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Abstract
The little brown bat (Myotis lucifugus) is one of the most widespread bat species in North

America and is experiencing severe population declines because of an emerging fungal dis-

ease, white-nose syndrome (WNS). To manage and conserve this species effectively it is

important to understand patterns of gene flow and population connectivity to identify possi-

ble barriers to disease transmission. However, little is known about the population genetic

structure of little brown bats, and to date, no studies have investigated population structure

across their entire range. We examined mitochondrial DNA and nuclear microsatellites in

637 little brown bats (including all currently recognized subspecific lineages) from 29 loca-

tions across North America, to assess levels of genetic variation and population differentia-

tion across the range of the species, including areas affected by WNS and those currently

unaffected. We identified considerable spatial variation in patterns of female dispersal and

significant genetic variation between populations in eastern versus western portions of the

range. Overall levels of nuclear genetic differentiation were low, and there is no evidence for

any major barriers to gene flow across their range. However, patterns of mtDNA differentia-

tion are highly variable, with highΦST values between most sample pairs (including

between all western samples, between western and eastern samples, and between some

eastern samples), while low mitochondrial differentiation was observed within two groups of

samples found in central and eastern regions of North America. Furthermore, the Alaskan

population was highly differentiated from all others, and western populations were charac-

terized by isolation by distance while eastern populations were not. These data raise the

possibility that the current patterns of spread of WNS observed in eastern North America

may not apply to the entire range and that there may be broad-scale spatial variation in the

risk of WNS transmission and occurrence if the disease continues to spread west.
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Introduction
Understanding how host movement patterns influence the transmission of pathogens is critical
to the development of effective prevention and control strategies, and to the conservation and
management of host populations during and after disease outbreaks. However, for many host
species, data on individual movements and contact rates are difficult or impossible to collect
because of cryptic behavior, the geographic scale of movements, or methodological consider-
ations that limit our ability to follow individuals through time and space. Evidence from empir-
ical studies employing population and landscape genetic approaches has demonstrated that
landscape features, such as mountains and rivers that limit host gene flow, often represent bar-
riers to disease transmission [1–6], although alternative mechanisms of pathogen dispersal,
including humans and other highly mobile intermediate hosts, may override the influence of
primary host population genetic structure [1]. Nevertheless, where they exist, such barriers to
host gene flow can have a dramatic impact on initial disease establishment, the rate and direc-
tion of disease spread, spatial patterns of host resistance, and dynamics and genetic structure of
pathogen populations [1–6]. Assuming that rates of contact among individuals leading to gene
flow are indicative of contacts that could result in disease transmission, genetic methods pro-
vide a useful alternative to traditional demographic approaches as a means of examining host
movements and their impact on disease transmission [1].

White-nose syndrome (WNS) is an emerging fungal disease causing high levels of mortality
in hibernating North American bats [7–9]. The causative agent, Pseudogymnoascus destructans
(hereafter Pd), is a cold-loving fungus that affects bats during hibernation and subsequent
arousal. Pd causes characteristic cup-like erosions of the epidermis of the wings and muzzle,
and may invade sebaceous glands and hair follicles [10]. Mortality of bats likely occurs through
the loss of physiological homeostasis [11], possibly associated with dehydration and electrolyte
depletion [12,13], leading to more frequent arousal behavior and premature loss of fat reserves
[14,15]. Since it was first discovered in New York State during the winter of 2006–07, WNS has
since spread to 27 additional states and five Canadian provinces, and is known to affect at least
seven species of hibernating bats [16]. Mortality rates vary considerably among species but can
be very high (>90% for little brown bats,Myotis lucifugus, and northern long-eared bats,M.
septentrionalis [9]), and cumulative mortality of all affected bat species has been estimated at
5.7 to 6.7 million individuals as of January 2012 [17]. The rapid emergence, and the geographic
and taxonomic spread of the disease have raised serious concerns about the long-term survival
of hibernating bat species in eastern North America, and have highlighted our lack of knowl-
edge of the factors that may influence WNS transmission and spread to currently unaffected
regions.

Little brown bats were among the first species to be diagnosed with WNS [7], and popula-
tion models indicate that if mortality rates stay constant, this species could be extirpated from
the northeastern United States within 16 years [18]. Hibernating populations of all sizes have
been affected by WNS, but the probability of infection increases with increasing colony size
[19,20], although mortality within populations is density-independent and characterized by
frequency-dependent transmission [21]. Thus, there is a high probability that little brown bat
populations in currently affected regions will be highly reduced and possibly be extirpated in
coming decades. Additionally, WNS may pose a threat to the entire species if the disease con-
tinues to spread across the species’ range. Further, because little brown bats are one of two
affected bat species whose geographic ranges span temperate North America, they may drive
transmission of Pd to a novel suite of western North American hibernating bat species that
might otherwise remain geographically isolated from the disease. Therefore, it is crucial that
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we understand the probability of Pd transmission across the range of little brown bats, and
whether there are barriers to gene flow that could restrict the geographic spread of WNS.

Here we apply genetic approaches to understand levels of gene flow and population connec-
tivity in the little brown bat. This small (6–10 g) insectivorous bat species is among the most
widespread (Fig 1) and well-studied in North America [22,23]. During the summer, reproduc-
tive females form maternity colonies in buildings, trees, or crevices where parturition and post-
natal care take place, while males and non-reproductive females typically roost solitarily [22].
In winter, both sexes congregate in hibernacula, and mating takes place during the pre-hiber-
nation swarming period, or during hibernation itself [24,25]. The size of hibernating popula-
tions may vary considerably, on the order of 10’s to 100,000’s, but most of the larger known
hibernacula occur in karst regions of eastern North America, and very little is known about the
distribution or size of hibernacula in western North America. Because individuals from many
breeding groups come together at swarming or hibernation sites with males that may or may
not have originated from the same breeding group [26,27], these sites have been suggested to
represent ‘hot spots’ of gene flow for temperate bats [28–30]. Thus, patterns of gene flow will
represent the interplay of movements of individuals between summer and/or winter popula-
tions, and levels and spatial patterns of connectivity among summer and winter populations
that determine the composition of mating aggregations.

There are currently five recognized subspecies of little brown bats (M. l. alascensis,M. l. car-
issima,M. l. lucifugus,M. l. pernox, andM. l. relictus [22,31]; see Fig 1) based on morphology,
but the extent to which these subspecies diverge genetically is unclear. Coalescent analyses of
nuclear DNA (nucDNA) and mitochondrial DNA (mtDNA) suggest that some subspecies may
represent independent evolutionary lineages, but thatM. lucifugusmay be paraphyletic with
respect to the western long-eared bat,M. evotis [32]. In addition, two distinct mtDNA lineages
(corresponding toM. l. carissima andM. l. lucifugus) co-occur in southern Alberta and north-
central Montana, but these two groups of bats are not differentiated based on nuclear microsat-
ellite DNA or morphology, suggesting that the subspecies in question may interbreed and
exchange genes [33]. A single mitochondrial lineage corresponding toM. l. lucifugus was
observed in the Minnesota populations, and there was a strong signal of population expansion
dating to 18 kya [34]. Environmental niche modeling based on conditions during the Last Gla-
cial Maximum (LGM) indicated the presence of a single large refugium extending across the
southeastern and south-central United States, and more fragmented refugia in the southern
portion of the mountainous western United States [34], suggesting a possible mechanism for
lineage differentiation within this species where separation into disjunct glacial refugia was fol-
lowed by subsequent post-glacial range expansion and secondary contact.

Few studies have examined genetic variation in little brown bats, and there has been no
comprehensive range-wide population genetic analysis of this species. Fine-scale genetic stud-
ies in Minnesota described high levels of mtDNA structure and weak but significant nucDNA
structure among maternity colonies [35], a pattern consistent with many other temperate bat
species characterized by female philopatry to summer breeding habitat and extensive gene flow
via mating at swarming sites during the autumn [36–41]. In southestern Canada, high levels of
genetic connectivity were identified among swarming sites, however minimal structuring at
both mtDNA and nucDNAmarkers suggested dispersal may occur in both sexes, although it
may be male-biased [42]. In Pennsylvania, no significant nuclear structure was identified
among hibernating populations, but these populations were structured matrilineally. This
mtDNA structure was correlated with local topography, which may have delayed the spread of
WNS to western parts of the state [6].

The rapid spread of WNS through eastern North American populations of little brown bats
(and other affected species) suggests that few barriers to transmission exist within the current
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Fig 1. Map of Canada and the United States showing the distribution of describedMyotis lucifugus
subspecies (modified from [17]) and sampling locations. a) shows sampling locations with pie charts
indicating frequencies of mtDNA subspecific clades (subspecific designations are indicated in the legend and
colors follow those used in Fig 2) in each population, while b) shows groupings of populations (orange and
blue dots) within which pairwiseΦST values based on mtDNA haplotype frequencies were low versus
populations that were significantly differentiated from all other populations (purple dots; high pairwiseΦST

values with all other sampled populations). One sampled population in Michigan (shown with a black dot in a)
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range of the disease. Here we utilize mtDNA sequence and nucDNAmicrosatellite variation
from a large sample of little brown bats collected across the range of the species to address the
following objectives: 1) assess levels of genetic variation in little brown bat populations, includ-
ing areas affected by WNS and those currently unaffected; 2) quantify genetic differentiation
among populations sampled across the range of the species, including populations in eastern
North America within the current range of WNS, as well as additional populations situated
both east and west of the transition between the Great Plains and Rocky Mountains; and 3)
assess the current geographic distribution of and levels of genetic differentiation among cur-
rently-recognized subspecific lineages.

There are few physiographic barriers that would limit movement of highly vagile organisms
east of the Rocky Mountains. Phylogeographic studies of widespread bats and birds in North

was not included in mtDNA analyses. Population abbreviations are detailed in Table 1, and colors in pie
charts in a) correspond to clades shown in Fig 2. Data sources for the map include: nationalatlas.gov,
iucnredlist.org, and ESRI Data & Maps 2006 through ArcGIS (S1 File).

doi:10.1371/journal.pone.0128713.g001

Fig 2. Phylogenetic tree showing relationships between NearcticMyotis (sensu [58]), and the presence of three distinct clades withinM. lucifugus,
based onmaximum likelihood analysis of partial COI sequences in PhyML 3.0. Amember of the NeotropicalMyotis clade (M. austroriparius) was
included as the outgroup. Leaves are collapsed to highlight well-supported clades, and the vertical dimension of the triangles is proportional to the number of
samples included. SH-like branch support values are provided for all major clades. Clades containingM. lucifugus are designated by the specific
abbreviation followed by the subspecies name (e.g.,M. l. lucifugus refers to the nominal subspecies). Note that one clade (includingM. l. carissima) also
contains members of other species (includingM. evotis,M. keenii, andM. thysanodes) as previously described [32].

doi:10.1371/journal.pone.0128713.g002
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America typically report little differentiation among populations within eastern and central
portions of North America, significant differentiation among eastern and western populations,
and higher levels of differentiation among populations within the mountainous west [41,43–
46]. We predict that the Rocky Mountains will represent a barrier to gene flow, and that we
will therefore observe genetic differentiation between sample sites east versus west of the Great
Plains-Rocky Mountains transition. Further, because of higher topographic variability, we pre-
dict higher levels of genetic differentiation among sample sites in the mountainous west than
in eastern North America. If subspecific lineages represent reproductively-isolated units that
arose during the LGM, then we predict that patterns of differentiation at both nucDNA and
mtDNAmarkers will match the described geographic distribution of subspecies. Our study
provides valuable data on population connectivity and hence opportunities for WNS transmis-
sion across the range of little brown bats that may be used to inform the management and con-
servation of affected species.

Methods

Sample collection
Tissue samples were obtained during the summer (between May and August) from 637 indi-
viduals at 29 locations across the range of little brown bats (Table 1, S1 Table, and Fig 1). Two
3 mm biopsy punches, one from each wing, were taken from each bat and stored in 5 M NaCl
with 20% DMSO [47]. The bats were released after sampling. The majority of population sam-
ples were collected at maternity colonies (N = 16) or single or several closely-spaced (<10 km)
netting sites (N = 12). However, the Idaho sample constituted bats collected in 8 different
counties in the southeastern portion of the state. When samples came from more than one cap-
ture location, centroids were calculated and used as approximate sample locations.

Ethics statement
One author (MJV) collected samples for this study from one population in Michigan. The sam-
ples were collected under permission granted by the State of Michigan Department of Natural
Resources (Permit SC 1257), and the methods were approved by the Western Michigan Uni-
versity Institutional Animal Care and Use Committee Protocol Number 08-05-03. All other
samples were collected by university and government researchers performing other research
who were required to have appropriate permits and other necessary permission to undertake
their work.

Mitochondrial DNA sequencing and analysis
Total genomic DNA was isolated using DNeasy Tissue Kits (Qiagen, Valencia CA). We ampli-
fied and sequenced a 636 bp fragment of the mitochondrial cytochrome c oxidase subunit I
(COI) gene using primers HCO2198 and LCO1490 [48] or primers VF1 and VR1 [49]. Bats
from all sample sites except Michigan were sequenced, for a total of 617 individuals. PCRs
were conducted in 25 μl volumes containing 0.4 μM of each primer and 20–50 ng of DNA tem-
plate, using Illustra PuReTaq Ready-To-Go PCR beads (GE Healthcare Life Sciences, Pitts-
burgh PA). When reconstituted to 25 μl with water, these beads contained 2.5 units PuReTaq
DNA polymerase, 200 μM each dNTP in 10 mM Tris-HCl (pH 9), 50 mM KCl, 1.5 mM
MgCl2, and an unspecified concentration of bovine serum albumin (BSA). No other additives
were added to the solution. Cycling conditions consisted of one cycle of 5 min at 94°C, 30
cycles of 30 sec at 94°C, 45 sec at 68°C and 1 min at 72°C, and a final cycle of 2 min at 72°C.
PCR products were purified by digestion with exonuclease I and shrimp alkaline phosphatase
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Table 1. Sampled little brown bat populations and diversity statistics for mitochondrial COI sequences (NSEQ, number of individuals sequenced;
NHAP, number of haplotypes;NHAP-UN, number of haplotypes unique to a site; h, haplotype diversity; π, nucleotide diversity), andmicrosatellite
genotypes (NGEN, number of individuals genotyped; HO, observed heterozygosity;HE, expected heterozygosity;NA, mean number of alleles per
locus; AR, allelic richness; AR-P, private allelic richness; FIS, inbreeding coefficient).

Province or
State

County Abbrev. WNS-Status NSEQ NHAP NHAP-UN h π NGEN HO HE NA AR AR-P FIS

Alaska Kenai
Peninsula

AK Neg 18 5 5 0.65 0.0017 18 0.864 0.814 8.0 7.67 0.01 -0.061

California Mariposa CA-Ma Neg 10 2 1 0.20 0.0016 0

California Mono CA-Mo Neg 15 2 1 0.48 0.0008 0

California Siskiyou CA-Si Neg 20 7 6 0.84 0.0026 20 0.922 0.920 13.2 12.20 0.12 -0.003

California Shasta CA-Sh Neg 11 2 1 0.18 0.0014 0

Washington Skagit WA Neg 17 8 6 0.64 0.0175 17 0.869 0.915 12.2 11.80 0.17 0.050

British
Columbia-
South

BC-S Neg 30 7 6 0.61 0.0157 30 0.889 0.903 14.6 11.80 0.12 0.015

Idaho Multiple ID Neg 26 6 4 0.52 0.0038 23 0.860 0.904 13.6 11.89 0.26 0.049

Wyoming Carbon WY Neg 30 9 7 0.79 0.0148 30 0.870 0.904 15.0 12.09 0.02 0.037

Alberta-
South

AB-S Neg 28 9 6 0.66 0.0103 29 0.920 0.918 16.1 12.92 0.12 -0.002

Alberta-
North

AB-N Neg 28 9 5 0.79 0.0045 29 0.900 0.916 15.9 12.76 0.26 0.017

British
Columbia-
North

BC-N Neg 15 8 5 0.70 0.0040 15 0.919 0.915 13.3 13.33 0.14 -0.003

Manitoba MB Neg 11 4 1 0.75 0.0044 0

Ontario ON-1 Neg 15 7 7 0.89 0.0066 0

Minnesota St Louis MN Neg 20 7 3 0.73 0.0046 20 0.917 0.894 13.8 12.29 0.29 -0.025

Wisconsin Marquette WI-Ma Neg 20 9 4 0.87 0.0057 20 0.889 0.895 13.6 12.04 0.39 0.007

Wisconsin Sauk WI-Sa Neg 20 7 2 0.80 0.0045 16 0.868 0.905 12.0 11.70 0.43 0.041

Michigan Cass MI Neg 0 20 0.828 0.881 13.0 11.64 0.65 0.061

Kentucky Rowan KY Pos 29 13 11 0.84 0.0043 33 0.886 0.900 15.7 12.19 0.33 0.016

Ohio Fairfield OH Pos 31 11 5 0.88 0.0059 30 0.863 0.881 14.3 11.27 0.26 0.021

Tennessee Blount TN Pos 32 4 1 0.46 0.0008 30 0.852 0.905 14.8 11.91 0.23 0.059

West
Virginia

Raleigh WV Pos 20 7 3 0.74 0.0033 0

Ontario ON-2 Pos 30 12 4 0.80 0.0031 0

Pennsyl-
vania

Blair PA Pos 21 12 4 0.88 0.0035 21 0.828 0.894 13.6 11.90 0.16 0.018

Maryland Washington MD Pos 34 12 10 0.91 0.0041 30 0.886 0.896 16.0 12.15 0.22 0.004

New York Jefferson NY Pos 20 13 8 0.93 0.0036 18 0.863 0.900 13.0 12.08 0.18 0.026

New Jersey Morris NJ-Mo Pos 30 12 4 0.90 0.0041 31 0.852 0.894 15.0 11.93 0.29 0.045

New Jersey Salem NJ-Sa Pos 20 7 2 0.78 0.0024 0

Quebec QB Pos 16 7 4 0.78 0.0019 30 0.848 0.890 14.3 11.43 0.1 0.047

Overall 617 7.8 4.5 0.72 0.0051 510 0.876 0.897 13.9 11.90 0.23 0.020

Populations are ordered west to east. WNS-Status denotes sampling localities within states or provinces that were positive or negative for WNS as of

2012.

doi:10.1371/journal.pone.0128713.t001
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(EXOSAP), and were sequenced in both directions, using the amplification primers, at the Uni-
versity of Arizona Genetics Core Facility. Sequences were edited using CodonCode Aligner 3.0
(Gene Codes Corp.) and aligned using the default settings in MAFFT [50].

Microsatellite genotyping and analysis
We genotyped individuals at eleven highly variable microsatellite loci using primers previously
developed for other vespertilionid bats (IBat CA5, CA11, CA43, CA47, and M23 [51]; MS3D02
and MS3F05 [52]; E24 and G9 [53]; Cora_F11_C04 [54]; Coto_G02F_H10R [55]). We did not
genotype population samples with�15 individuals (CA-Ma, CA-Mo, CA-Sh, MB-1, MB-2;
Table 1), with the exception of BC-N that had been genotyped for another study. Based on pre-
liminary results of low levels of differentiation in eastern North America and to reduce costs,
we did not genotype individuals from three additional sites east of the Rocky Mountains (ON-
2, WV, and NJ-Sa). The total number of individuals genotyped was 510. Amplifications were
carried out in four multiplex reactions and two single-locus amplifications (see S2 Table), and
were subsequently pooled into three different loads for fragment analysis on an ABI 3130
sequencer. The basic cycling conditions consisted of 1 min at 94°C, three cycles of 30 sec at
94°C, 20 sec at Ta (54 or 60°C), and 5 sec at 72°C, 33 cycles of 15 sec at 94°C, 20 sec at Ta, and
10 sec at 72°C, followed by a final extension at 72°C for 30 min. Some amplifications required
additional cycles or the removal of the final extension step (S2 Table). Fragments were analyzed
and scored using GeneMarker software (SoftGenetics LLC, State College, PA).

Mitochondrial DNA analysis
To describe overall levels of mtDNA diversity within populations, we calculated haplotype (h)
and nucleotide (π) diversities in DNASP v.5.10.1 [56], and determined the number of private
haplotypes in each site after collapsing sequences from the entire dataset to unique haplotypes
using FABOX [57]. We used several population genetic approaches to establish whether cur-
rent patterns of variation are indicative of the presence of distinct genetic clusters. We calcu-
lated pairwise FST values between sites and tested for significance with 10,000 permutations in
Arlequin v.3.11 [58] to identify pairs of sites that were genetically distinct. We also performed
an analysis of molecular variance (AMOVA [59]) to describe the relative amount of genetic
variation within and among sites. Based on initial pairwise FST results, we then performed
nested AMOVAs to identify natural groups of sites. Sites were initially grouped together if they
had low pairwise FST values, and the analysis was rerun. Any ambiguous sites (sites that had
low FST values with sites in more than one group) were sequentially moved between groups
and the analysis was rerun. All logical combinations were tested to identify the grouping that
minimized among-site/within-group variation and maximized between-group variation.

To test the significance of defined subspecific lineages withinM. lucifugus using our nation-
wide dataset, we used a maximum likelihood phylogenetic approach implemented in PHYML
V.3.0 [60]. We sequenced COI for other North AmericanMyotis spp. (M. californicus,M. cilio-
labrum,M. evotis,M. keenii,M. leibii,M. sodalis,M. thysanodes, andM. volans; cf [61]), and a
member of the NeotropicalMyotis clade (M. austroriparius), which was used as the outgroup
(see S3 Table for list of specimens). We used the best fit model of sequence evolution (HKY
+G) as determined using Mega v.5.0 [62], with the gamma distribution of variability of rates
among sites calculated empirically from the data, SPR moves to explore tree space, and SH-Like
procedure to assess branch supports [60]. The proportion of each sampled population falling
within each subspecific clade was then calculated and plotted on a map produced in ARC-GIS
v.10.1 to visualize the geographic distribution of the clades.
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Microsatellite DNA analysis
Deviations from Hardy-Weinberg equilibrium (HWE) were estimated for each locus, and loci
were confirmed to be in linkage equilibrium using FSTAT v.2.9.3 [63]. To test for differences
in levels of genetic diversity among sites and regions, several indices of nuclear genetic diversity
were estimated, including number of alleles per locus, allelic richness, and the inbreeding coef-
ficient (FIS) using FSTAT, private allelic richness using HP-RARE v.1.0 [64], and observed and
expected heterozygosity using GENODIVE [65]. We then tested for differences among sites
(or groups of sites) in allelic richness and FIS in FSTAT, and expected heterozygosity in GEN-
ODIVE, using 10,000 permutations. Tests were performed among clusters of sites identified
using clustering techniques (see below), and among sites falling within states or provinces that
were WNS-positive (KY, OH, TN, WV, ON-2, PA, MD, NY, NJ-Mo, NJ-Sa, QB; Table 1) or
WNS-negative (all other sites) as of 2012, although it should be noted that tissues were col-
lected prior to the emergence of WNS at these localities in all cases.

We applied three different approaches to determine the most likely number of distinct
genetic clusters independent of original sampling locations, as different clustering algorithms
can produce different solutions and concordance among multiple techniques is suggestive of
the presence of a strong genetic signal [66]. First, we utilized the model-based Bayesian cluster-
ing approach in STRUCTURE v.2.3.3 [67,68] with population membership as a prior [69]. To
determine the optimal number of clusters (K), we ran 10 runs per K, for K = 1–10, with a
100,000 MCMC iteration burn-in followed by 400,000 iterations using the admixture model
with correlated allele frequencies. The most likely number of clusters was determined using the
Evanno et al. [70] method implemented in the program STRUCTURE HARVESTER [71]. The
Evanno et al. [70] method is not informative for the highest and lowest K; therefore, if the high-
est log likelihood value was observed for K = 1 or 10 across all replicates, we accepted that as
the K with the highest probability. For the best value of K we used CLUMPP [72] to harmonize
individual assignments to clusters.

Second, we applied the Kmeans clustering approach in GENODIVE v.2.0 as outlined by
Meirmans [65]. This approach is based on an AMOVA framework and uses a simulated
annealing algorithm to minimize the among-populations/within-groups sum of squares
through maximization of FCT, the variance among clusters relative to the total variance. We
determined the most likely number of clusters using the Pseudo-F summary statistic, which
performs better than the alternative Bayesian Information Criterion (BIC) when migration
rates are high and mating is random [65].

The third approach was that of Duchesne and Turgeon [73] implemented in the software
FLOCK. Samples are randomly partitioned into K clusters (�2), allele frequencies are esti-
mated for each of the K clusters, and each genotype is then reallocated to the cluster with the
highest likelihood score. Repeated reallocation based on likelihood scores (20 iterations per
run) resulted in genetically homogeneous clusters within a run. Fifty runs were carried out for
each K, and at the end of each run the software calculated the log likelihood difference (LLOD)
score for each genotype (the difference between the log likelihood of the most likely cluster for
the genotype and that of its second most likely cluster) and the mean LLOD over all genotypes.
Strong consistency among runs (resulting in ‘plateaus’ of identical mean LLOD scores) is used
to indicate the most likely number of clusters [73]. Based on this analysis, we re-reran the itera-
tive reallocation procedure for the most likely K and plotted the mean LLOD score against geo-
graphically ordered sites as a means of identifying admixture levels between genetic clusters.

For all three methods of genetic cluster identification, we tested whether cluster assignment
was valid by quantifying the number of individuals within each sample that were allocated to
each cluster, and then building an r × c contingency table where r is the number of genetic
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clusters and c is the number of sample sites. We then tested for random allocation to the
genetic clusters across empirical samples using a likelihood-ratio test with Williams’ correction
with the null hypothesis that cluster assignments were random across sampled sites. A rejection
of the null hypothesis indicated that that cluster composition was unlikely to be random across
the samples, and that cluster assignments were therefore valid [74]. In addition, given that
most clustering techniques assume that genotypic proportions within each cluster are in HWE
and at linkage equilibrium, we tested identified clusters for compliance with these assumptions
as suggested by Guillot et al. [66]. To test whether cluster assignment was independent of sub-
specific mtDNA clade membership we could not simply test for an association, as cluster
assignment was confounded by spatial variation in the distribution of mtDNA clades. There-
fore, we compiled cluster and clade membership for individuals in each of the four sites that
contained members of more than one mtDNA clade (see Results, Fig 1a), and performed a like-
lihood-ratio test to determine whether cluster assignments were independent of subspecific
clade membership within heterogeneous populations.

The level of genetic differentiation among pre-defined sites and an alternative grouping
based on subspecific clade membership, where individuals were classified as belonging to the
M. l. alascensis,M. l. carissima, orM. l. lucifugus clades based on the mtDNA phylogenetic
analysis, was determined by calculating pairwise distance measures, including FST [75], and
two measures independent of the amount of within-population diversity: Jost’s D [76], and
G”ST [77]. Differences in the magnitude of pairwise distance measures among groups of sites
was tested using 10,000 permutations in GENODIVE (G”ST and Jost’s D) and FSTAT (FST). As
with mtDNA, we performed an AMOVA on microsatellite genotypes using ARLEQUIN, and
subsequently performed nested AMOVAs by grouping sites with low FST values to identify the
grouping that maximized among-group variation and minimized among-site/within-group
variation.

Isolation by distance
There is considerable evidence to suggest that, regardless of the algorithm employed, clustering
methods are confounded by the presence of isolation by distance (IBD), such that consistent
clinal genetic variation may be misinterpreted by clustering algorithms as the presence of dis-
tinct clusters even though there is no true barrier to gene flow [66,78–80]. We therefore tested
for IBD in mitochondrial and nuclear DNA both globally (including all sampled locations) and
within identified clusters (for microsatellite data only). We conducted a Mantel test comparing
standardized genetic distance [FST/(1-FST)] and the natural log of geographic distance [81]
using the IBDWeb Service [82]. To calculate between-site geographic distances, polylines were
constructed from X,Y coordinates in ArcGIS 10.1. The geodesic distance of these polylines was
calculated using the “Shape.length@meters” command. For the microsatellites, we followed the
recommendations of Guillot et al. [66]: we plotted genetic distance (FST) against geographic
distance while differentiating between data points for site pairs that belonged to the same
genetic cluster and data points for site pairs belonging to different clusters. If clusters are real,
then for any given geographic distance, genetic distance between site pairs in different clusters
should consistently be greater than distance between site pairs falling within the same cluster
(e.g. [83,84]). In addition, as suggested by Meirmans [80], we performed a partial Mantel test
to investigate the association between the matrix of genetic distances (FST and G”ST) and a
matrix of cluster membership for the microsatellite data, with the matrix of geographical dis-
tances as a covariate. If there is not a relationship between genetic distance and cluster mem-
bership after controlling for geographic distance, then cluster membership is likely confounded
by IBD. Given two main clusters (see Results), we coded cluster membership in two ways: a)
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both members of a sampling site pair belonging to the same cluster (1) or not (2); or b) both
members of a sampling site pair belonging to a western cluster (1), both belonging to an eastern
cluster (2), or sample sites belong in different clusters (3). Partial Mantel tests were carried out
in PASSaGE software and significance was assessed with 10,000 permutations [85].

Results

Genetic diversity
We observed 148 unique haplotypes characterized by 104 segregating sites among the 617 indi-
viduals sequenced. The number of haplotypes per site ranged from 2–13 (mean: 7.8), and the
number of haplotypes unique to a site ranged from 1–11 (mean: 4.5; Table 1). There was no sig-
nificant difference in nucleotide diversity (π) between sites east versus west of the Great Plains-
Rocky Mountains transition (Mann-Whitney U-Test; Mean East: 0.00, West: 0.01, P = 0.829),
or between sites in states that were positive or negative for WNS as of the 2012–2013 winter
season (Mann-Whitney U-Test; WNS-Neg: 0.01, WNS-Pos: 0.00, P = 0.132). However, sites
west of the Great Plains-Rocky Mountains transition had significantly lower haplotype diver-
sity than those east of the boundary (Mann-Whitney U-Test; East: 0.80, West: 0.56, P = 0.002),
and WNS-free sites as of 2012 also had significantly lower haplotype diversity than WNS-
affected sites (Mann-Whitney U-Test; WNS-Neg: 0.65, WNS-Pos: 0.81, P = 0.015), although
this latter result is likely confounded by the high proportion of western sites in the WNS-Neg
group.

Although we originally typed 11 microsatellite loci, two loci (E24 and COTO_G02_H10)
had high null allele frequencies and were dropped from further analyses. The remaining nine
loci all met HWE expectations and were unlinked. Mean observed and expected heterozygosi-
ties were high (0.876 and 0.897, respectively), as was the mean number of alleles per locus
(13.9) and allelic richness (11.9), although private allelic richness was low (0.23; Table 1; see S4
Table for diversity statistics for each locus). Comparing sample-level measures of genetic diver-
sity among identified clusters and among samples in WNS-positive andWNS-negative states
or provinces revealed no significant differences in observed or expected heterozygosity, allelic
richness, or FIS (P> 0.05 in all cases based on permutation tests).

Differentiation ofM. lucifugus subspecies
Phylogenetic analysis of the mtDNA COI sequences confirmed the existence of three clades
within little brown bats roughly corresponding to previously defined subspecies (Fig 2). Fol-
lowing Carstens and Dewey [32], we refer to these clades asM. l. lucifugus,M. l. carissima, and
M. l. alascensis (hereafter lucifugus, carissima, and alascensis, respectively). The carissima clade
had three other species (M. evotis,M. keenii,M. thysanodes) nested within it, as previously
described [32]. We have focused onM. lucifugus sensu stricto here. Addressing the taxonomic
relationships amongM. lucifugus,M. evotis,M. keenii, andM. thysanodes is beyond the scope
of this paper; therefore we ignored the presence of these additional taxa in the rest of our analy-
ses. For the most part, clades were geographically restricted and followed previously defined
geographic ranges (Fig 1a). Almost all of the sampled sites east of the Great Plains-Rocky
Mountains transition (with the exception of the Alberta-South site) were composed entirely of
individuals classified as lucifugus. The carissima clade was restricted to mountainous but not
coastal regions of the west and a portion of the western plains (in southern Alberta). The alas-
censis clade was found along the Pacific Coast and coastal mountain ranges (Fig 1a). However,
individuals in the lucifugus clade were also sampled at locations west of the Great Plains-Rocky
Mountains transition, including the British Columbia-South (BC-S), Wyoming (WY), and
Washington (WA) samples. The Alberta-South (AB-S) sample east of the Great Plains-Rocky
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Mountains transition also contained both lucifugus and carissima haplotypes (see also [33]).
No alascensis haplotypes were found at the BC-S site, although range maps place this site in
that subspecies’ range; furthermore, the Alaska (AK) sample clustered with the alascensis
clade, even though it fell within the described range of the lucifugus clade.

Spatial patterns of population genetic structure
Mitochondrial DNA. AMOVA analysis considering all samples as a single group revealed

high levels of differentiation (FST = 0.721). We iteratively grouped sites with low pairwise FST

values to determine the best arrangements of sites that maximized ‘among-group’ and mini-
mized ‘among-site/within-group’ variation in the AMOVA framework. Most samples were
highly divergent from all others (76% of pairwise comparisons had FST > 0.2, and 62%
were> 0.5; S5 Table and Fig 1b), but we identified two groups of sites (one in the central
United States and Canada east of the Rocky Mountains, and one in eastern North America)
within which divergence was low (FST = -0.019–0.130; Fig 1b). After grouping these sites
together in an AMOVA analysis, among-group variation (FCT) accounted for 73.5% of varia-
tion in haplotype frequencies, and among-site/within-group variation accounted for 1.4%.

Microsatellite DNA. All clustering methods employed [Bayesian clustering (STRUC-
TURE), repeated reallocation (FLOCK), and Kmeans clustering (GENODIVE)] identified
K = 2 as the most likely number of genetic clusters, roughly corresponding to clusters east ver-
sus west of the Great Plains-Rocky Mountains transition, and not corresponding to subspecies
affiliation (Figs 3 and 4). However, four sites in the transition, namely British Columbia-North
(BC-N), Alberta-North (AB-N), AB-S, and WY had intermediate Q (STRUCTURE) or LLOD
(FLOCK) values indicative of admixture, and there was a clear gradation in this region between
genetic clusters (Figs 3 and 4). On average, the BC-N and AB-N sites had higher proportional
membership with the eastern cluster, and AB-S and WY sites with the western cluster, and
therefore they were grouped accordingly in all subsequent analyses. To test the validity of the
most likely number of clusters identified using each of the three algorithms, we performed con-
tingency table analyses with the null hypothesis that cluster assignments were random with
respect to sampling sites. In all cases we rejected the null hypothesis (STRUCTURE: G = 521.5;
FLOCK: G = 422.6; GENODIVE: G = 77.1; df = 20 and P< 0.001 in all cases) and concluded
that clusters were valid. However, all clusters identified by the three algorithms failed to meet
HWE expectations (P< 0.05 in all cases). Across the four sites (WA, BC-S, AB-S, and WY)
containing both carissima and lucifugus mtDNA haplotypes (setting aside the 3 alacensis-type
individuals in WA), cluster membership was independent of subspecies affiliation for the clus-
ters defined by FLOCK (Χ2 = 1.65, P = 0.1990) and GENODIVE (Χ2 = 0.22, P = 0.6390), but
was not for STRUCTURE (Χ2 = 5.65, P = 0.0175).

AMOVA analysis of microsatellite genotypes indicated weak but significant population
structure (global FST = 0.0161, P< 0.001; proportion of variation within sites = 0.984). The
grouping of sites that maximized among-group variation and minimized among-site/within-
group variation included a group containing AK only, a western group of samples (California-
Siskiyou (CA-Si), WA, BC-S, Idaho (ID), and WY), and an eastern group containing all other
samples (variation among groups = 2.72%, P< 0.001; variation among sites within
groups = 0.41%, P< 0.001). Generally, FST values between Alaska and all other sites were high
and significant (0.049–0.089; S6 Table). FST values between sites in the western and eastern
groups ranged from 0.004–0.045, values between sites within the western group ranged from
0.002–0.018, and values between sites within the eastern group ranged from -0.005–0.013 (S6
Table). An AMOVA grouping individuals based on their subspecific membership similarly
indicated weak but significant population structure (global FST = 0.022, P< 0.001, proportion
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of variation within subspecies = 0.978). The maximum pairwise FST was between alascensis
and lucifugus (0.0270, P< 0.001), the minimum was between alascensis and carissima (0.0141,
P< 0.001), and differentiation between carissima and lucifugus was intermediate (0.0200,
P< 0.001).

Genetic distance measures were higher among sites within the western group than among
sites within the eastern group, and permutation tests approached significance at the P< 0.05
level (FST: West: 0.023, East: 0.002, P = 0.0610; G”ST: West: 0.220, East: 0.016, P = 0.057; Jost’s
D: West: 0.202, East: 0.014, P = 0.057). These results were largely driven by the inclusion of the
AK site in the western group, and if this site was removed, genetic distance measures were still
consistently higher within the west but not significantly different between groups (FST: West:
0.007, East: 0.002, P = 0.361; G”ST: West: 0.088, East: 0.016, P = 0.273; Jost’s D: West: 0.081,
East: 0.014, P = 0.274).

Isolation by distance. To test for isolation by distance we performed Mantel tests on the
logarithm of geographic distance and standardized genetic distance [FST/(1-FST)]. There were
clear signals of IBD for both mitochondrial (r = 0.346, P< 0.0001; Fig 5a) and microsatellite
DNA (r = 0.537, P< 0.0001; Fig 5b) across the range of little brown bats. Within identified
clusters, there was no signal of IBD in the east (r = -0.307, P = 0.9925; Fig 5c), but there was
within the west (r = 0.913, P = 0.0411; Fig 5d). To test if IBD in the west was disproportionately
driven by the Alaska population, we re-ran the analysis with that site removed, and the signal
of IDB remained (r = 0.880, P = 0.0069; S1 Fig).

To assess the validity of clusters given the pattern of isolation by distance, we plotted geo-
graphic and genetic distance (FST) based on microsatellites according to cluster membership
(points identified separately for comparisons within the same cluster vs. in different clusters;
Fig 6). There was no clear separation between site pairs in the same vs. different clusters, and
low genetic distances for a given geographic distance were observed regularly for site pairs in
different clusters. However, partial Mantel tests to examine the association between the matrix

Fig 3. Proportional membership (Q) ofM. lucifugus to genetic clusters for K = 2 estimated using STRUCTUREwith sampling location as prior
information. Each bar is a single individual, sampled populations are delineated by black lines and are ordered by geographical sampling location from west
to east. Colors distinguish genetic clusters (blue for proportional membership in the western cluster, orange for proportional membership in the eastern
cluster).

doi:10.1371/journal.pone.0128713.g003
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of genetic distances and a matrix of cluster membership for the microsatellite data, with the
matrix of geographical distances as a covariate, were significant (P< 0.05 in all cases) regard-
less of coding scheme (see Methods) or genetic distance measure (FST or G”ST) used.

Discussion
The emergence and spread of WNS has decimated bat populations in affected areas and raised
the specter of extinction forMyotis lucifugus,M. septentrionalis, and other highly-affected bat
species. Therefore, understanding population connectivity and possible barriers to disease
transmission is vital to the ongoing management and conservation of affected species and the
development of mitigation strategies to limit disease spread and associated mortality. Here,
using a combined dataset of mtDNA sequences and nuclear microsatellite genotypes for little
brown bats from across their range, we demonstrate considerable spatial variation in patterns
of female dispersal and significant genetic variation between sites in eastern versus western
portions of the range of little brown bats. Whether the observed variation is representative of
discrete genetic clusters rather than isolation by distance is debatable (see below), but overall, it
is clear that levels of nuclear genetic differentiation are low, and there is no evidence for any
major barriers to nuclear gene flow across the range of little brown bats. However, some key

Fig 4. Mean log-likelihood difference (LLOD) between two genetic clusters obtained by FLOCK along a series of geographically ordered sites from
west to east. For presentation, populations in the Great Plains-Rocky Mountains transition zone (BC-N AB-N, AB-S, andWY) are ordered by LLOD to
demonstrate the transition among clusters.

doi:10.1371/journal.pone.0128713.g004
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spatial patterns emerge from our analyses, namely (1) patterns of mtDNA differentiation are
highly variable, with high FST values between most sample pairs (including between all western
samples, between western and eastern samples, and between some eastern samples), while low
mitochondrial differentiation was observed within two groups of samples found in central and
eastern regions of North America (shown in AMOVA and pairwise FST analyses; Fig 1b); (2)
the site from Alaska is highly differentiated from all others in our study (shown in AMOVA
and pairwise FST analyses); and (3) western sites are characterized by significant isolation by
distance based on microsatellites, while those in the east are not. These data raise the possibility
that the current patterns of spread of Pd observed in eastern North America may not apply to
the entire range of the little brown bat, and that there may be broad-scale spatial variation in
the risk of WNS transmission and occurrence if the disease continues to spread west.

The presence of isolation by distance is a major confounding factor when examining levels
of genetic structure among populations of widespread species such as little brown bats, because
clinal variation may be interpreted as the presence of discrete clusters even in the absence of
barriers to gene flow [66,78,80]. All clustering methods we employed on our microsatellite data
identified the presence of two genetic clusters, roughly dividing sites east vs. west of the Great
Plains-Rocky Mountains transition. However, we also observed a strong pattern of isolation by
distance, indicating that these observed clusters may be an artifact of dispersal limitation and
clinal variation across the very large range of this species. Additional analyses to test the

Fig 5. Standardized genetic distance [FST/(1- FST)] plotted against the logarithm of geographic distance including all sampled populations for mtDNA (a), and
microsatellites (b), and for the eastern (c) and western (d) population clusters based on microsatellites.

doi:10.1371/journal.pone.0128713.g005
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validity of clusters provided mixed results. On the one hand, genetic distances between eastern
and western sites were relatively low (the best grouping in the AMOVA explained only 2.7% of
the variation in microsatellite allele frequencies), a Mantel test showed no clear separation
between site pairs in the same versus different clusters (Fig 6), and identified clusters failed to
meet HW expectations, suggesting that clusters did not represent genetically panmictic popula-
tions (cf. [66]). On the other hand, partial Mantel tests controlling for geographic distance
revealed a significant correlation between cluster membership and genetic distance, suggesting
that western and eastern clusters were differentiated despite the signal of isolation by distance
(cf. [80]).

What is clear from these data is that there is significant genetic variation among samples
from east to west across the range of little brown bats (although whether they represent discrete
genetic clusters rather than isolation by distance is debatable), but levels of nucDNA genetic
differentiation were relatively low, and there was no unambiguous evidence for any major bar-
riers to gene flow that might severely restrict the spread of WNS. Gene flow in temperate bats
is mediated through the permanent dispersal of individuals and the exchange of genes at mat-
ing congregations during swarming and hibernation. The lack of isolation by distance and low
levels of nucDNA differentiation among sites in eastern North America is concordant with the
continuous spread of WNS from its origin in New York, and indicates that gene flow via mat-
ing has occurred over wide geographic areas. Furthermore, the disease has passed, or is cur-
rently passing, through regions in which there are low levels of mtDNA differentiation among

Fig 6. Pairwise genetic (FST) based onmicrosatellites and geographic distance values highlighting population pairs within the same cluster (blue
dots) and in different clusters (orange dots).

doi:10.1371/journal.pone.0128713.g006
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sites (one group in the eastern United States and one group in the central United States and
Canadian provinces; Fig 1b). Most temperate bats are characterized by relatively high levels of
female philopatry and male-biased dispersal, resulting in significant matrilineal genetic struc-
turing of populations (e.g. [35,86–88]). However, our data suggest that the exchange of females
among populations across large portions of the range of little brown bats is a non-trivial source
of gene flow that may be contributing to the spread of WNS, and are consistent with similar
inferences of female dispersal among populations over smaller spatial scales in little brown bats
[6,33,35,42] and other bat species [38,89] based on mtDNA. In addition, these data are consis-
tent with banding data showing extensive movements by individual little brown bats of both
sexes over hundreds of kilometers between summer roosts, swarming sites, and hibernacula
within and between years in central Canada [27,42]. Banding studies of little brown bats in
other parts of their range would help to resolve whether the observed differences are better
explained by historical demography or current gene flow. The high levels of observed mtDNA
differentiation in other portions of the range, particularly in the west, suggest important spatial
variation in female dispersal patterns, and highlight the need to consider permanent move-
ments of both males and females and incorporate regional variation in dispersal rates and dis-
tances in models of WNS transmission dynamics.

Given the lack of major physiographic barriers east of the Rocky Mountains and the high
levels of gene flow we inferred, it is likely that WNS will continue to expand its range across
eastern North America. Current models of disease spread indicate that WNS exhibits charac-
teristics of an expanding epizootic wherein relatively distant sites have lower infection risk, but
over time infection rates increase and the effect of distance diminishes as the disease ‘fills in’
behind the expansion front [19,20]. However, these models are based on data from eastern por-
tions of the range where gene flow is high. Even within this region the rate of spread may be
restricted by consistent spatial variation in above-ground or cave microclimates that may limit
the survival and growth of Pd (cf. [20,21]), or by spatial variation in topography or land use
that limits movements and dispersal by bats [6]. In Pennsylvania, for example, topographical
features such as the Appalachian high plateau and the Allegheny Front escarpment may have
influenced seasonal migration patterns of female bats, thereby limiting matrilineal gene flow
and disease transmission rates among populations [6]. Indeed, two genetically distinct popula-
tions of wintering colonies were observed on either side of the Allegheny Front [6]; hibernating
colonies of little brown bats located on the western Appalachian high plateau were infected
with WNS 1–2 years later than colonies in the central mountainous and eastern lowland
regions of the state [16]. Thus, topographic or climatic variation may slow the spread of WNS
through some areas by limiting population connectivity of the host or the survival and growth
of Pd, and may explain some of the observed spatial variation to date in the rate and direction
of WNS spread through eastern North America.

Our genetic data indicating lower levels of population connectivity in the west suggest that
if WNS reaches western populations, the rate of disease spread may decline. The high mtDNA
FST values among western populations (S5 Table) indicate that female movements are highly
restricted relative to eastern populations. Overall levels of nucDNA gene flow among western
sites were reduced relative to the east, and western sites were characterized by isolation by dis-
tance based on microsatellites while eastern sites were not. These results may, in part, be related
to the greater topographical and ecological heterogeneity in the west, which includes multiple
mountain ranges, plateaus, basins, and coastal lowlands, and which has been implicated in
recurrent phylogeographic patterns in a wide variety of other taxa [90]. Hibernation behavior
is poorly characterized for western North American little brown bat populations. All known
large hibernating populations (>10,000 individuals) are described from eastern North Amer-
ica, and identified hibernacula in the mountainous west typically have lower census sizes than
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many hibernacula in the east. The high physiographic variation in the mountainous west may
limit population connectivity and the scale of bat movements, and the high density of mines
and caves in many regions in the west may result in smaller and more diffuse hibernating colo-
nies relative to eastern North America. Comparative data on connectivity between summer
and winter sites (as in [27]) are urgently required to quantify spatial and temporal patterns of
movement of little brown bats in the western portion of their range and to predict potential
rates of WNS transmission. Further, the most distant population we sampled (in Alaska) was
by far the most divergent from all other populations, and we require much more dense sam-
pling in the western portion of the range of little brown bats to determine if any other popula-
tions are equally or more isolated and hence may have reduced contact rates with other
regional populations.

The spatial variation in population connectivity we observed was largely independent of
subspecific affiliation. Phylogenetic analysis revealed the presence of three divergent lineages
based on mtDNA (corresponding to previously defined subspeciesM. l. alascensis,M. l. caris-
sima andM. l. lucifugus; as in [32]), with the notable finding of multiple lineages at the same
sampling locations in southern British Columbia, southern Alberta (as in [33]), and Wyoming.
Although Carstens and Dewey [32] provided some support from mtDNA and nuclear introns
for discrete evolutionary lineages withinM. lucifugus, we found that cluster membership based
on microsatellites was independent of subspecific affiliation, and we estimated low levels of
nucDNA differentiation among subspecies (FST = 0.022 in AMOVA analysis). Our observed
discrepancy between mtDNA and nucDNA signals may be due in part to homoplasy, particu-
larly at rapidly-evolving microsatellite loci. Alternatively, incomplete lineage sorting might be
producing discordant patterns among loci, particularly for a species with a relatively large
effective population size (Ne � 400,000 based on Carstens and Dewey’s [32] estimate of θ for
M. lucifugus) and relatively recent divergence (divergence from westernMyotis sp. approxi-
mately 1–1.5 Mya [32]). A third alternative is that our finding of lower differentiation at
nucDNA compared to mtDNA is that patterns at mtDNA may reflect genetic differentiation
that evolved and were reinforced as populations used distinct glacial refuges (as in [34]), while
patterns at nucDNA reflect secondary contact particularly mediated via male gene flow.

Our data show extensive spatial variation in levels of connectivity among little brown bat
populations and provide valuable information for understanding past and future patterns of
WNS spread. However, the use of genetic methods to infer patterns of transmission assumes
that patterns of gene flow are indicative of the movement of infectious individuals, and we
must recognize that the risk of disease transmission may be higher than genetic data may indi-
cate because there may be more contacts among infected and susceptible individuals, including
among members of multiple species, than just those that lead to gene flow. Urgent research is
required to determine how and when individual bats may be exposed to Pd spores, and how
contacts of varying durations and seasonal timings influence the risk of WNS transmission.
Ultimately we need to learn whether brief contacts during mating can result in transfer of
spores leading to infection or whether permanent dispersals are driving transmission. The use-
fulness of our genetic data on little brown bats also rests on the assumption that intraspecific
transmission dynamics outweigh the impact of cross-species transmission, given that multiple
sympatric bat species are affected by WNS. This assumption may be justified, as post-WNS
population declines of affected bat species are not influenced by population sizes of other
affected, cohabiting bat species [21], but research is required to assess how often cross-species
transmission may take place and how the rate of introduction of infective propagules to envi-
ronmental reservoirs is influenced by multiple species cohabiting the same hibernaculum.

In conclusion, this study identified high levels of genetic variation among populations of lit-
tle brown bats across their range, and mitochondrial DNA sequences revealed considerable
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spatial variation in patterns of female dispersal. Overall levels of nuclear genetic differentiation
amongM. lucifugus populations are low, and we did not identify any major barriers to gene
flow across their range. However, levels of genetic differentiation at both mtDNA and micro-
satellites are significantly higher among populations to the west of the Great Plains-Rocky
Mountains transition, suggesting that the current pattern of spread of WNS and risk of trans-
mission of Pd observed in eastern North America may not apply to the entire range of the little
brown bat.
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