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Abstract: Since the completion of the Human Genome Project, the field of human genetics 
has been in great flux, largely due to technological advances in studying DNA sequence 
variation. Although community-wide adoption of statistical standards was key to the 
success of genome-wide association studies, similar standards have not yet been globally 
applied to the processing and interpretation of sequencing data. It has proven particularly 
challenging to pinpoint unequivocally disease variants in sequencing studies of polygenic 
traits. Here, we comment on a number of factors that may contribute to irreproducible 
claims of association in scientific literature and discuss possible steps that we can take 
towards cultural change. 
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1. The Evolution of Genetic Association Studies 

The Human Genome Project [1] remains the largest scientific endeavor in the biological sciences, 
spanning thirteen years, requiring hundreds of researchers around the globe, and costing $3 billion. 
Called the “most important, most wondrous map ever produced by human kind” [2] by U.S. President 
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Clinton upon its completion, the map of the genome catapulted the investigation of human disease into 
a new era. The study of complex traits and disease had previously been limited to genetic linkage 
studies, typically laborious efforts limited to constructing linkage maps in families and powered for 
discovering highly penetrant variants. Now, geneticists could identify single-base changes in the 
genome (single nucleotide polymorphisms, or SNPs) and, by measuring the frequencies of these 
changes in large groups of cases and controls, test SNPs for association with susceptibility to any 
number of diseases. 

Upon the completion of the Human Genome Project, the field of genetics was faced with 
determining how best to hunt for such associations. The first widely used method was candidate gene 
studies, in which genes with suspected biological or functional relevance to the disease in question 
were selected for testing. These studies were applied to a variety of traits [3], but in the absence of 
community-wide standards for analysis, they were plagued with problems. Reviews of candidate gene 
studies found that small sample sizes, population stratification issues, weak effects, and a lack of 
statistical evidence for the claimed associations were common [3–6]. All of these problems contributed 
to the irreproducibility of initial findings; one review found that of 166 associations with more than 
two follow-up studies, only six (3.6%) replicated [3]. 

Despite limited success in candidate gene studies, the number of replicated associations indicated 
that common variation (frequency >5%) indeed plays a role in genetic susceptibility to common 
disease (involving tens of genes and environmental factors) [7]. In 2005, the approach in genetics 
began shifting towards genome-wide association studies (GWAS) [8], which require no prior 
hypothesis about which genes are likely to influence disease. Instead, geneticists could test millions of 
common variants across the genome for association with the trait of interest. Systematic cataloguing of 
these variants [9] allowed for the design of genome-wide SNP arrays, ultimately allowing for low-cost 
capture of tens of thousands of variants in large samples. 

The beginnings of GWAS were slow; initial studies produced few if any associated loci, and it 
quickly became clear that larger samples would be necessary for sufficient power to detect susceptibility 
variants [10]. With the formation of international consortia, collection of large samples, and assembly 
of imputation panels that allowed for testing of variants not present on SNP arrays came an explosion 
in discovered loci (Figure 1). Along with the rapid increase in the number of GWAS being performed 
came a large-scale effort to standardize the method. The community adopted the genome-wide 
significance p-value threshold of 5 × 10−8, a p-value that reflects a Bonferroni correction for the 
approximately one million independent tests performed in a GWAS [11,12]. Methods for handling 
population stratification were developed [13], as were approaches for finding and removing poorly 
captured genotypes [14]. Replication of discovered loci also became a criterion for declaring a SNP to 
be associated with a disease [15,16]. With best practices in place, GWAS has become an efficient and 
robust method for discovering the contribution of common variation to susceptibility in common 
disease. The total number of SNPs associated with complex traits (at genome-wide significance) was 
only seven by the end of 2006, but by 2008, an additional 637 associations had been discovered [17]. 
Today, more than 6,000 disease-SNP associations have been reported. 
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Figure 1. Disease-susceptibility loci discovered to date in various complex traits, as 
reported in the National Human Genome Research Institute (NHGRI) genome-wide 
association studies (GWAS) catalog [17]. Early genome-wide association studies 
interrogated small samples and uncovered few, if any, loci associated with the trait of 
interest. However, collaborative efforts to assemble large-scale samples improved power 
and implicated tens and even hundreds of susceptibility loci, revealing a (roughly) linear 
relationship between sample size and associated loci [18]. 

 

Because of established best practices and statistical thresholds, most GWAS findings are robust and 
reproducible. The method is, of course, not immune to error; for example, one GWAS looking for 
variants associated with longevity failed to correct for technical bias introduced by the use of two 
different SNP arrays, inducing spurious association [19]. The mistake went unnoticed until the results 
were published and several geneticists caught the error. The false report received attention from the 
genetics community and the media alike [20] and was later retracted [21]. 

More recently, scientists and the media have cast a critical eye towards the aspects of scientific 
culture that also give rise to false-positive findings in published work. The Economist recently 
published an article suggesting that science is not as self-correcting as many assume [22,23], and 
journals such as Nature and Science are publishing columns on scientific misconduct, peer-review, and 
other issues that contribute to the reporting of inaccurate results [24–28]. The last four years have also 
seen several published studies on the prevalence of false discoveries and misconduct, indicating that as 
many as “1% of published papers are fraudulent” (about 20,000 papers each year) [25]. Given the 
increased attention from the public and scientists alike, and because genetics is in a transition phase as 
it moves from performing GWAS data to studying next-generation sequencing data, now is an ideal 
time to address some of these shortcomings. 
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2. Sources of Error and Bias in Genetic Research 

A number of factors contribute to false-positive findings in published human genetic research. 
Technical artifact, such as mishandling of population stratification, poorly genotyped SNPs, and batch 
effects introduced by different SNP arrays or genotyping runs can cause spurious results, though a 
number of methods have been designed for detecting them [13,29–32]. Study design is also crucial in 
avoiding false positives. SNPs implicated in disease susceptibility typically have modest effect sizes 
(odds ratios ranging from 1.1–1.5) [18]; insufficient sample size to detect such effects can substantially 
reduce a study’s power and increase the likelihood of discovering an artifact rather than a true association. 

Although technical error can lead to false positives, a number of other forces in research culture 
also contribute to the number of published erroneous findings. In the span of just seven years, GWAS 
moved from small-scale efforts to studies of thousands of samples, leading to a heavy reliance on 
statistical methods to study large datasets. Yet, researchers’ understanding of statistics has not kept 
pace with data generation, making them more likely to apply inappropriate statistical tests or perform 
tests they do not fully understand. The same holds true for the many programs written to analyze 
genome-wide datasets. Not all researchers using this software will fully understand the underlying 
methods, increasing the chance of false positives going unnoticed. 

The peer-review process is also partially to blame for the introduction of false findings into 
scientific literature. Though researchers would seem ideal candidates for catching the mistakes of their 
peers, studies suggest that they often fail to catch errors (even when instructed that there are errors to 
find) [22]. Further, peer-reviewers are not provided all data underlying a paper and therefore cannot 
reproduce analyses to verify findings. 

Studies also indicate that misconduct (which includes plagiarism, fraud, and duplicate publications) 
has been on the rise in recent years [33] and accounts for the majority of retracted papers in the life 
sciences [34]. A number of aspects of research culture likely contribute to such misconduct. Scientific 
research has become a field in which the number of articles a researcher produces is a primary measure 
of success. Career opportunities in the sciences also often hinge on the number of publications a 
scientist has produced. Conflating financial interests (whether in the form of employment or grants) 
and pressure to publish is a factor that potentially gives rise to false associations reported in scientific 
literature [35]. Anyone pressed to produce such a high volume of results, preferably at great speed, is 
more likely to miss mistakes in her own work. 

Publication and funding bias are also problematic [36]. Although replicating a result is the 
backbone of establishing the veracity of a scientific claim, replication studies are less likely to be 
funded than discovery-focused experiments, and journals are less likely to publish them. Journals also 
typically do not publish negative studies, preferring to focus instead on novel results. The 
establishment of the impact factor system has further intensified journals’ bias towards novelty. While 
selecting manuscripts for publication, journal editors consider not only the content of the manuscript, 
but also the potential that the paper will improve the journal’s impact factor. The impact factor ranking 
system also heightens publishing competition for researchers. Researchers seek publication in only a 
very small set of highly selective journals in pursuit of many citations, widespread attention from the 
scientific community and popular media, and potential career advancement. In molecular biology and 
genetics, just six journals accounted for 85 of the 100 most-cited articles between 1998 and 2008 [37]. 
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Increasing the prevalence of false positives are those journals that seek to turn a profit by preying 
off a research culture that keeps publishing at its center. The number of journals accepting manuscripts 
is large and rapidly growing. The Directory of Open Access Journals, which tracks open access 
journals and their credibility, has tracked the swift global expansion of the number of open access 
journals, including an addition of over 1000 journals in 2012 alone [38] (Figure 2). A “sting” 
conducted on open-access journals revealed that many of them are uninterested in scientific veracity; a 
paper concocted wholesale and containing glaring errors was accepted by more than 52% of the 
targeted journals [39]. The “sting” in part implicated a flawed peer-review system, as 40% of the 
submissions were reviewed and then accepted. The other 60% of submissions, however, were accepted 
without any indication of peer review, suggesting that many of the journals the “sting” targeted are 
focused more on profit rather than on scientific rigor, encouraging a culture that values a published 
finding over a robust result. 

Figure 2. The growth of open access journals over time and around the world. (a) The 
number of open-access journals, as tracked by the Directory of Open Access Journals, over 
the last 140 years. (b) Countries with over 100 open-access journals accepting manuscripts. 

 

3. Next-Generation Sequencing: New Technology, New Challenges 

The advent of next-generation sequencing (NGS) technology has ushered in a new wave of studies 
in human genetic research. Given that many complex traits involve tens and sometimes hundreds of 
loci [40,41], lower-frequency variants may also contribute to the architecture of human disease. 
However, these variants are weakly tagged by common SNPs and have therefore gone untested by 
GWAS efforts. Researchers using NGS data can test (nearly) the entire set of variants in a single 
genome, helping to complete the picture of the role of genetic variation in common disease. Yet, this 
new technology brings with it many challenges, giving rise to additional forces that may lead to false 
positives in scientific literature. 
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A number of technical errors can give rise to a false-positive association in a NGS disease study. 
Determining genotypes from sequencing reads is more challenging than determining genotypes from 
SNP array data [42,43]. Rather than measuring probe intensities, as is done with SNP arrays to 
determine genotypes, extracting genotypes from sequencing data involves multiple steps, including 
mapping sequencing reads to a reference, detecting bases that do not match the reference, and 
determining the genotypes of each individual at each base; errors can occur at any of these steps and 
are particularly likely in regions that are difficult to capture, such as those rich in GC content or that 
are highly repetitive. Further, determining inclusion and exclusion criteria for variants based on a host 
of sequencing metrics can be difficult, sometimes requiring manual review of each of the metrics to 
determine appropriate filters [44]. Even the most conservative variant calling and quality control (QC) 
cannot guarantee that “variants” that are actually artifacts will be removed from the dataset. 

Study design flaws can also prompt false-positive results. Although methods for detecting 
population stratification have been developed and widely used in GWAS, our understanding of 
population stratification in rare variants is limited and may confound association results [45]. To 
reduce costs, an investigator may choose to sequence only cases and use external (previously 
sequenced) controls; this approach may introduce stratification because the controls may be sequenced 
using a different platform [46] or genotype-called using outdated software. Alternatively, an 
investigator may want to sequence only cases and then genotype the discovered variants in controls or 
have cases substantially outnumber the controls, but these approaches also inflate type I error [47]. 

So-called loss-of-function mutations are of particular interest in NGS studies since they truncate 
proteins and are thus good candidates for likely pathogenic mutations. However, determining the 
deleteriousness of a loss-of-function mutation can be challenging, and this class of variants is enriched 
for artifacts [48]. It may be tempting to relax statistical thresholds for loss-of-function mutations or 
produce functional results for them before assembling appropriate statistical evidence from the genetic 
data, but doing so can lead to error. 

Though there are many challenges in performing an NGS study, the single largest problem plaguing 
sequencing disease studies to date is low statistical power to detect an association. The hypothesis that 
rare variants influencing susceptibility to common disease would have larger effect sizes than those 
discovered by GWAS has gone largely unsupported, and analyses indicate that NGS studies will 
require tens and even hundreds of thousands of samples to be well powered [46,49] (Figure 3). 
Consequently, assembling adequate sample sizes for NGS studies will take time, but researchers 
remain under pressure to publish. As a result, they will likely be anxious to push forward results that 
are not fully understood, lack statistical evidence, and may not even be real. 

Finally, publishing bias will prove even more problematic in the sequencing age. The optimal 
choices for designing and performing a sequencing study—from phenotype ascertainment to selecting 
algorithms for calling and filtering variants and deciding which association tests to apply—remain 
difficult to discern. Sequencing studies that lack “positive” findings are highly informative but publishing 
bias will prevent such information from being widely disseminated. It will be more difficult to 
establish a standardized methodology for NGS studies, as was done for GWAS, because it is likely that 
“failed” experiments will not be given the same attention as studies reporting new and exciting results. 
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Figure 3. (a) The power to detect a genetic association is a function of sample size (N), 
effect size (γ), the frequency of the associated allele (p), and linkage disequilibrium (LD) 
between the tested and causal variants (R2), assuming an additive model [50].  
(b) For sequencing studies, many thousands of samples will be necessary to detect single, 
low-frequency variants associated with disease risk at genome-wide significance (black 
line). RAF, risk allele frequency. 

 

 

4. Lacking Evidence: Examples from NGS Studies 

To publish disease-associated loci discovered through genome-wide association studies, it has 
become standard practice to meet basic criteria for discovery: appropriate sample and genotype 
cleaning, a SNP at genome-wide significance with a reasonable effect size and frequency, and 
replication in independent samples. Such standards do not yet exist for sequencing studies. Without 
criteria for claiming an association combined with publication bias and the pervasive pressure to 
“publish or perish,” some NGS studies in complex traits have been published despite a paucity of 
statistical evidence. 

A targeted sequencing project in anorexia nervosa (AN) patients claims an association between AN 
and the epoxide hydrolase 2 (EPHX2) gene, though the burden test p-value of the gene failed to meet 
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exome-wide significance (discovery, p = 4 × 10−4; replication, p = 6.2 × 10−3) [51]. Because EPHX2 
has been linked to lipid traits and hypercholesterolemia is common in AN patients, the authors 
performed a variety of interaction tests between variants in EPHX2 and cholesterol and body mass 
index. They suggest that the results of the interaction tests of seven SNPs (p = 0.004–0.045) are 
additional evidence for the role of EPHX2 in AN, but show no correction for multiple testing. A small 
sample size (1205 cases and 1719 controls), a large case-control ratio (~3:1) in discovery, and 
mismatched ancestries between cases and controls (indicated by a principal component plot) may have 
also confounded the results. Although the authors acknowledge the need for additional replication, 
declaring the association between EPHX2 and AN “statistically compelling” seems premature. 

Another study examined whole-exome sequencing (WES) from four samples with multiple 
sclerosis (MS) selected from a family with more than 15 affected individuals [52]. The group found 
one novel missense mutation in the tyrosine kinase 2 (TYK2) gene, an MS-susceptibility locus 
established through GWAS [53,54]. The authors performed genotyping of the variant in all remaining 
family members and report the percentage of affected and unaffected individuals carrying the variant 
(10/14 (71.4%) and 28/60 (46.7%), respectively); the difference is not statistically significant  
(p = 0.17; not reported). Follow-up genotyping in an additional 2,104 cases and 1,543 controls 
revealed that the variant had a frequency of 0.8% in cases and 0.6% in controls, also not a statistically 
significant difference (which the authors state themselves). In fact, these frequencies are consistent 
with observed frequencies in several sets of healthy individuals [55]. Nonetheless, the authors 
conclude the variant has a modest effect on MS risk. Even though GWAS has established TYK2 as an 
MS-associated locus, the particular variant implicated by this study is severely lacking in statistical 
evidence and seems highly unlikely to confer disease susceptibility. 

Some sequencing studies rely on functional follow-up of a variant or gene in the absence of 
statistically compelling genetic evidence. One recent paper examining a family with 22 members with 
early-onset myocardial infarction (EOMI) implicated a frameshift insertion in the guanyl cyclase 1, 
soluble alpha 3 (GUCY1A3) gene and a nonsynonymous single nucleotide variant (SNV) in the 
chaperonin containing TCP1 (CCT7) gene in susceptibility to disease [56]. The frequency of the 
variants in affected versus unaffected family members was not statistically significant, as the sample 
size was small. A search for other susceptibility variants in these two genes in 252 EOMI cases and 
800 controls yielded counts that were also not statistically significant (Fisher’s p = 0.023 and p = 0.12 
for GUCY1A3 and CCT7, respectively). Functional work on both variants is provided as additional 
evidence, indicating that mutations in both GUCY1A3 and CCT7 in mice induce a protein deficiency 
that can accelerate the formation of clots that potentially cause infarction. Guanyl cyclase is a key gene 
in signal transduction involved in vasodilation, and it is possible that these two loci influence 
susceptibility to EOMI. However, the statistical evidence from the genetic data alone is not strong 
enough to claim association between the mutations and the trait. Moreover, it is not immediately 
obvious whether the conclusions of functional work in mouse models will be pertinent to humans or 
whether findings from such an extreme family will be extendable to EOMI in the general population [57]. 

A WES study in sporadic amyotrophic lateral sclerosis (ALS) trios also relied on functional work to 
bolster the finding in the absence of statistically compelling results [58]. The group identified de novo 
mutations in 47 ALS patients and discovered 25 de novo variants in 25 different genes, a distribution 
consistent with the (null) distribution in healthy individuals [59]. A pathway analysis indicated 
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enrichment for chromatin regulator genes, such as the synovial sarcoma translocation (SS18L1 or 
CREST) gene, which contained a single de novo event in one sample. The authors found that variants 
in CREST inhibited neurite growth in animal models and claimed that de novo mutations in the gene 
confer ALS risk. However, a single de novo event from one individual, even if the variant is 
functional, is insufficient evidence to claim a role in disease susceptibility [60], and extensive 
replication efforts will be necessary to determine whether the ALS-CREST association is real.  

A similar WES effort in Hirschsprung’s disease sequenced two affected (related) samples and also used 
pathway analysis to investigate the role of the neuregulin 3 (NRG3) gene in disease susceptibility [61]. 
Three variants found in NRG3 in the initial samples were followed up in 96 cases and 110 controls; the 
variants were carried by a few cases and no controls (Fisher’s p = 0.021, p = 0.22, p = 0.021, for the 
three variants, respectively). The authors discuss the biological plausibility of the NRG3 association 
based on the gene’s role in the nervous system, but due to the small sample size, the genetic evidence 
for the association is lacking. 

In each of these studies, the statistical evidence based on the provided data was insufficient. 
Although it is certainly possible that replication will show these findings to be real, their publication 
before gathering more persuasive statistical evidence from genetic data seems a symptom of a much 
larger problem. Researchers eager to publish novel results, peer reviewers not questioning the dearth of 
evidence, and journals enthusiastic to publish exciting stories that will garner both attention and 
citations all combine to allow findings that have not yet been demonstrated as statistically robust to 
enter scientific literature as such. 

5. Conclusions: Moving Towards Permanent Change 

A number of changes, addressing both technical challenges and cultural characteristics of research, 
can be implemented in order to improve the veracity of claims in published research. Though 
association testing approaches may differ between sequencing studies (such as selecting single-variant 
testing or gene-based testing), the universal application of particular thresholds will help to ensure the 
robustness of claimed associations. The statistical stringency of genome-wide significance at 5 × 10−8 
has served the genetics community well and has ensured the robustness of the majority of GWAS 
findings. Single-variant testing across whole-genome data should maintain this threshold, if not 
establish a more conservative one given the increased number of variants tested. Similarly, burden 
tests of genes should be held to an exome-wide significance level, estimated to be approximately  
5 × 10−7 [44]. Relaxing these thresholds, particularly tempting in the case of loss-of-function mutations 
or studies that analyze only a small set of genes, is unwise. A number of mechanisms make interpreting 
the true deleteriousness of a variant difficult; functional annotation alone does not guarantee a true 
loss-of-function mutation [44,48]. Findings from other association testing approaches, such as pathway 
analyses or polygenic modeling, should be evaluated based on appropriate Bonferroni correction for 
independent tests. Some may argue that it is overly conservative to hold a small set of genes or variants 
to an exome- or genome-wide threshold, but these smaller analyses are simply subsets of what will 
likely become exhaustive genome-wide searches. Contingent on the assembly of large datasets, testing 
every gene or variant is inevitable. False-positive signals can occur anywhere in the search space, and 
assuming these false positives will not occur in smaller, earlier searches is faulty logic [62]. 
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Designing and performing a study correctly is also crucial to avoiding spurious associations. Large 
samples are of the utmost priority and will lead to additional discoveries, as demonstrated by a recent 
WES project in Alzheimer’s that discovered rare variants in the phospholipase D family (Member 3) 
(PLD3) gene by whole-exome sequencing of 14 families and replicated the finding in a large-scale 
cohort (11,000 European-ancestry cases and controls, gene burden odds ratio = 2.75, p = 1.44 × 10−11; 
302 African-ancestry cases and controls, gene burden odds ratio = 5.48, p = 1.4 × 10−3) [63]. 
Leveraging population isolates [64] and assembling non-European samples [46] may also help in 
improving power, as was true in the GWAS era [65]. Because of varying study designs and 
technologies, standardizing NGS data processing and analysis is difficult and will likely take time as 
methods continue to develop. However, some best practices already exist [42,43,55] and should be 
followed. Further, the methods sections of papers should be as clear and explicit as possible, reading as 
“how-to” guides to allow peer reviewers to catch technical mistakes and aid external replication efforts. 
Ideally, data should be made publicly available whenever possible. Each of these steps will improve the 
quality of NGS studies as they are increasingly used in the future to study complex traits (Figure 4a,b). 

Designing a sequencing study not only involves consideration of the technical aspects of the study 
but also of the analysis team. Diversifying the team to include scientists with an array of expertise will 
improve the study’s execution and increase the likelihood that the findings prove replicable. In 
addition to geneticists, computer scientists, statisticians, biologists, engineers, and clinicians can all 
contribute to different aspects of a sequencing study, from assembling the raw sequencing data to 
interpreting results. Methods for sequencing analysis are evolving rapidly, and multifaceted teams 
representing many scientific fields are optimal for keeping pace with this changing landscape. 

Future scientific publications will also be improved by an open peer review system. Some journals, 
such as the journal of the European Molecular Biology Organization (EMBO), have already begun 
making peer review a public process to great success [66]. The exchange that occurs between scientists 
during peer review can be valuable not only for the authors, but also for other researchers. If reviews, 
responses and revisions are made public the scientific community will benefit as a whole by being able 
to design better studies and avoid errors that other researchers have made. Further, peer review is 
crucial to the scientific process, yet is rarely ever taught. Making peer review reports accessible to all can 
serve as a teaching tool, particularly for younger scientists who may be unfamiliar with the process [66]. 

Peer review is not the only aspect of publishing in scientific journals that should be open. Though 
some open-access journals were discredited in Science’s recent “sting”, several open-access journals 
have become highly reputable in the scientific community, and other journals are giving authors the 
option to make their article open-access. This trend towards open-access science should continue. 
Rather than hiding important discoveries behind exorbitantly priced subscriptions, journals should be 
making these findings easily accessible so that they may be discussed and retested by the scientific 
community and available to the public. 

While changes such as statistical stringency, public peer review, and open-access articles are readily 
implementable, other changes in research culture will enhance the robustness of published findings, 
but will require a larger community effort. Journals should require researchers to increase transparency 
and meet certain criteria before submitting a manuscript for consideration. The Nature Publishing 
Group recently updated its editorial policies [67], requiring authors to fill out a checklist that 
accompanies their submitted manuscript. The checklist addresses areas of manuscripts, such as study 
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design and analysis, which the editors have noticed are often not reported completely. The checklist 
also lends particular emphasis to justifying statistical analyses; the Nature Publishing Group will now 
consult with statisticians if there seem to be glaring analytic issues or if a referee suggests outside 
consultation. Other journals should adopt a similar strategy. 

Figure 4. Trending topics on PubMed, 2000–2013. The cumulative number of times certain 
phrases appear per one million abstracts in PubMed. (a) Earlier genetic association studies 
(search terms: “candidate gene”; “linkage analysis” or “linkage study”; “genome-wide 
association study”). (b) Next-generation sequencing studies (search terms: “exome 
sequencing”; “whole-genome sequencing”). (c) Retraction notices (search terms: “retraction 
notice” or “notice of retraction”). (d) Claims of novelty and statistical significance (search 
terms: “novel”; “not statistically significant” or “not significant”; “statistically significant” 
removing “not statistically significant”). 
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Retractions of genome-wide association and next-generation sequencing studies have been limited 
and should remain as such. To further increase the responsibility of journals in helping prevent 
retractions, the genetics community could establish a retraction index (similar to impact factor) for 
each journal. Such an index would track retraction rate and thus encourage journal editors to rigorously 
review findings and pursue a thorough peer-review process. Of course, researchers must take on greater 
responsibility for retractions, as well. Currently, retraction notices can be limited in information or 
completely ambiguous [34]. Instead, authors should be required to provide retraction notices that detail 
the steps that led to the retraction. The notice should be published as a brief article for the journal’s 
readership to see and appended to the original manuscript. Requiring a detailed notice will encourage 
authors to be particularly critical of their own work and may help deter future retractions (Figure 4c). 

Journals should also work to rectify publication bias towards novel findings (Figure 4d). A study on 
de novo variation in Autism Spectrum Disorder (which did not discover any disease-susceptibility loci) 
extensively investigated population stratification in rare variants and the effects of different  
meta-analysis approaches on power [68]. A recent WES paper on Type 2 Diabetes also did not discover 
disease-associated genes, but performed a host of analyses to determine likely etiological architecture [69]. 
Such findings should be made accessible to the entire community, as they can clarify our understanding 
of the genetic architecture of complex traits and improve future studies.  

Journals can also be used to educate the scientific community in areas where it is lacking, such as 
applications of statistics and data interpretation. Three papers published together in the Journal of the 
American Medical Association explain how to interpret genome-wide association studies [70–72]. This 
fall, Nature Methods began publishing the column Points of Significance [73–76], which addresses 
important statistical concepts such as p-values, significance, and the relationship between sample size 
and power. Nature also recently ran a column that discussed the role of bias, the inexact nature of 
measurements, and the important distinction between correlation and causation [77]. Such articles do a 
great community service and will remain invaluable teaching tools to the many genetics researchers 
without formal training in statistics, allowing them to evaluate claims of novelty, both in their work 
and the work of others. 

Of course, in addition to all of these larger changes, the field will hugely benefit from changes on a 
smaller scale. Senior scientists should encourage younger members of the field to conduct rigorous 
experiments, remain vigilant to prevent error, and seek additional help when in doubt about an analysis 
or result. Mistakes or “negative” findings should be met with discussion about how to improve a 
scientific question or refine an experiment. Randy Schekman, who won the Nobel Prize for physiology 
or medicine in 2013, has recently sparked public debate by announcing that he and all members of his 
lab will no longer be publishing in Nature, Science, and Cell [78]. Schekman’s announcement, while 
controversial because of its potentially detrimental effects on the careers of his younger lab members, 
has an important motivation: to publicly address the adverse effects that publication bias and lack of 
open-access have had on the field. Making younger scientists aware of the aspects of scientific culture 
that are damaging to the quality of published and public science and prompting them to push for 
change can only alter the field for the better. 

Fortunately, science in general and genetics in particular has proven to be a highly adaptive field. 
Peer-review is a relatively new process, becoming standard practice for most scientific journals in the 
second half of the 20th century [79]. In less than a decade, the foundation of the Public Library of 
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Science (PLoS) has helped to revolutionize publishing in science, providing the scientific community 
with a family of open-access journals and encouraging other journals to follow suit in its pursuit of 
freely available scientific literature [80]. In genetics specifically, the community acknowledged that 
candidate gene studies were poorly performing and established standards for more robust genome-wide 
association studies. Again, the tide has begun to shift as communities to discuss pre-prints continue to 
grow [81,82], researchers increasingly use social media to discuss many of the issues addressed here, 
and journals begin altering their editorial and publishing processes. With a concerted effort to improve 
published work, the field of human genetics is capable of permanent change. 
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