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Abstract

This paper addresses the overlearning problem in the independent component analysis

(ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) rec-

ords. We note that for short EEG records with high number of channels the ICA fails to sepa-

rate artifact-free EEG and muscular artifacts, which has been previously attributed to the

phenomenon called overlearning. We address this problem by projecting an EEG record

into several subspaces with a lower dimension, and perform the ICA on each subspace sep-

arately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and

muscular artifacts are better separated. Once the muscular artifacts are removed, the sig-

nals in the individual subspaces are combined to provide an artifact free EEG record. We

show that for short signals and high number of EEG channels our approach outperforms the

currently available ICA based algorithms for muscular artifact removal. The proposed tech-

nique can efficiently suppress ICA overlearning for short signal segments of high density

EEG signals.

Introduction

During the measurement of head surface potentials with electroencephalography (EEG), weak

brain signals are often corrupted by various sources of interference. One of the most common

interference sources are potentials generated by muscles contracted by a measured subject.

These are so called muscular or electromyographic (EMG) artifacts. The EMG artifacts are

commonly occurring nuisance in many EEG records; therefore, good methods for their

removal are valuable tools for EEG processing.

In the past it was suggested to use the independent component analysis (ICA) for the EMG

artifact removal. Under suitable circumstances the ICA was demonstrated as a good approach

for this task, and its use was developed in many works [1–11].
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There are however limitations to what the ICA can achieve. If the signal length is not suffi-

cient with respect to the number of EEG channels, the ICA suffers from so called overlearning

[12–14], which prevents the separation and subsequent removal of EMG artifacts.

In the reminder of this section we introduce the problem of artifact removal with ICA more

formally, specify the problem of overlearning, and review the current state-of-the-art methods

in which this problem is addressed.

Let x[n] = [x1[n],. . .,xM[n]]T, n = 1, . . ., N denote EEG signals measured using M EEG

electrodes. We assume that these signals are created by a linear mixture of source signals

s[n] = [s1[n],. . .,sM0[n]]T

x½n� ¼ As½n�; ð1Þ

where A denotes an MxM0 mixing matrix. Note that we do not expect the number of sources

M0 to be less or equal to the number of signals M. This is a common assumption in the deriva-

tion of the ICA, but cannot be realistically expected in the addressed problem. We further

assume that the source signals sm[n] are either generated by a brain or by other interfering

sources (e.g. contracted muscles).

Our task is to remove the artifacts from the brain signals. As mentioned above, for this pur-

pose it is possible to use the ICA, which allows to estimate a separation matrix B that trans-

forms signals x[n] into source components ŝ½n� ¼ ½̂s1½n�; . . . ; ŝM½n��
T

that have their mutual

dependence minimized

ŝ½n� ¼ Bx½n�: ð2Þ

If the measured signals x[n] are sufficiently long, this approach was reported to achieve a fairly

good separation of brain signals and artifacts [2, 6]—this means that the most of the compo-

nents ŝm½n� contain either brain signals or artifacts, while the mutual intermixing of these sig-

nals is noticeably reduced. Thus, it is possible to either manually [10, 11], or automatically [11]

classify each ŝm½n� as either a brain signal or an artifact, and retain only the brain signals, which

we will denote as ~s½n� ¼ ½~s1½n�; . . . ;~sM½n��
T

~sm½n� ¼
ŝm½n�; if ŝm½n� is a brain signal;

0; if ŝm½n� is an artifact:

(

ð3Þ

With brain signal components ~s½n� we can try to reconstruct the measured signals without the

artifacts

~x½n� ¼ B� 1~s½n�; ð4Þ

where ~x½n� ¼ ½~x1½n�; . . . ; ~xM½n��
T

are the estimates of the measured signals with artifacts

suppressed.

The above-mentioned methodology was used before [6, 11, 15, 16] with a certain success;

however, it will work only if the measured signals are sufficiently long compared to the num-

ber of measured channels. This limitation is illustrated on the following two examples.

Example 1: We have used a 2s long record from 9 EEG electrodes located in the frontal

area. This record contains a clearly visible muscular artifact present in each of the 9 channels.

We applied the above-mentioned method to the data (the ICA was implemented using the

popular FastICA algorithm [17], Eq (14, 21, 24)]). Fig 1A shows the original signals x[n], Fig

1B shows the separated components ŝ½n�, and Fig 1C shows the reconstructed signals ~x½n�.
In this example the muscular artifacts were suppressed, and we have obtained a nice looking

reconstruction of the original EEG.
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Example 2: We have used another 2s long record, but this time we used a 111 electrode

array covering the frontal, parietal, temporal and occipital regions of subject’s head. As

in the previous example, the record contains a clearly visible muscular artifact. We again

applied the above-mentioned methodology; however, the outcome was less successful.

Fig 1. An example of muscular artifact suppression using the ICA. (A) The original EEG signals x[n] corrupted by

EMG artifacts. (B) The separated source components ŝ½n�, which were classified as brain signals (denoted as EEG) and

muscular artifacts (denoted as EMG). (C) The reconstructed EEG signals ~x½n� with suppressed muscular artifacts.

https://doi.org/10.1371/journal.pone.0201900.g001
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The original signals x[n] (shown in Fig 2A) were separated into source signals ŝ½n� (Fig 2B);

however, this time we obtained no clear separation between EEG and EMG. In fact, the

resulting waveforms resemble neither EEG nor EMG, and are merely composed of occasion-

ally repeated ‘bumps’.

Fig 2. An example of a failed attempt to separate muscular artifacts from 111 channel EEG record. (A) EEG

signals x[n] corrupted by EMG artifacts (for spatial reasons only 25 out of 111 EEG channels are shown). (B) The

source components ŝ½n� provided by ICA (again for spatial reasons only 25 out of 111 components are shown; the

remaining components look very similar to those that are presented—they are composed of occasional bumps, and no

clear separation of EEG and muscular artifacts can be recognized).

https://doi.org/10.1371/journal.pone.0201900.g002
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What we illustrated in Example 2 is a phenomenon known as overlearning [12–14]. The

overlearning occurs when the ICA algorithm has too many degrees of freedom, which allows it

to find components ŝ½n� that appear to be even more independent than if ŝ½n� contained sepa-

rated EEG and EMG signals.

There are several ways how to tackle the problem of overlearning.

First, we could use longer EEG records. This, however, is not desirable. While the above-

mentioned algorithm might sometimes be able to suppress muscular artifacts, it will inevita-

bly distort the reconstructed EEG. For example, by removing 4 of the 9 components ŝm½n� in
the Example 1 we have reduced the rank of the reconstructed data ~x½n� from the original 9 to

5 (note that the rank of an M dimensional signal x[n] with length N we understand the rank

of the matrix [xm[n]]m=1. . .M,n=1. . .N). Thus even though the result may be ‘nice looking’ some

loss of information in the reconstructed signals must have occurred. Therefore, we would

like to limit the application of muscular artifact removal and the corresponding rank reduc-

tion only to the time intervals, where the muscular artifacts have really occurred, avoiding

unnecessary distortion of the artifact free EEG. Better yet, the interval length should not

exceed the time during which the EMG artifact origin position (and the corresponding mix-

ing matrix A) is close to stationary. These time intervals can be fairly short, often less than a

few seconds [18].

Next, in the past there were several published works that suggested how to suppress

overlearning.

Works [12–14, 19] suggested that the proper choice of contrast functions in the ICA algo-

rithm can decrease the level of overlearning. However, the improvement provided is often not

sufficient to completely solve the problem. In our Example 2 we have used the FastICA algo-

rithm with robust approximation of negentropy as the contrast function (which was suggested

as the best choice in [12]); however, the overlearning is still distinctly present.

Works [13, 14] suggested to use the PCA to decrease the dimensionality of x[n] prior to the

ICA computation. When the dimension reduction is sufficient, this approach will undoubtedly

suppress overlearning; however, this will be at the cost of EEG distortion. The brain signals

may have smaller power than the EMG artifacts, thus the dimensionality reduction will inevi-

tably remove some energy from EEG, possibly removing useful information that may be

missing in a subsequent EEG analysis. Thus, the application of the PCA for the dimension

reduction is not always desirable, especially, if there is a way to avoid it.

Works [13, 14] also noted that the ‘bumps’ observable in the separated components pro-

duced by an overlearned ICA may have their energy predominantly at low frequencies, and

therefore suggested to high-pass filter the analyzed signals prior to the ICA application. It was

suggested to use either a 1Hz fixed cut-off frequency high-pass filter or an AR-process based

high pass filter. It was further claimed that this high-pass filtering lessens the overlearning. In

our experience this approach is not sufficient. In Example 2, the signals were already high pass

filtered with a 1Hz cut-off filter (to suppress the baseline wonder), but the overlearning has

still occurred. The ‘bumps’ in the separated components are simply faster (with duration of

about 50ms); therefore, their occurrence cannot be prevented by prior high pass filtering with-

out damaging useful brain signals.

Work [3], which concentrated on the suppression of ocular artifacts, suggested to use a PCA

based dimension reduction to extract 3 principal components with the highest power, separate

these components using the ICA, and then subtract the separated components from the original

signals using a linear regression. This method is peculiar in that it uses no artifact classification.

It assumes that the ocular artifacts will have the highest power, and thus will dominate the

strongest principal components. Due to a distinct dimension reduction by the PCA, this meth-

odology was claimed to be resilient to overlearning; however, we do not find it useful for other
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PLOS ONE | https://doi.org/10.1371/journal.pone.0201900 August 14, 2018 5 / 21

https://doi.org/10.1371/journal.pone.0201900


than ocular artifacts—not all EMG (or other) artifacts have power higher than brain signals,

and consequently they may not get included into a few strongest principal components. In fact,

with weaker artifacts, the strongest principal components may contain mostly brain signals, the

removal of which would lead to the corruption of artifact free EEG signals. Still, for the sake of

completeness, we include this method in our evaluation of the current state-of-the-art.

Last, there are some methods that try to alter the basic approach (2)–(4). The wavelet

enhanced ICA [7, 8] extends the brain signal selection by adding wavelet filtering. Surface

Laplacian [10] was also proposed to filter the EEG channels after the basic approach (2)–(4)

was applied. These techniques, however, have no effect on the overlearning, which already

occurs in the separation step (2). Another technique, the ensemble empirical mode decompo-

sition and subsequent ICA [20], first decomposes each of the measured signals x[n] into the

intrinsic mode functions, and then the ICA is applied. This does affect overlearning, but in a

negative way, because the number of signals separated by ICA increases, which makes the

effects of overlearning more severe.

All in all, in our opinion, none of the above-mentioned methods provides an efficient way

to suppress the ICA overlearning without problematic side effects. We have therefore devel-

oped our own approach to the ICA overlearning suppression, which seems to outperform the

above-mentioned methods, and provides better EEG reconstruction of short EEG records

with EMG artifacts.

Methods

In this section we will first describe the suggested algorithm, then point out some of its proper-

ties, and suggest how to choose its parameters.

Suggested algorithm

We propose to separate the M-dimensional signal x[n] into K subspaces with dimension L

X k½n� ¼ Pkx½n�; k ¼ 1; . . . ;K; ð5Þ

where Pk are LxM subspace projection matrices (we assume that their rank is L, and their choice

will be discussed in subsection Choice of subspaces), and X k½n� are L dimensional signals.

Next, we apply the ICA separately to each signal X k½n�

Ŝ k½n� ¼ BkX k½n�; ð6Þ

where Bk is a separation matrix estimated for X k½n� (note that this means that the ICA will be

computed K times for each X k½n� separately).

After, we classify Ŝ k½n� ¼ ½̂sk;1½n�; . . . ; ŝk;L½n��
T

as either brain signals or artifacts, and retain

only brain signals ~S k½n� ¼ ½~sk;1½n�; . . . ;~sk;L½n��
T

~sk;i½n� ¼
ŝk;i½n� if ŝk;i½n� is a brain signal;

0 if ŝk;i½n� is an artifact:

(

ð7Þ

This operation can be expressed in a matrix form as

~S k½n� ¼ QkŜ k½n�; ð8Þ

where Qk is a diagonal matrix with its diagonal comprised of zeros and ones, positioned so

that the signals ŝk;i½n� classified as artifacts are eliminated according to (7).
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Now, we reconstruct signals ~X k½n�, in which the muscular artifacts are suppressed

~X k½n� ¼ B� 1

k
~S k½n�: ð9Þ

The above-mentioned sequence of steps can be expressed as

~X k½n� ¼ B� 1

k QkBkPkx½n� ¼ CkPkx½n�; ð10Þ

where we denoted Ck ¼ B� 1

k QkBk.

Last, we combine the individual signals ~X k½n�, reconstructing the artifact free EEG. For this

purpose we denote

P ¼

P1

P2

..

.

PK

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; C ¼

C1 0 . . . 0

0 C2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . CK

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð11Þ

~X ½n� ¼

~X 1½n�
~X 2½n�

..

.

~X K ½n�

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð12Þ

Using notations (11) and (12), all the above-mentioned steps can be expressed as

~X ½n� ¼ CPx½n�: ð13Þ

To combine the elements of ~X ½n� into the reconstructed signals ~x½n�, we reverse the projection

into subspaces (matrix P) by employing the Moore-Penrose pseudoinverse of P

~x½n� ¼ Py ~X ½n�; where Py ¼ ðPTPÞ� 1PT : ð14Þ

Thus, the entire transformation that suppresses the artifacts can be expressed as

~x½n� ¼ PyCPx½n� ¼ Dx½n�; ð15Þ

where we denoted D ¼ PyCP.

Notes about properties of suggested algorithm

Since the dimension L of the subspaces is smaller than the dimension M of the original signals

x[n], the ICA that is used to find the separation matrices Bk may be less prone to overlearning.

In essence by choosing L sufficiently small, the problems that we illustrated in our Example 2

disappear, and the ICA behaves as in low dimensional case shown in Example 1.

If the subspace projection matrices Pk are chosen so that P has full rank, and if no artifacts

are found in the separated signals Ŝ k½n�, then ~S k½n� ¼ Ŝ k½n� (i.e. Qk are identity matrices), Ck

and C become identity matrices, and D becomes the identity matrix. Consequently, no distor-

tion is introduced into the processed signals. This is a great advantage over the PCA based

overlearning suppression approach, where the rank of measured signals is always reduced,

irrespective to the number of components that are being removed (i.e. the rank is reduced

Suppression of overlearning in ICA used for removal of EMG artifacts from EEG records
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even if no artifacts are being removed), which causes unavoidable distortion of the resulting

reconstructed signals.

If artifacts are detected in the source signal Ŝ k½n� the rank of ~S k½n� and C will be reduced.

The rank of D may then also be reduced; however, in the Results section we will show that the

newly proposed method causes dimensionality reduction much less severe than the one caused

by the PCA based overlearning suppression.

Choice of subspaces

Three points should be observed when choosing the subspaces defined by the projection

matrix P.

1. The dimension L should be small enough so that the overlearning does not pose a problem.

It should however remain big enough so that there is still a sufficient number of signals so

that the ICA can separate brain signals and artifacts.

2. The matrix P should be full rank (otherwise D would not be identity when no artifacts are

being removed, and unnecessary EEG distortion would occur).

3. The orientation of subspaces should be chosen so that the individual ICAs can achieve

good separation between brain signals and artifacts in separated signals Ŝ k½n� even with the

reduced dimension L of X k½n�.

To address point (i), in this paper we identify the optimal range of values L by applying the

algorithm to EEG data, and evaluating for which L we obtain the best reconstruction of brain

signals. In the following sections we will introduce a methodology for the evaluation of the

quality of brain signal reconstruction, and we will show that even for various EEG electrode

systems we can identify a fixed range of values of L where the algorithm always performs well.

The reader can then use the value of L suggested by our evaluation, and the optimization of L
does not need to be repeated.

Point (ii) can be achieved by construction of P—simply by choosing sufficient number of

sufficiently diverse subspaces, P can be full rank.

Point (iii) is somewhat more difficult to tackle. In this paper we would like to take a simple

approach that is based on our experience with processing of EEG data, and suggest a choice

that can be shown to produce good quality of reconstruction of brain signals. Specifically, we

have observed that when we use a high density EEG array (e.g. with 111 electrodes), but limit

ourselves to a small group of adjacent electrodes (e.g. 10-15 adjacent electrodes), the ICA usu-

ally provides a nice separation of brain signals and muscular artifacts. We have actually already

illustrated this situation in our Example 1 which shows signals from a subgroup of 9 adjacent

electrodes chosen from the 111 electrode array used in Example 2. In this paper we would

therefore suggest the following steps to choose the matrices Pk.

First, let us denote dij the Euclidean distance between i-th and j-th electrode. Next, we

define vectors

ℓk ¼ ½‘k;1; . . . ; ‘k;L�; ð16Þ

where ℓk,i, i = 1,. . ., L are indexes of L electrodes with the smallest distance d‘k;i;k
from the k-th

electrode (with k-th electrode included). Now, we define the vectors

pk;i ¼ ½pk;i;1; . . . ; pk;i;M�; pk;i;j ¼
1; if ‘k;i ¼ j;

0; otherwise;

(

ð17Þ
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and construct the projection matrices as

Pk ¼

pk;1

..

.

pk;L

2

6
6
6
4

3

7
7
7
5
; k ¼ 1; . . . ;M: ð18Þ

Thus, each projection matrix Pk will extract a subspace composed of L signals from a group of

L electrodes closest to the k-th electrode (k-th electrode included).

Before continuing we will make a few notes about the projection matrices Pk given by (18).

Note that each pk,i (i.e. each row of Pk) is composed of zeros and a single value of 1. Thus,

the columns of Pk are orthogonal, and consequently the columns of P are orthogonal as well.

Further, because k = 1,. . ., M, each column of P contains at least a single value of 1, and so has

a nonzero norm. Consequently, P is a full rank matrix, just as we have required in point (ii).

We do not claim that our choice of Pk is optimal, but we will illustrate and claim that it pro-

vides better results than all the above-mentioned state-of-the-art methods available today. Fur-

ther optimization of Pk may be possible, but it will not be addressed in this paper.

Last, some additional rationale for this choice of subspaces can be provided. The energy of

surface EEG is typically dominated by shallow brain sources and artifacts. The head surface

regions affected by these sources are typically somewhat spread due to the volume conduction;

however, the greatest surface potential changes are still somewhat localized to the proximity of

the origin of the source [21]. By choosing each subspace as the signals from a group of adjacent

electrodes, we try to minimize the number of sources that dominate the signals in a subspace

(at least as opposed to a subspace that would be composed of signals from nonadjacent elec-

trodes spread all around the subject’s head). Consequently, it becomes easier for the ICA to

separate brain signals and artifacts as was requested in point (iii).

ICA algorithm

To find the separation matrices Bk, we suggest to use the FastICA [17, Eq (14, 21, 24)] on data

that were pre-whitened by PCA [22]. This is a popular approach, with fast convergence and

previous successes in artifact separation [2, 3]. Note that the suggested methodology may work

with some other ICA algorithm, but testing the performance with other ICA algorithms is out

of the scope of this paper. It is also noteworthy that works [12–14] reported that the overlearn-

ing does not seem to be dependent on the choice of a specific ICA algorithm.

Artifact classification

To decide whether the separated components Ŝ k½n� are of a brain or a muscular origin, we

used a simple classifier that compares the power of a signal at lower and higher frequencies.

Compared to clean EEG, the EMG artifacts are known to have higher energy at higher fre-

quency bands [11, 18, 23], which allows their easy identification.

We first filtered each signal ŝk;i½n� into three frequency bands 3-30Hz, 60-90Hz and 110-

140Hz. Then, we estimated the average power of the signals in each of these bands as Pk,i,1,

Pk,i,2 and Pk,i,3, respectively. Next, we computed the minimum of power ratios

ak;i ¼ min ðPk;i;1=Pk;i;2; Pk;i;1=Pk;i;3Þ: ð19Þ

Last, the values of αk,i were compared with a chosen threshold T to determine whether ŝk;i½n� is
of a brain or a muscular origin.
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To determine the optimal value of the threshold T, we computed αk,i for 2992 separated

signals ŝk;i½n� that were manually classified as either brain signals or muscular artifacts. The

computed αk, i were then used to plot histograms shown in Fig 3, where a clear separation

can be seen between the values of αk, i for the individual classes. From Fig 3 we can read that

the optimal value of T is about 2.5. Thus, a signal ŝk;i½n� was classified as a muscular artifact if

αk,i < 2.5.

Evaluation of algorithm performance

To evaluate the properties of the suggested method, we may apply it to EEG records containing

EMG artifacts. This approach has however one serious drawback. While it is possible to

observe that the artifacts are suppressed, it is not possible to judge how well the brain signals

are reconstructed—with a common EEG record we have no way of knowing what exactly

should the EEG look like, when the artifacts are removed. Therefore, this method cannot be

objectively evaluated on real world EEG signals corrupted by EMG artifacts.

To circumvent this limitation while keeping the evaluation as realistic as possible, we have

devised a testing procedure that uses real world EEG and EMG records, but simulates their

Fig 3. A histogram of power ratios α for source components classified as EMG (white) and source components classified as brain signals

(black).

https://doi.org/10.1371/journal.pone.0201900.g003
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mixing using a realistic head model. Specifically, we used the following approach. We started

with artifact free EEG signals, henceforth denoted as xclean[n]. These signals were recorded

on 20 healthy subjects (10 male, 10 female) with age ranging from 19 to 37 years (25.4 ± 5.1

years). During the acquisition of EEG data, the participants were seated with their head sup-

ported by a headrest, and instructed to relax. From each subject we obtained a 10-minutes

long record with their eyes open and 2-minute long records with their eyes closed. These mea-

surements were approved by a local ethical committee and an informed consent in the written

form was obtained from all participants. The data from 111 electrode system with a reference

placed on a forehead were digitized with 16 bit resolution and sampled at the frequency of

1024Hz. The data were filtered by a notch filter removing any possible power noise interfer-

ence at 50Hz and higher harmonics, and by a high pass filter with 1Hz cut-off frequency to

suppress the baseline wonder. The channels showing poor electrode connection were visually

identified and rejected from further processing. After recording, the EEG was visually checked

for artifacts. Special attention was paid to the fringe electrodes that are typically most affected

by muscular activity. Only the parts of EEG records with no visually recognizable artifacts

were used for testing.

Once, the artifact free EEG signals xclean[n] were gathered, we added the muscular artifacts

obtained by a simulation on boundary element method (BEM) based realistic head model

with the same electrode arrangement as the one used for the EEG measurement. We used a

BEM model composed of 19440 elements arranged in 3 layers representing air-skin, skin-

skull and skull-brain boundaries. This model was previously used in [24, 25] (see Fig 1 in

[25]). In this simulation we placed 5 sources representing cervical muscles and 6 sources rep-

resenting mandibles into the head model. Temporal signals for these sources were obtained

independently for each source from separate surface EMG records measured by electrodes

placed on mandibles and across neck during jaws contraction and head movements. Using

this combination of EMG signals and realistic head modeling, we created EMG artifacts

that could be realistically observed in EEG electrodes. Once the EMG artifacts, henceforth

denoted as xartifact[n], were generated, they were added to the artifact-free EEG, creating a

mixture x[n] that was subsequently processed by the newly suggested and other state-of-the-

art algorithms

x½n� ¼ xclean½n� þ
ffiffiffi
Z
p
� xartifact½n�: ð20Þ

The constant η was chosen as

Z ¼

PN
n¼1
kxclean½n�k2

PN
n¼1
kxartifact½n�k2

x; ð21Þ

where k.k is the Euclidean vector norm, and the ξ sets the ratio between the energy of signals

xclean[n] and the energy of signals xartifact[n]. For testing we choose ξ = 0, ξ = 1 and ξ = 4 (the

first setting provides artifact free EEG, the second setting makes the energy equal, and the

last setting makes the artifact energy four times stronger).

Illustrations of signals x[n] obtained through this approach for ξ = 1 are in Figs 4 and 5. Fig

4 shows signals in temporal domain, and presents topographic maps of average power spectral

density (PSD) in various frequency bands. Fig 5 shows the PSDs of EEG with simulated EMG

contamination at five different scalp locations. PSDs in Fig 5 were estimated by averaging peri-

odograms computed from 700 segments, which were 1s long and were weighted by a Ham-

ming window.
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Fig 4. An example of EEG with the simulated EMG contamination. (A) 25 EEG channels with simulated EMG

contamination. (B) Topographic maps of average power spectral density in various frequency bands.

https://doi.org/10.1371/journal.pone.0201900.g004

Fig 5. Examples of PSDs of EEG with simulated EMG contamination at several scalp locations.

https://doi.org/10.1371/journal.pone.0201900.g005
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Once the reconstructed signals ~x½n� were obtained, the quality of their reconstruction was

evaluated using an average correlation coefficient

r ¼
1

M

XM

m¼1

PN
n¼1

~xm½n�xclean;m½n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1
~x2

m½n�
PN

n¼1
x2

clean;m½n�
q : ð22Þ

Because the values of r are random numbers, the comparison between the values of r
obtained for various methods necessitates the use of statistical testing. We therefore obtained

signals x[n] 35000 times, applied the above-mentioned methods to each of these trials, aver-

aged the resulting values of r obtained for each trial into one mean value �r , and computed their

standard deviation σ. These values were then compared with the one way ANOVA and the

post-hoc Scheffe test.

The evaluation described above was used for two purposes. First, we examined the perfor-

mance of the newly suggested method for various values of L and three different electrode sys-

tems (111 electrode system, 10-10 electrode system and 10-20 electrode system). The results

were used to identify the values of L, for which the newly suggested method provides the

best results. Second, we examined and compared the performance of all the above mentioned

methods (the newly proposed method and the state-of-the-art methods)—for each method we

computed the value of �r , and used these values to compare how well the individual methods

remove EMG artifacts.

The evaluation is performed for EEG records that are 1s long (in practice a longer EEG

record would be segmented to these shorter segments, and each segment would then be

processed separately by an artifact removing algorithm). We find this segment length suffi-

cient for the artifact removal, but short enough to accommodate the nonstationarity of

EMG artifacts.

Last, to further test whether the proposed algorithm does not corrupt useful information in

EEG data, we followed approach from [11], and checked whether our algorithm does not impair

the detection of changes in alpha activity occurring when the measured subjects open or close

their eyes. For this purpose, we used two minute long EEG records measured with subjects’ eyes

closed, and two minute long EEG records measured with subjects’ eyes open. We used only rec-

ords from the subjects that manifested distinct augmentation of alpha activity when their eyes

were closed (based on visual inspection of signals in the time domain). This was the case in 13

out of 20 participants. The measured signals were processed by the proposed method using seg-

mentation into 1 second long segments. To examine the effect of our method, we estimated

PSDs before and after its application. The PSDs were computed for each subject using signals

from an electrode that would correspond to the electrode OZ of the 10-10 electrode system. The

PSDs estimation procedure was based on Welch’s method with segmentation into 1s long seg-

ments with 75% overlap and weighting with the Hamming window. Last, the individual PSDs

were averaged over subjects providing the average PSDs presented in section Results.

Results

The Fig 6 shows the values of �r computed with different subspace dimensions L for various

electrode systems (ξ was chosen as 4). Note that for all electrode systems the best performance

is achieved with L within interval 10-20. For further computations we chose value L = 12, and

we suggest to use this value with future applications of our algorithm (the optimization of L
does not need to be repeated).

We have also performed this optimization for the signal length of 2s and 4s, and found very

similar results: the best performance was achievable for L within interval 10-20.
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Tables 1, 2 and 3 show the values of �r and σ obtained for the suggested algorithm (with

L = 12) and other state-of-the-art algorithms. The last column indicates whether a statistically

significant difference (SSD) was found between the sets of values r for respective method and

the newly proposed method. These results were obtained for a reference electrode placed on a

forehead. We also computed these values with a common average reference and also with data

Fig 6. Mean correlation coefficients �r between the original clean EEG signals and EEG signals with suppressed muscular

artifacts as a function of subspace dimension L for 111, 10/10 and 10/20 electrode systems.

https://doi.org/10.1371/journal.pone.0201900.g006

Table 1. The correlation coefficients from the processing of EEG signals without muscular artifacts (ξ = 0).

Method �r σ SSD

None 1.0000 0.0000 no

C, 50 PCs 0.8901 0.0536 yes

C, 25 PCs 0.9209 0.0654 yes

C, 12 PCs 0.9689� 0.0465 no

D, 7 PCs 0.2295 0.0857 yes

D, 3 PCs 0.3502 0.0852 yes

D, 2 PCs 0.4053� 0.0891 yes

A 0.8495 0.0483 yes

Ba 0.8601 0.0542 yes

Bb 0.8805 0.0484 yes

Proposed method 0.9831 0.0236 -

Symbol � denotes the best achieved performance in the case of methods C and D.

https://doi.org/10.1371/journal.pone.0201900.t001
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re-referenced to several randomly picked electrodes and always achieved virtually identical

results.

The individual state-of-the-art methods are distinguished by the following letters:

A. . ..a plain FastICA [17, Eq (14, 21, 24)] used on data that were pre-whitened by PCA [22]

with no overlearning suppression,

Ba. . .the high pass filtering method, using a fixed high pass filter with 1Hz cut off frequency

[13, 14],

Bb. . .the high pass filtering method, using the AR model based high pass filtering [13, 14],

C. . ..the PCA based method [13, 14],

D. . ..the combination of the PCA and linear regression [3].

To present the best performance for the state-of-the-art methods we show the results for

methods C and D with different numbers of principal components and the best performing

Table 2. The correlation coefficients from the processing of signals with equally strong muscular artifacts and

EEG (ξ = 1).

Method �r σ SSD

None 0.8738 0.0513 yes

C, 50 PCs 0.8182 0.0548 yes

C, 25 PCs 0.8253 0.0627 yes

C, 12 PCs 0.8803� 0.0536 yes

D, 7 PCs 0.2169 0.0691 yes

D, 3 PCs 0.3309 0.0832 yes

D, 2 PCs 0.3976� 0.1040 yes

A 0.7972 0.0569 yes

Ba 0.7909 0.0657 yes

Bb 0.8639 0.0328 yes

Proposed method 0.9536 0.0381 -

Symbol � denotes the best achieved performance in the case of methods C and D.

https://doi.org/10.1371/journal.pone.0201900.t002

Table 3. The correlation coefficients from the processing of signals with muscular artifacts four times stronger

than EEG (ξ = 4).

Method �r σ SSD

None 0.5631 0.0834 yes

C, 50 PCs 0.5408 0.0951 yes

C, 25 PCs 0.5684 0.1201 yes

C, 12 PCs 0.7061� 0.1057 yes

D, 7 PCs 0.2390 0.0912 yes

D, 3 PCs 0.3831 0.1109 yes

D, 2 PCs 0.4049� 0.0734 yes

A 0.5251 0.0641 yes

Ba 0.5237 0.0561 yes

Bb 0.5879 0.0328 yes

Proposed method 0.8053 0.0694 -

Symbol � denotes the best achieved performance in the case of methods C and D.

https://doi.org/10.1371/journal.pone.0201900.t003
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number of principal component (this number was found by the evaluation of all possible num-

bers of principal components, and cannot be realistically achieved in practice, where we have

no way of knowing which result provides the highest �r).

To assess the dimensionality reduction caused by the newly proposed method, for each D
we computed how many strongest singular values comprise 99% of the energy of all singular

values. On average, we found this to be 78 for ξ = 0, 67 for ξ = 1 and 54 for ξ = 4. Note that

these numbers are much higher than the number of PCs retained in the application of method

C (Tables 1, 2 and 3). Therefore, our approach causes much lower dimensionality reduction,

and consequently smaller corruption of clean EEG data.

In addition to the quantitative analysis provided above, we also present some illustrative

results achieved when our method was applied to real EEG signals.

In Fig 7 we show the results obtained when the proposed method was applied to the real

EEG signals with EMG artifacts shown in Fig 2A (the signal was split to 1s long segments

and our method was applied separately in each of these segments). Fig 7 shows that the EMG

artifacts were nicely removed, while the effects of overlearning (shown in Fig 2B) were not

observed in any of the estimated source subsets Ŝ k½n� during the processing. In addition, Fig 8

shows the topographical power distribution of these signals before and after the application of

our method. In Fig 9 we also show the PSDs computed for five different positions on the scalp

(these PSDs were computed using Welch’s method with 0.5s long segments overlapped by

75% and weighted by the Hamming window). Note the decrease of power in fringe electrodes,

which is associated with the removal of muscular artifacts. These results are similar to those

previously presented in [11].

Fig 7. An example of EEG signals processed by the newly proposed method. The original signals are shown in Fig

2A. The EEG contains 111 channels, but for spatial reasons we show only 25 channels that correspond to the ones

shown in Fig 2A.

https://doi.org/10.1371/journal.pone.0201900.g007
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Overall, the results shown in Figs 7, 8 and 9 show nice suppression of EMG artifacts without

any noticeable effects of overlearning. However, as stated above, this kind of application can-

not be used to quantitatively evaluate the quality of EEG reconstruction; therefore, we include

it for illustrative purposes only.

Last, Fig 10 illustrates the changes in the alpha band power in EEG measured on subjects

with eyes open and closed. The average PSDs clearly indicate the increase of alpha band power

when subjects’ eyes were closed. More importantly, Fig 10 also shows that this change does not

seem to be impaired by the application of our method.

Discussion

The results show that the newly proposed method outperforms all the presented state-of-the-

art methods.

Fig 8. Topographic maps of the average power spectral density in various frequency bands before and after

processing by the proposed algorithm.

https://doi.org/10.1371/journal.pone.0201900.g008

Fig 9. Power spectral densities at several scalp locations before and after processing by the proposed algorithm.

https://doi.org/10.1371/journal.pone.0201900.g009
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The presented results also confirm the weaknesses of the individual state-of-the-art meth-

ods pointed out in our introduction. The PCA based dimensionality reduction (method C)

distorts the EEG even if no artifacts are being removed. This can be seen as decrease of �r for

clean EEG (ξ = 0). The high pass filtering methods (methods Ba and Bb) show consistently

poor performance for all setups, because with their use the overlearning is not suppressed.

Method D performs poorly for artifact free EEG (ξ = 0), where the strongest principal compo-

nents are composed of brain signals only, and are incorrectly removed from the original EEG.

For the stronger artifacts the performance improves; however, it is never as good as for the

newly proposed method.

Further, we would like to discuss some additional points related to our method.

In this paper we concentrate primarily on EMG artifacts caused by transient muscular con-

tractions (henceforth, transient EMG artifacts). Besides these artifacts, EEG can also be con-

taminated by EMG artifacts caused by tonic muscular contraction (henceforth, tonic EMG

artifacts). The tonic EMG artifacts can be quite weak, even difficult to recognize upon visual

inspection, and of little concern in some applications (e.g. see a small effect of tonic EMG arti-

facts on evoked response potentials in [11]).

We of course expect that our method will suppress even the tonic artifacts to some extent—

compared to transient EMG artifacts they are just weaker and more stationary. Therefore, as

long as the ICA is able to separate them, they will be identified and removed from the EEG. In

fact, the decrease of power on higher frequencies shown in Fig 10 can likely be attributed to

the suppression of tonic EMG artifacts, and this suppression is similar to the results presented

in [11].

However, in principle, a stationary interfering source will be better removed using a longer

EEG record. Therefore, if a researcher faces a situation where any residual tonic EMG artifacts

remaining after the application of our method are still concerning, the application of our

Fig 10. Average PSDs showing changes in alpha power band for eyes open and closed. (A) Average PSDs for resting EEG measured with

closed eyes. (B) Average PSDs for resting EEG measured with open eyes. The black lines are PSDs computed from the unprocessed data, while

the red ones are PSDs computed from the data processed by the proposed algorithm.

https://doi.org/10.1371/journal.pone.0201900.g010
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method can be followed by the application of a ‘classical’ EMG removal procedure (e.g. [11])

that operates on longer EEG records. In this arrangement our method would be better suited

to deal with transient EMG artifacts, and the ‘classical’ EMG removal procedure would be bet-

ter suited to remove any residual tonic EMG artifacts. In applications where the presence of

residual tonic EMG artifacts is not concerning, the application of our method alone would be

sufficient.

In relation to tonic EMG artifacts, one could additionally point out that the EEG records

xclean[n] may not be completely devoid of EMG artifacts, because the tonic EMG artifacts are

always present, unless the measurement is performed in paralysis [11, 23]. However, we would

argue that while their presence cannot be excluded, visually unrecognizable tonic EMG arti-

facts have total power much smaller than the total power of EEG, and therefore the effect of

these tonic EMG artifacts on the average correlation coefficients �r will be negligible, especially

when we work with transient EMG artifacts with energy equal or greater than the energy of

EEG.

Another point that we would like to address is related to our EMG classifier. Note that

the classifier described in section Artifact classification is not the only possible approach.

For example, work [11] suggested a classifier based on the slope of a power spectrum. In

fact, we have also retested our method with the classifier from [11] and obtained virtually

identical results. The reader should note that the classifier itself is not an unalterable part of

the proposed method, and if necessary a researcher can adjust it to suit application-specific

needs.

Further, in the motivation and evaluation of our method, we have limited ourselves to the

removal of EMG artifacts, while making few comments about other types of artifacts. This was

mostly dictated by a need to fit our presentation into a single paper, and it does not mean that

the presented method cannot be generalized for other type of artifacts. In fact, as long as the

ICA is able to extract the artifacts into separate components (which was already demonstrated

for many different types of artifacts [3, 4, 16]), and we are able to classify these components

respectively, the algorithm will allow to remove these components without the manifestation

of overlearning.

In this paper we limit ourselves to EMG artifacts only, but because EMG artifacts are an

omnipresent nuisance in a great number of EEG records, to have an algorithm that removes

these artifacts alone, is, in our opinion, a quite useful contribution.

Regarding the future work, there are also other blind source separation algorithms that

might be used for the suppression of EMG artifacts (e.g. SOBI [26], SSA [27], CCA [28]). It

may be interesting to explore their overlearning properties, and compare their performance

with the ICA based ones. However, before doing so we find it important to first improve the

ICA based algorithm, as we attempt to do in this paper.

Conclusion

This paper presents an ICA based algorithm for the removal of muscular artifacts that is not

prone to overlearning for short signals. This allows its application to short signal segments,

which makes it better suited for the removal of artifacts that are distinctly non-stationary and

appear, disappear or change their origin within a time frame of a few seconds or less. Thus, the

algorithm can remove the artifacts present only in short segments to which it is applied. If the

artifacts are not detected, the original EEG is not distorted. If the composition of artifacts is

changed, the algorithm can react quickly.

We show that the proposed algorithm outperforms all the current state-of-the-art approaches,

and provides the best reconstruction of the original EEG.
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The algorithm was presented for the purpose of muscular artifact removal; however, we

note that it can be easily extended for the removal of other types of artifacts.

Because the muscular artifacts are a recurring problem in a great number of EEG records,

we believe that the presented algorithm will provide a useful and efficient tool for their removal.
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13. Särelä J, Vigário R. The problem of overlearning in high-order ICA approaches: analysis and solutions.

In: International Work-Conference on Artificial Neural Networks. Springer; 2001. p. 818–825.
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