 peak located at 161.5 eV is in
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accordance with the binding energy of ZnS. The lowest energy peak of S 2p3/2 is located at
160.93 eV, which corresponds to Ag2S [44–47]. These results illustrate that Ag2S/ZnS/ZnO
nanocomposites were formed after immersion.
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To investigate the optical properties of Ag2S/ZnS/ZnO nanocomposites, UV-vis
absorption spectra from 350 to 600 nm were examined. For comparison, the spectrum of
pure ZnO nanorods was also measured, indicated by the black line. Figure 6 shows the UV-
vis absorption spectra of Ag2S/ZnS/ZnO nanocomposites with various immersion time,
revealing that the absorption edge of ZnO is extended to the visible region by decoration
with Ag2S because of its narrow bandgap of ~1.1 eV. When visible light is observable on
the nanocomposites, hole-electron pairs are generated in Ag2S, leading to the absorption in
visible light. With the increasing immersion time, more amounts of Ag2S are deposited,
thereby causing the increase in absorption in the visible light region.



Nanomaterials 2021, 11, 461 7 of 11

Nanomaterials 2021, 11, 461 7 of 11 
 

 

To investigate the optical properties of Ag2S/ZnS/ZnO nanocomposites, UV-vis ab-
sorption spectra from 350 to 600 nm were examined. For comparison, the spectrum of 
pure ZnO nanorods was also measured, indicated by the black line. Figure 6 shows the 
UV-vis absorption spectra of Ag2S/ZnS/ZnO nanocomposites with various immersion 
time, revealing that the absorption edge of ZnO is extended to the visible region by deco-
ration with Ag2S because of its narrow bandgap of ~1.1 eV. When visible light is observa-
ble on the nanocomposites, hole-electron pairs are generated in Ag2S, leading to the ab-
sorption in visible light. With the increasing immersion time, more amounts of Ag2S are 
deposited, thereby causing the increase in absorption in the visible light region. 

 
Figure 6. Absorption spectra of Ag2S/ZnS/ZnO nanocomposites with various immersion time. 

A photodetector was fabricated with In electrodes to investigate the optoelectrical 
properties of Ag2S/ZnS/ZnO nanocomposites. The I-V characteristics of photodetectors 
with various immersion time under 365 nm UV LED are shown in Figure 7a–d. It can be 
observed that photodetectors have a photoresponse under UV illumination. The reverse 
current is high and of the same order of magnitude as the direct current, demonstrating 
that photoconductive photodetectors were fabricated. At the same voltage, the photocur-
rent of photodetectors with various immersion time changes from 0.34 to 0.56 A under 
UV illumination. Meanwhile, the dark current of the photodetectors, which can be as-
cribed to oxygen vacancy in ZnO, is 0.22, 0.20, 0.21, and 0.22 A, respectively. Thus, the on–
off ratio of the photodetectors at a bias of 9 V is 1.53, 1.77, 1.94, and 2.47, respectively. 
Figure 7e shows the photocurrent of photodetectors with various immersion time under 
9 V bias. It is observed that the photocurrent increases with the increase in immersion 
time. This phenomenon can be attributed to the replacement of ZnS by Ag2S. The photore-
sponsivity of the photodetector with the immersion of 60 min is shown in Figure 7f. It can 
be observed that the photoresponsivity increases for the Ag2S/ZnS/ZnO nanocomposites 
when compared with pure ZnO photodetectors not only in UV regions but also in the 
visible wavelength region. In addition, the UV-to-visible rejection ratio was improved 
from 1.48 to 1.82. 

Figure 6. Absorption spectra of Ag2S/ZnS/ZnO nanocomposites with various immersion time.

A photodetector was fabricated with In electrodes to investigate the optoelectrical
properties of Ag2S/ZnS/ZnO nanocomposites. The I-V characteristics of photodetectors
with various immersion time under 365 nm UV LED are shown in Figure 7a–d. It can be
observed that photodetectors have a photoresponse under UV illumination. The reverse
current is high and of the same order of magnitude as the direct current, demonstrating that
photoconductive photodetectors were fabricated. At the same voltage, the photocurrent
of photodetectors with various immersion time changes from 0.34 to 0.56 A under UV
illumination. Meanwhile, the dark current of the photodetectors, which can be ascribed to
oxygen vacancy in ZnO, is 0.22, 0.20, 0.21, and 0.22 A, respectively. Thus, the on–off ratio
of the photodetectors at a bias of 9 V is 1.53, 1.77, 1.94, and 2.47, respectively. Figure 7e
shows the photocurrent of photodetectors with various immersion time under 9 V bias.
It is observed that the photocurrent increases with the increase in immersion time. This
phenomenon can be attributed to the replacement of ZnS by Ag2S. The photoresponsivity
of the photodetector with the immersion of 60 min is shown in Figure 7f. It can be
observed that the photoresponsivity increases for the Ag2S/ZnS/ZnO nanocomposites
when compared with pure ZnO photodetectors not only in UV regions but also in the
visible wavelength region. In addition, the UV-to-visible rejection ratio was improved from
1.48 to 1.82.

In order to explain the mechanism of photoresponse of Ag2S/ZnS/ZnO nanocom-
posites, the energy band schematic diagrams of different nanocomposites are shown in
Figure 8. Considering the fact that not all amounts of ZnS are replaced by Ag2S, there are
two types of energy bands in nanocomposites [48,49]. Figure 8a shows the energy band
schematic diagrams of ZnS/ZnO. Under the illumination of 365 nm UV light, electrons
are excited from the valence band to the conduction band of ZnO, resulting in an increase
in the photocurrent. Because of the different valence bands of ZnS and ZnO, the holes
in the valence band of ZnO can be transferred to the valence band of ZnS. This process
can promote the separation of photogenerated hole-electron pairs and suppress their re-
combination in ZnO. Meanwhile, because the photon energy of UV light is smaller than
the bandgap of ZnS, no electrons are excited to the conduction band in ZnS. Figure 8b
shows the energy band schematic diagrams of Ag2S/ZnS/ZnO nanocomposites. It can
be seen that the cascade structure represents the stepwise positions of band edges via the
redistribution of ZnS and Ag2S in order to align Fermi levels. This structure is suitable for
the injection of photogenerated electrons from Ag2S to ZnO and the transfer of holes from
ZnO to Ag2S, and it is advantageous for the separation and transmission of hole-electron
pairs. Generally, this structure can further increase the photocurrent compared with the
ZnS/ZnO structure because of the injection of electrons. With the increasing immersion
time, the first type is gradually replaced by the second type, which further increases the
photocurrent. These results are consistent with the I–V characteristics of Ag2S/ZnO/ZnO
nanocomposites with different immersion time.
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4. Conclusions

In summary, Ag2S/ZnS/ZnO nanocomposites were prepared on ITO substrates via
two-step facile successive ionic layer adsorption and reaction method with different immer-
sion time. SEM and TEM images illustrate that the ZnS and Ag2S were evenly deposited
on ZnO nanorods. The optical properties of Ag2S/ZnS/ZnO nanocomposites were investi-
gated by UV-vis absorption spectra, which show that the absorption of Ag2S/ZnS/ZnO
nanocomposites was extended to the visible light region due to the narrow bandgap of
Ag2S. Then MSM photodetectors were fabricated. The influence of ZnS and Ag2S on the
photocurrent of the photodetectors was investigated. The photocurrent increased with the
increasing immersion time of AgNO3 solutions due to the increasing electrons injected from
Ag2S into ZnO. The energy band schematic diagrams were used to explain the photore-
sponse of the photodetectors. The transfer of holes and the injection of electrons can both
enhance the photoresponse compared with pure ZnO. Compared to other similar systems,
the nanocomposites improved the photocurrent under UV illumination and demonstrate
potential applications in other fields [50–52].
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