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Abstract: Various methods for detecting malaria have been developed in recent years, each with its
own set of advantages. These methods include microscopic, antigen-based, and molecular-based
analysis of blood samples. This study aimed to develop a new, alternative procedure for clinical
use by using a large data set of surface-enhanced Raman spectra to distinguish normal and infected
red blood cells. PCA-LDA algorithms were used to produce models for separating P. falciparum
(3D7)-infected red blood cells and normal red blood cells based on their Raman spectra. Both average
normalized spectra and spectral imaging were considered. However, these initial spectra could hardly
differentiate normal cells from the infected cells. Then, discrimination analysis was applied to assist
in the classification and visualization of the different spectral data sets. The results showed a clear
separation in the PCA-LDA coordinate. A blind test was also carried out to evaluate the efficiency of
the PCA-LDA separation model and achieved a prediction accuracy of up to 80%. Considering that
the PCA-LDA separation accuracy will improve when a larger set of training data is incorporated
into the existing database, the proposed method could be highly effective for the identification of
malaria-infected red blood cells.

Keywords: malaria-infected red blood cells; P. falciparum (3D7); surfaced-enhanced Raman spectra;
PCA-LDA

1. Introduction

Malaria is a disease that is transmitted by mosquitoes (acting as a vector) and it is
caused by a parasite of the Plasmodium genus. Plasmodium falciparum is usually the source
of malaria mortality [1]. Between 2000 and 2020, the World Health Organization estimated
that more than 200 million cases of malaria infection were reported each year [2]. The
gold standard techniques for malaria diagnosis are rapid diagnostic tests (RDTs) and mi-
croscopic analysis of blood-smears [3,4]. The blood smear test is highly sensitive and
precise for malaria diagnosis, but it needs to be performed by trained and qualified staff.
RDTs are rapid; however, their sensitivity is not comparable to blood smear examination.
Another highly sensitive diagnostic approach is polymerase chain reaction (PCR) but it
involves a lengthy sample preparation process [5,6]. Various methods have been devel-
oped over the last two decades to satisfy the demand for simple and highly sensitive
diagnostic techniques.
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There are a number of reports on the application of the Raman spectroscopy technique
in malaria diagnosis. The majority of these studies have focused on detecting hemozoin,
or malaria pigment [7]. After the parasite infects an erythrocyte, the host’s hemoglobin is
catabolized. A by-product is created when the free heme is converted into a crystalline
structure known as “hemozoin”. Plasma or red blood cell extract is often used as the sample.
Wood et al. first recorded the expression of the hemozoin Raman signal in the Plasmodium
parasite food vacuole [8], and subsequent investigations of the excitation wavelength led
to the enhancement of the Raman signal by using the resonance wavelength activated by
hemoglobin and hemozoin [9–12]. In addition to the resonance Raman spectroscopy, tip-
enhanced Raman scatter and magnetic fields have been used to increase the Raman intensity
for hemozoin detection [13,14]. The level of hemozoin in the blood clearly corresponds
to the time of infection. A small volume of hemozoin makes the examination difficult,
especially in the early stages of infection [15]. Due to the size and structure of the metallic
nanoscale substrate, the surface-enhanced Raman substrate was found to significantly
enhance the Raman intensity [16,17]. With this technique, hemozoin in 0.0005% infected
red blood cells could be detected by using a gold-coated butterfly wing nanostructure [18].
Chen et al. used a silver nanorod structure as the surface-enhanced Raman substrate to
measure the modification of the red blood cell membrane and the expression of the protein
component, especially the cytoadherence protein complex in the erythrocyte infection
phase [19]. This was the first time that the direct measurement of the malaria-infected
red blood cell was accomplished. Thereafter, there was no further work on the direct
measurement of malaria-infected red blood cells. However, the Raman spectroscopy
approach for malaria detection is still being developed. In 2020, gold substrate nanoparticles
were employed for antibody-free malaria detection in whole blood [20]. Then, coupling
Raman spectroscopy with mid- and near-infrared spectroscopy for malaria and arboviruses
in human blood [21] was reported in 2021.

Apart from Raman spectrum investigation, the discrimination analysis technique is
often used as an analytical tool in the Raman spectroscopy research area, particularly in
regard to the issue of classification. The Raman spectrum is considered to be multivariate
data and multivariate discrimination analysis (e.g., PCA and PC-LDA [21–27]) has been
applied to differentiate a variety of cases such as the state of the red blood cell infection [19],
the normal and the malaria-infected spleen tissue [28], and dengue and malaria sera
Raman spectra [29].

In this work, we report for the first time that the direct identification of the malaria-
infected red blood cells can be accomplished by the combination of SERS and principal
component analysis coupled with linear discrimination analysis (PCA-LDA). The surface-
enhanced Raman spectra were obtained from direct measurements of the normal and 3D7
P. falciparum-infected red blood cells deposited on a SERS substrate. A silver nanorod
structure was used as the SERS substrate. The characteristic spectra and Raman spectral
images of normal and infected red blood cells were presented. Subsequently, owing to the
large number of spectra collected, the data set of spectra was used to train the separation
model using a PCA-LDA-based machine learning algorithm. The proposed method can
achieve a separation accuracy of more than 90%. Finally, the volunteers’ blind data sets were
used to evaluate the model and provided a prediction accuracy of up to 80%. Importantly,
the accuracy of the separation model could be continually extended due to the updateable
Raman spectra data set and could have the potential to be developed for the clinical
application of malaria diagnosis in the future.

2. Material
2.1. Blood

Human red blood cells from healthy volunteers prepared at the National Center for
Genetic Engineering and Biotechnology (BIOTEC), Thailand were used in this study.
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2.2. Surface-Enhanced Raman Substrate

The OnSpec chip used in this study is a SERS based on a silver nanorod structure. All
substrates were prepared by NECTEC, Thailand with a laboratory-made DC magnetron
sputtering system, with a glancing-angle deposition (GLAD) technique. The details of the
SERS preparation and fabrication are described in [30,31].

2.3. Raman Spectrometer

The Renishaw inViaTM confocal Raman microscope with an He-Cd laser was used.
The light source provided an excitation wavelength of 532 nm. The microscope system
was a Leica microsystem, which can be equipped with magnification objective lenses of 5x,
20x, 50x and 100x. The CCD camera was fitted with up to four detectors such as electron
multiplied (EM) and InGaAs arrays. The Renishaw inViaTM confocal Raman microscope
captured the spectra with a spectral resolution of 0.3 cm−1 (FWHM).

2.4. Software

WiRE4.2 software was used for spectral processing including cosmic ray removal,
baseline subtraction, smoothing signal and normalization.

The imaging processes and separation model were simulated by Python. The module
Hyperspy 1.6.5 was applied to intensify the imaging of the spectra in the area of interest
and a collection of machine-learning modules, including scikit-learn 0.23.2 were applied
for PCA-LDA discrimination processing.

3. Methodology

In this work, there are 3 main parts (see Figure 1). The first part involved the blood
sample preparation and then the Raman spectra were collected. Finally, the data were
interpreted and used for training the separation model.
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3.1. Sample Preparation
3.1.1. Malaria-Infected Cell Sample

P. falciparum (3D7) parasites were cultured according to the routine method [32] in
RPMI1640 medium supplemented with 1% Albumax I at 4% hematocrit. The parasite
culture was maintained at 37 ◦C with 5% carbon dioxide. The age of the parasite was
around 24–32 h post invasion (this corresponds to the mid–late trophozoite stage to the
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early schizont stage of the asexual cycle). The Percoll density gradients method was used
to enrich the infected red blood cells. The percentage of parasite-containing red blood
cells was confirmed by Giemsa staining. Red blood cells were resuspended in phosphate
buffered saline (PBS) at 0.16% hematocrit. Then, an aliquot of 25 µL of the cell suspension
was applied to the OnSpec chip. The sample on the surface of the OnSpec chip was flattened
by the spin coater.

3.1.2. Normal Red Blood Cell Sample

The normal red blood cell sample was prepared with human red blood cells resus-
pended in PBS. Then, 25 µL of the cell suspension was applied to the OnSpec chip in the
same way as the infected sample.

3.2. Spectral Collection
3.2.1. Measurement Conditions

All spectra were acquired in the range of 123–1883 cm−1 with 50x objective lens, and
the laser power was set to be 1% (around 3 mW) of the maximum power (the low power of
the laser was used to avoid damage to the sample). Each spectrum was presented as the
average of three accumulation spectra with a 30 s exposure time.

3.2.2. Pointing Spectral Collection

Point spectral collection was applied to select the point in the substrate area. The laser
pointed to the pre-selected point. Normal and infected red blood cell spectra were collected
from the points in the cell area, while outside the cell, spectra were collected from the points
outside the cell area. There were 460 normal red blood cell spectra acquired from 6 normal
red blood cell sample sets, 365 infected red blood cell spectra acquired from 4 infected red
blood cell sample sets and 350 outside-the-cell spectra acquired from 10 total sample sets.
Moreover, blank sample tested only on PBS was dropped on the OnSpec chip. All spectra
met the measurement conditions described in Section 3.2.1.

3.2.3. Area Spectral Collection

The area spectral collection is the spectral collecting process done by area selection. In
the area of interest (the red boxes in Figure 2), the intersection of the grid in x and y (see
Figure 3) was the excitement point. The Raman spectrum from each position is the 2D data
that contains the information about the intensity and wavenumber. The spectrum from each
position was acquired using the same measurement conditions described in Section 3.2.1.
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Figure 2. Image shows white light images of normal (a) and infected red blood cells. (b) The red 
boxes indicate the mapped area with the normalized intensities covering the peaks at 747, 1128, 
1228, 1372, 1560 and 1620 cm−1. These maps visually compare the healthy red blood cells and the P. 
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spectrum can be linked with the biological component’s modification in the red blood cell. The in-
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Figure 2. Image shows white light images of normal (a) and infected red blood cells. (b) The red
boxes indicate the mapped area with the normalized intensities covering the peaks at 747, 1128,
1228, 1372, 1560 and 1620 cm−1. These maps visually compare the healthy red blood cells and the
P. falciparum (3D7) infected red blood cells. The increase or decrease in the intensity of the Raman
spectrum can be linked with the biological component’s modification in the red blood cell. The
information regarding peak assignment is shown in Table 1.
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Figure 3. Each point at the intersection in the area provided a Raman spectrum. The Raman spectra
and spatial data were used for intensity image simulation.

3.3. Data Analysis
3.3.1. Spectral Processing

In the WiRE 4.2 program, there are built-in tool for spectral processing. The polynomial
order was defined and adjusted automatically for fitting the baseline of the spectrum. The
Savitsky–Golay filter [33] was used in the smoothing process. The cosmic ray spikes were
identified by the threshold value of the width and height of the intensity peak. Then,
the mean value of the intensities around the spike was used as the substitute intensity at
the spike position [34,35]. Finally, the spectra were only truncated in the range covering
450–1750 cm−1.

3.3.2. PCA-LDA Separation Model

• PCA-LDA Discrimination Analysis

Principal component analysis (PCA) is an unsupervised technique that is frequently
used in conjunction with Raman spectral analysis [36]. The Raman spectrum is a represen-
tation of multidimensional data. PCA is always used to reduce the dimensions of the data
and visualize the spectrum by transforming the data set into a new coordinate frame. Apart
from dimension reduction, PCA can also be used to extract data features. While reducing
the dimension of the data, the information related to the data is still retained as much as
possible. Principal components (PCs) were used as new orthogonal coordinates. The first
PC (PC1) is responsible for the data’s largest variance axis, followed by PC2, and so on.

After spectral processing, 1175 Raman spectra were analyzed using the PCA algorithm:
460 from normal cells, 365 from infected cells, and 350 from outside the cell area. The
350 PCs transformed data that account for >99.9 percent of the total variance was used as
the LDA algorithm’s input data. LDA is the supervised analysis [37]. Each transformed
spectrum from the PCA was labeled according to its cell type: normal, infected, or outside
the cell. Figure 4 shows the flow chart of the discrimination analysis. All spectra acquired
from the experiment were separated into a training data set (80%) and testing data set
(20%). The training spectra were transformed by the PCA and LDA procedures. From the
original data, each spectrum containing the information about intensities and wavenumbers
(Raman shift) was transformed into data dots in 2D dimensional coordinates of LDA in
which each dot represents the information about the spectrum. The PCA-LDA separation
model was created by grouping the transformed data in 2D LDA coordinates according
to their spectrum class. Then, the testing spectra was transformed in the same way from
the original spectra to the data dots in the PCA-LDA separation model for the evaluation.
Finally, all spectra classified as the training spectra and the blind spectra were applied as the
testing spectra. The pie chart is the output of the blind test, which shows the probabilities
of the spectra class.
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• Blind Test

Six blind samples were prepared according to the method described in Sections 3.1.1 and 3.1.2.
Three of these were normal cell samples and the others were infected cell samples. Six
samples were randomly distributed for testing by three operators. The operators must
maintain the spectral collection parameter in accordance with the manual. The manual
defines the method for obtaining the spectra and the measurement parameters such as
the laser’s power and exposure time (as defined in Section 3.2.1). Each sample contained
30–35 spectra randomly collected from the cells. Preprocessing (e.g., cosmic ray removal,
baseline subtraction, normalization, and spectral range selection) was applied to the spec-
tra from each blind spectrum. This process may result in a reduction in the number of
usable spectra. The blind spectra of each sample were then transformed into PCA and
LDA coordinates.

Besides, two more spectra sets were collected from outside the cell using the same
protocols. Without a doubt, the spectra could not be considered as a blind sample due to
the point spectral collection process. These two data sets were used exclusively to evaluate
the PCA-LDA separation model. However, the outside-the-cell spectra database may be
useful in future analysis when area spectral collection is used. Consequently, there were
eight data sets in total for the PCA-LDA separation model evaluation.

4. Results and Discussion
4.1. Characterization of Normal and Infected Red Blood Cell Raman Spectra

After the spectral processing, the average spectrum is shown by the blue line in
Figure 5a, representing the average of 460 spectra of normal red blood cells, while 365
P. falciparum (3D7) infected red blood cell spectra were averaged and are represented by the
red line in Figure 5a. Additionally, the spectrum for PBS used as the cell’s media is displayed
as the green line in Figure 5a. The Raman normalized intensity peak characteristics of
normal and infected red blood cells are shown together in Figure 5b.

When normalized to the intensity at 1586 cm−1, the intensity signal of the Raman
spectra from normal and infected red blood cells shows a slight difference, as seen in
Figure 5b. This is due to the fact that the intensity at Raman shift 1586 cm−1 is the highest
peak in all the spectra acquired from the cell area.

For the intensity imaging, the peaks were focused at 747, 1128, 1228, 1372, 1560 and
1620. Therefore, the normalized intensities in the ranges of 747–749, 1124–1134, 1220–1237,
1361–1383, 1555–1565, and 1615–1629 cm−1 (the wavenumber ranges that cover the peaks
of interest) were averaged. The variation in the intensity is represented by the color of the
image as shown in Figure 2.
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(n = 460) and infected red blood cells spectra (n = 365).

The disposal product, hemozoin is primarily visible between 24 and 32 h after infec-
tion, corresponding to the mid–late trophozoite to schizont stages. The hemozoin and the
mechanism of its formation are of great interest in the development of anti-malarial drugs.
Throughout the parasite’s life cycle, hemoglobin in the red blood cell is catabolized, pro-
ducing a large amount of free heme that is toxic to the parasite. Hemozoin is a byproduct
of the parasite’s free heme detoxification mechanism [38]. The components’ peaks in the
obtained Raman spectrum were assigned according to Table 1. Hemoglobin is the primary
constituent of normal red blood cells and its presence is represented by the strong band
in the Raman spectrum resulting from a 532 nm laser excitation wavelength to normal
and infected red blood cells. However, hemoglobin and hemozoin both contain the heme
prosthetic group, which provides the resonance enhancement in this wavelength range of
excitation [11,28,39]. The Raman spectra of hemoglobin and hemozoin were comparable
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with 532 excitation wavelengths [28]. Their distinctive peaks are in close proximity to
one another as reported by Frame et al. [28]. The experiments yielded the corresponding
results via the characteristic of the averaged normalized Raman spectrum and imaging (in
Figures 3 and 5b). The obvious difference between the normal and infected cells is visible at
Raman shifts ∼1620, 1560, 1372, 1228,1128, and 747 cm−1. When red blood cells are infected,
the hemoglobin was converted to the Fe3+ structure (hemozoin) [7,8,11,40]. The normalized
Raman spectrum exhibits an increasing intensity trend of Raman shifts at ∼1620, 1560,
1372 and 1228 cm−1, indicating the Fe3+ hemozoin characteristic band, while the Raman
shift at ∼747 and ∼1128 cm−1, which predominantly presents in the hemoglobin band
exhibits the opposite trend.

Table 1. Raman peak assignment.

Observed Wavenumber (cm−1) Assignment

676 υ7, δ(pyr deform) sym of hemoglobin
747 υ15 Hb [υ(pyr breathing), Trp, O-P-O sym Str. (lipid)
796 υ(pyr breathing)υ6
826 Porphyrin: γ(Cm H), Tyr
923 Amino acids: C–COO− stretch
950 C-C Str
973 υ46, δ(pyr deform) asym
997 υ47, υ

(
CbC1)asym , Protein (Phe)

1078, 1079 δ(= Cb H2)4, C-O Str.
1127, 1128 υ5
1171, 1172 υ30 υ(Pyr half-ring)asym

1225 δ(Cm H)
1228 δ(Cm H) (Oxy)

1244, 1242 Amide III
1247 Amide III (collagen assignment)
1307 υ21
1340 υ44(Pyr half-ring)sym

1366, 1372 υ4(Pyr half-ring)sym
1396 υ20

1432, 1434 υ28
1440 C-H2 and C-H3 bend (protein, lipid)
1463 υ3, C-H2 and C-H3 bend
1540 υ11

1560, 1562 υ(c = c),Trp
1586 υ37
1620 υ(c=c)

1639, 1640 υ10

* References for the assignment of Raman peaks: [11,19,28,38,39,41–49].

4.2. Discrimination Analysis

Due to the slight differences between the spectra, it is difficult to distinguish the
Raman spectra of normal cells from that of infected cells with the naked eye. Moreover,
several hours must be spent on an area spectra collection for imaging. As a result, PCA and
LDA techniques [50–52] were chosen for the discrimination analysis in this work.

The loadings plot of PC1 and PC2 are shown in Figure 6b, while the spectra in the
range of 450–1750 cm−1 were reduced in dimension from 755 to 350 and transformed to a
visual representation in 2D as shown in Figure 6c (PC1 and PC2). The scattering plot allows
the separation of cell spectra (both normal and infected cell spectra) from non-cell spectra
(spectra collected from outside the cell area). However, the normal and infected spectra
was still misclassified. PC1 represented 69.1% of the variance, while PC2 represented 7.8%.
There were 755 dimensions of data in total; nearly all significant features were extracted
using 350PCs, and these 350PCs data were then used as the input for the LDA algorithm in
a subsequent step.
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Figure 6. PCA-LDA results. (a) The covariance matrix of the PCA plot. (b) The loading plot of
PC1 and PC2 after PCA processing of 1175 Raman spectra (460 normal cells, 365 infected cells and
350 outside-the-cell spectra) by using 755 Raman shifts in the range of 450–1750 cm−1 is presented.
(c) The PCA result shows the PC1 and PC2 coordinate and 350 PC results from PCA are continually
input to LDA processing. (d) The LDA result plots in LD1 and LD2. In (c,d): blue dots are designated
as the normal cell transformed spectra, red dots represent the infected cell transformed spectra and
green dots are the transformed spectra obtained from the outside-cell area.

The LDA algorithm was used to process 1175 spectra. The discrimination of each
type of data is demonstrated clearly in the LD1 and LD2 coordinates in Figure 6d. The
pale sky-blue area represents a collection of normal cell spectra. The light-red cluster
represents the infected cell, while the light-green area represents the non-cell spectra. The
distinguishing area of each spectral class in Figure 6d was used as criteria for predicting
the type of unknown data.

To illustrate the analytical parameters that indicated the PCA-LDA separation model’s
efficiency, 1175 spectra were split into an 80% training set and a 20% preliminary testing set
for the model evaluation. In data splitting, ten random states (0–9) were selected. Thus, ten
data sets were considered for the model evaluation, and the final result shown in Table 2
was calculated using the average value of the confusion matrix. The values in the confusion
matrix were used to calculate the accuracy, precision, sensitivity (recall), f1-score, and
specificity terms for the PCA-LDA separation model, as shown in Figure 7. Additionally,
the ROC curve provided an overview of the efficiency of the PCA-LDA separation. If
the area under the receiver operating characteristic curve (ROC) is close to a value of
one the classification is considered to be well-performed. Due to the fact that this study
contained data from three distinct classes, the data was binarized prior to the creation of
the ROC curve. The ROC curve in Figure 8 illustrates that the PCA-LDA model performed
well in terms of discrimination, with an area under the curve of more than 0.9 for all
classes’ analysis.
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Table 2. List of parameters presenting how well the infected cells were distinguished from normal
cells and non-cell area spectra (evaluated by 20% split data from training data set).

Precision Sensitivity (Recall) F1-Score Specificity Support

Infected 0.97 0.86 0.91 0.98 73
Normal 0.88 0.98 0.93 0.92 92

Out the cell 1.00 0.97 0.99 0.93 70
Accuracy 0.94 235

Macro avg 0.95 0.94 0.94 235
Weight avg 0.94 0.94 0.94 235
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4.3. Blind Test

An example of the blind results is depicted in Figure 9 and is represented by the yellow
dots. At the conclusion of the procedure, the pie chart was used to represent the data class
prediction. The position of unknown data in the PCA-LDA separation was converted to
the probability of data class prediction, which could be easily visualized using a pie chart.
The area of the pie chart indicates the sample class’s probability (see Figure 10).

After predicting the type of blind samples using the PCA-LDA separation model
generated from 1175 training spectra, the unknown data class prediction results were
displayed in the pie chart (see the example in Figure 10, all pie charts of the blind data sets
can be seen in the Supplementary Materials). The summary of all sample predictions and
their expected outcome are shown in Table 3. All blind sample classes could be accurately
predicted. Each prediction class corresponded to an expected class.
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Table 3. Prediction results of blind samples.

Sample No. Expected
Probability of Sample Class

Prediction
Normal (%) Infected (%) Out (%)

1 Infected 24.1 75.9 0.0 Infected
2 Normal 60.6 39.4 0.0 Normal
3 Infected 31.8 68.2 0.0 Infected
4 Infected 25.0 75.0 0.0 Infected
5 Normal 82.9 17.1 0.0 Normal
6 Normal 78.6 21.4 0.0 Normal
7 Out 0.0 6.2 93.8 Out
8 Out 3.1 0.0 96.9 Out

Table 4 shows the accuracy, precision, sensitivity (recall), and specificity of the blind
data sets. The values dropped compared with using 20% split data from 1175 training
spectra to be tested (see Table 2). In Figure 11, the area under the receiver operating
characteristic curve shows the same trend, with the infected class having an area under
the curve of 0.78 and the normal class having an area under the curve of 0.80. However,
the efficiency of the out-of-cell class is quite clearly stable, regardless of whether the
model was evaluated using blind data or data split from the 1175 training spectra set.
That is, the separation model is highly efficient at classifying the inside- and outside-the-
cell information.
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Table 4. Efficiency of the model evaluated by blind sample data sets (test set).

Precision Sensitivity (Recall) F1-Score Specificity Support

Infected 0.65 0.73 0.69 0.83 71
Normal 0.79 0.75 0.77 0.84 102

Out the cell 1.00 0.95 0.98 0.74 64
Accuracy 0.80 237

Macro avg 0.81 0.81 0.81 237
Weight avg 0.81 0.80 0.80 237
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In Figure 8, the testing set taken from the 1175 training spectra, the model demonstrates
a high ability to discriminate with an average accuracy of over 90%, as illustrated in Table 2,
and the area under the receiver operating characteristic curve is nearly one (Figure 8).
It should be noted that in blind spectra data sets obtained from various operators, the
distribution that was generated in each sample’s spectral data varied, despite the fact that
measurement parameters such as the laser’s power, the time exposed to the sample, the
lens, and so on were all controlled, including the procedures used in the sample preparation
step. As the distribution in the training data was incompatible with the distribution in the
testing data set, the efficacy of discriminating between data classes was reduced. However,
the training spectra set in the PCA-LDA separation model is an updateable database and it
can be updated infinitely. When a larger set of training data that covers the distribution in
the testing set is incorporated into the existing database, the PCA-LDA separation could
improve the efficiency of malaria-infected red blood cells identification.

5. Conclusions

Nowadays, there is still demand for the development of malaria diagnosis techniques.
This study aims to develop an alternative method for malaria detection based on surface-
enhanced Raman spectroscopy. Three crucial stages including the sample preparation,
collecting the Raman spectra and data analysis are described in detail. Both average nor-
malized spectra and spectral imaging were found to produce comparable results. During
infection, the Raman intensity modification of the heme-based composition, which corre-
sponds to the metabolically crystallized byproduct (hemozoin) of hemoglobin digestion,
increased at ∼1620, 1560, 1372, and 1228 cm−1, and decreased at 747 and 1128 cm−1. When
PCA-LDA analysis was applied to the SERS spectra, the separation of infected and normal
cell spectra was readily apparent in PCA-LDA coordinates. Additionally, the PCA-LDA
coordinate separation could be used to predict the class of the blind sample cell. Each data
set yielded the correct response. The separation model’s efficiency can still be improved
since the spectral database for training the model can be updated. In this study, only the
qualitative results of the sample classification were reported. However, the protocols that
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were applied can be reproduced by volunteers and all of the blind samples offered accurate
predictions. This shows that the proposed approach can be employed in future quantitative
malaria diagnosis development studies and can be refined so that it can be applied at a
clinical application level. Furthermore, the spectra in this study can be utilized as references
for any red blood cell or malaria-related Raman spectroscopy investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mps5030049/s1, Figure S1. pie charts of the blind data sets,
Supplement for Figure 10.
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