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Abstract

The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our
knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV)
is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to
significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and
swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine
production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247
newly sequenced samples) and employ an extension of this inference framework that enables formally testing the
contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of
Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade
to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV
lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of
PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global
scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention
and containment measures to combat a wide range of livestock coronaviruses.

Key words: porcine epidemic diarrhea virus, Coronaviridae, phylogeography, Bayesian inference, generalized linear
model, BEAST.

Introduction
Coronaviruses are single-stranded, positive-sense RNA viruses
that cause subclinical as well as respiratory and gastrointesti-
nal diseases in humans, other mammals, and birds (Brian and
Baric 2005). The host range switches of coronaviruses (CoVs)

from wildlife to humans have resulted in several novel dis-
eases with high fatality rate, such as severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome (MERS),
and the recent outbreak of SARS-CoV-2 (Drosten et al. 2003;
Zaki et al. 2012; Sun et al. 2020). Of note, SARS-CoV-2 is the
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most widespread and impactful human infectious disease
since the start of the 21st century (Drosten et al. 2003;
Graham and Baric 2020). As of November 8, 2021, there
have been over 250 million confirmed cases and 5 million
deaths reported worldwide (https://www.who.int/data#re-
ports). Despite likely having originated in bats, SARS-CoV
and MERS-CoV have infected humans via an intermediate
host rather than through direct infection from bats, and this
may also be the case for SARS-CoV-2 (Guan et al. 2003; Lam
et al. 2020; Zhou et al. 2020). Currently, the number of known
intermediate hosts involved in the transmission of bat-origin
coronaviruses to humans is limited. Compared with many
other species, swine are in frequent contact with both
humans and other animals such as wildlife, livestock, stray
cats and dogs, and aquatic birds, which increases in theory the
chance of cross-species transmission (Sabir et al. 2016; Li et al.
2018; He et al. 2019). Therefore, monitoring and understand-
ing the evolution and transmission of porcine coronavirus in
swine populations can not only help the swine breeding in-
dustry, but also further prevent and control potential public
health threats.

Porcine epidemic diarrhea virus (PEDV) is a likely bat-
associated Alphacoronavirus that causes porcine epidemic
diarrhea (PED) (Huang et al. 2013). The main clinical syn-
drome is characterized by acute watery diarrhea, vomiting,
and dehydration. In swine, the mortality rate can often reach
100% (Wood 1977; Coussement et al. 1982; Chen et al. 2011).
In the past 30 years (from 1984 to early 2010), there has been
sporadic circulation of PEDV in the swine population in China
and worldwide (Sun et al. 2015; Wang et al. 2016). However, a
larger PEDV outbreak occurred in southern China in late
2010, later spreading to other Chinese provinces (Sun et al.
2015; Wang et al. 2016). The identification and sequencing of
PEDV strains in this outbreak showed the emergence of a new
variant of PEDV in China (Chen et al. 2012), further contrib-
uting to an overall high diversity of PEDV variants in China
(Chen et al. 2019; Su et al. 2020; Tan et al. 2020). However,
compared with classic strains such as CV777 (G1 genogroup,
subgroup G1a), this PEDV variant forms an independent lin-
eage (G2 genogroup). Due to the genetic differences between
the G1 and G2 genogroups, the commercially available CV777
inactivated vaccine and the DR13 attenuated live vaccine do
not provide effective protection for PEDV variants, making
prevention and control difficult to achieve (Li et al. 2012; Sun
et al. 2012; Wang et al. 2013). PEDV G2 quickly became the
dominant strain worldwide and currently circulates in swine
farms in Asia, Europe, and North America causing enormous
economic losses to the swine industry and posing a potential
threat to public health (Huang et al. 2013).

Phylogeographic inference enables the reconstruction of
the geographic dispersion of a virus through time, based upon
the sampling times and sampling locations associated with
the collected sequence data (Lemey et al. 2009, 2010).
Different extensions have been developed to assess the im-
pact of potential predictors, in the form of ecological and
environmental data, on the geographic spread of viruses
(Lemey et al. 2014; Dellicour et al. 2016). Certain phylogeo-
graphic studies have pointed toward live animal trade as an

important source of viral spread. For example, the global
spread of swine influenza A viruses was mainly influenced
by live swine trade between countries (Nelson et al. 2015),
whereas other studies have identified the important role of
live poultry trade (Yang et al. 2020). Another study, focusing
on the spread of type 2 porcine reproductive and respiratory
syndrome virus (PRRSV) in North America, found a unidirec-
tional PRRSV flow from Canada to the United States through
live swine trade. After its introduction, and impacted by land-
scape structure, this variant rapidly expanded in genetic di-
versity and geographic distribution (Shi et al. 2013). These
studies illustrate the potential of phylogenetic and phylogeo-
graphic inference for identifying reservoir species, sources of
infection, the overall ancestral history of spread and the (eco-
logical and/or environmental) factors that impact that spread
(Holmes 2008).

China has seen the emergence of the highest number of
livestock and poultry diseases in the world, and (re-)emerging
diseases continue to occur (Zhai et al. 2014; Gu et al. 2017;
Guo et al. 2018; Li et al. 2018; Dixon et al. 2019). China also
hosts the largest swine population in the world, and while live
swine transportation between provinces is frequent, the role
of transportation and stocking density in spreading swine-
borne viruses nationwide is still largely unclear (Nelson et al.
2015; Baele et al. 2018). For the purpose of this study, we were
granted access to previously inaccessible between-province
trade data, providing a unique opportunity to study trans-
mission dynamics within China in detail. We composed an
initial data set of over 2,000 sequences, including 247 new
sequences extracted over the past 3 years and all publicly
available PEDV sequences on GenBank, which we then ran
through a rigorous data-selection process. We employed
Bayesian phylogeographic inference (Lemey et al. 2009) using
discrete location data (provinces within China and countries
from across the world) in order to infer the evolutionary and
geographical history of PEDV within China and on a global
scale. We made use of an extension of this model—in the
form of a generalized linear model (GLM)—that enables us to
test the contribution of a collection of potential predictors of
viral spread. To the best of our knowledge, our work consti-
tutes the first study conducted on the impact of live swine
trade on the geographic dispersal of swine-borne viruses in
China. Furthermore, given the propensity of interspecies
transmission by coronaviruses, and their tendency for recom-
bination, our unique approach allowed us to bridge the
knowledge gap on emergence of animal coronaviruses with
cross-regional transmissions. This methodology also provides
a framework for assessing risks of infectious diseases in live-
stock associated with patterns of live animal movement and
environmental factors.

Results

Phylogeographic Reconstruction and Drivers of PEDV
Spread within China
Phylogenetic analysis revealed that long-distance movement
of PEDV genotype G2 between provinces has occurred con-
tinuously in swine since 2010. Figure 1a shows the
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reconstructed spread of PEDV within China during the past
two decades by means of the estimated MCC tree, based on
the discrete phylogeographic inference with GLM parametri-
zation. The results indicate an origin in Guangdong (posterior
support of 0.91). Shortly after this estimated first occurrence
in mainland China, a single sequence from both Shandong
and Hubei branches off from an otherwise fully Guangdong-
located backbone of the phylogenetic tree. However, the for-
mer is weakly supported (posterior support of 0.45), and we
do not find these branches to be convincing evidence of an
early introduction of PEDV into Shandong and Hubei.
Subsequently, multiple introductions are estimated to have
occurred from Guangdong into Henan, from which point
onward Henan acts as the source of introductions into mul-
tiple provinces such as Sichuan, Liaoning, Shanxi, and Jiangsu.
Guangdong itself acts as the main source of PEDV introduc-
tions into Zhejiang, Jiangxi, and Shandong. As displayed in
figure 1a, PEDV spread from Guangdong into Henan on mul-
tiple occasions and frequent introductions from Henan back
into Guangdong can be observed throughout the past
15 years. These results can also be seen in the Markov jumps
plot in figure 1d (see supplementary table S2, Supplementary
Material online, for the complete Markov jump matrix). Here,
we see that most of the estimated transitions originated in
Guangdong, Henan, and Hubei. Most of the introductions
from Hubei are found near the tips of the phylogeny, indi-
cating that this location might have acted as a tertiary hub
later in the epidemic. From its inferred time of origin, the
genetic diversity of PEDV quickly increased until reaching its
peak in 2015 (supplementary fig. S7, Supplementary Material
online), after which a steady decline can be observed. This
decline gained momentum when ASFV appeared at the end
of 2018, owing to the decrease of swine trade and number of
pigs being bred.

As mentioned before, a key interest of this study is recon-
structing the geographic dispersal and exploring the factors
influencing the spread of PEDV within China. We considered
various environmental, economic, and demographic variables
at province level that might have an impact on the dissem-
ination of PEDV (we refer to the Supplementary Material
online for a list of all variables, their detailed descriptions
and their sources, as well as to supplementary fig. S6,
Supplementary Material online, showing the correlation ma-
trix between variables). It is suspected that live animal trade
might influence the spread of disease in farm animals (Nelson
et al. 2015; Yang et al. 2020). Figure 1b and c explores the
impact of trade by superimposing the number of imported
live swine into each province and exported live swine by each
province onto the spread of PEDV. Although Guangdong
province imports almost no live swine, it exports a substantial
amount and forms one of the main hubs for the spread of
PEDV together with the province of Henan, which imports
the most live swine in all of China and is estimated to act as a
connecting hub for the spread of PEDV to many other prov-
inces. We estimate Guangdong to have acted as a hub for
dispersal to provinces within Southeast China and East China,
that is, those provinces that are relatively close geographically,
whereas Henan is connected to most other provinces across

all of China and is estimated to have spread PEDV across
longer distances. Finally, Hubei was estimated to have caused
new introductions into nearby provinces, mostly to the west
of the country. Although Jiangsu and Zhejiang are important
provinces for the trade of live swine, they did not rank among
the most important hubs for the spread of PEDV within
China.

Further variables of interest were those related to swine
production and consumption, such as the price of swine feed,
the amount of swine feed produced, the price of live swine
and of swine meat, the number of swine slaughtered, the
amount of swine meat consumed, and the total amount of
food consumed. Another group of variables were those re-
lated to human demography and the economic impact of the
province. These variables include total population, urban
population density, and GDP for each region. Finally, we
also considered a few geographical variables related to tem-
perature, precipitation and vapor pressure, elevation, and the
great-circle distance between provinces. We were able to re-
cover very strong support for the contribution of live swine
trade to the spread of PEDV within China (fig. 2; supplemen-
tary fig. S8, Supplementary Material online, shows the results
for all variables). The variables based on the residuals of the
regression for sample size against case counts were not found
to be significant. The positive mean conditional effect size of
live swine trade implies that transition rates between origin
and destination provinces increase with increased live swine
trade between those provinces. We also found strong support
for the contribution of human population size and human
population density at the province of origin to the spread of
PEDV. Both mean conditional effect sizes are positive, indi-
cating that transition rates between provinces increase with
larger positive values for these predictors. Studies have
highlighted the complexities of the wildlife–livestock–human
interface. Urbanization can have drastic influences in the
transmission dynamics of a disease (Hassell et al. 2017).
Note that pork consumption, although estimated to have
strong support for contributing to the spread of PEDV, prob-
ably does not directly influence dispersal; this factor has a
positive correlation with (respectively) slaughterhouse con-
tamination and frequency of vehicle transport between
slaughterhouse and the swine farm (Lowe et al. 2014; Dee
et al. 2016).

Phylogeographic Reconstruction and Drivers of Global
PEDV G2 Spread
Figure 3a shows our global phylogeographic reconstruction
by means of the estimated MCC tree. We note that posterior
support values for many of the major clades were quite poor,
indicating some uncertainty about the timing of introduction
events. Based on the phylogeographic reconstruction, the
United States and China maintain the highest number of
PEDV lineages. Figure 3 shows that after an initial introduc-
tion from China, the United States acted as the main source
of PEDV G2 introduction events (quantified by the estimated
Markov jumps) into South Korea, Japan, China, and Mexico.
We also estimate a few PEDV transmission events from China
to Vietnam and Europe, as well as few PEDV transmission
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(a) (b)

(c)

(d)

FIG. 1. PEDV phylogeographic reconstruction within China. (a) Maximum clade credibility tree with ancestral nodes and branches colored
according to estimated (province) location, depicting the spread of PEDV within China. The origin of the PEDV G2 epidemic is estimated to have
started in July of 2003 (uncertainty ranges from March 2002 to May 2005) with an introduction into Guangdong (GD) (posterior support of 0.91),
followed by multiple introductions into Henan, which then started seeding early introductions into Sichuan (SC) and Xinjiang after roughly 2 years.
As of 2007, PEDV started spreading from Guangdong into Henan (HA) on multiple occasions and frequent introductions from Henan back into
Guangdong can be observed throughout the past decade. Geographic spread of PEDV within China in the context of live swine trade intensity in
2017, as measured by: (b) import of live swine per province; (c) export of live swine per province; the size of the polygons in each province are
proportional to the number of tree lineages that maintain that location, thereby capturing the absolute and relative intensity of spread. A larger
polygon indicates a larger number of tree branches at that location through time. Westward movements are depicted by lines with an upward
curvature, whereas eastward movements are depicted by lines with a downward curvature. The provinces of Henan and Guangdong act as the
main hubs for the spread of PEDV within China, with Henan being the largest importer of live swine while barely exporting any. Henan and Jiangsu
(JS) provinces show the highest total trade (import and export) levels, but Jiangsu province ranks only fifth in terms of the number of PEDV
branches it maintains. (d) Estimated number of Markov jumps between provinces, showing Henan, Guangdong, and Hubei to be the main location
causing introductions into other provinces.
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events from Europe into China. We visualize the main live
swine trade routes between 2010 and 2018 in figure 3b, the
estimated number of PEDV linages maintained in the differ-
ent countries/regions in our data set in figure 3c, and the
estimated number of Markov jumps between those coun-
tries/regions in figure 3d (see supplementary table S3,
Supplementary Material online, for the complete Markov
jump matrix). We estimated the highest number of transition
events to have originated out of the United States, mostly to
Japan (54), Korea (44), China (19), and Mexico (14). There
were only a few introductions that originated out of China,
the only notable numbers being to Vietnam (7), Europe (4),
and the United States (3). Figure 3b shows that by far the
largest numbers of live swine are being exported out of
Canada to the United States (10 million pigs per year on
average between 2010 and 2018). China is neither a big ex-
porter nor importer of live pigs, with its main trade relation-
ship occurring with Vietnam, from which it imported 800,000
pigs per year on average between 2010 and 2018 (see also
supplementary table S1, Supplementary Material online).
Other international but smaller trade flows are found to oc-
cur from Europe to China and Vietnam, from Vietnam to
China, and from Canada to South Korea. Despite neither the
United States nor China being large exporters, PEDV G2 is
mostly found in China and the United States—as indicated
through the estimated number of lineages maintained in
these countries, shown in figure 3c—both countries play dif-
ferent but crucial roles in the dispersal history of PEDV G2.

In studying the global spread of PEDV between these 12
countries/regions, we consider several factors that potentially
influence this spread. Besides a live swine trade matrix (see
supplementary figs. S9 and S10, Supplementary Material on-
line, with the former aggregating all European countries), we
also consider total export and import of live swine, as well as
GDP and the amount of live swine stocks in the country.
Finally, as sampling sizes are expected to have an impact
on the number of among-country transition events, we
considered origin and destination sample sizes as separate
predictors in our GLM. We report fairly strong correlation
between these different predictors (supplementary fig. S11,

Supplementary Material online). These predictors are similar
to those in used in a global swine influenza study (Nelson
et al. 2015). For a more detailed explanation of these variables
and their sources, we refer to the Supplementary Material
online. From its inferred time of origin, the genetic diversity of
PEDV on a global scale quickly increased (supplementary fig.
S12, Supplementary Material online). After 2015, a steady
decline begins, which gained momentum toward 2017 and
2018, when ASFV appeared in different countries, resulting in
a drastic decrease and temporary halt of swine trade.

We are able to recover with very strong support the pos-
itive contribution of live swine trade to the global spread of
PEDV, along with very strong support for swine population
size at the origin country, as well as sample size at origin
and destination country (fig. 4; supplementary fig. S13,
Supplementary Material online, shows the results for all var-
iables). Importantly, the positive mean conditional effect size
of live swine trade implies that transition rates between origin
and destination countries increase with increased live swine
trade between those countries. The negative mean condi-
tional effect size of swine population size at origin country
implies that countries with a large swine population are ac-
tually less involved with spreading PEDV. Although this might
seem counter intuitive at first glance, we should note that for
China, which has the largest swine population in the world
(over 450 million swine), we only estimated very few Markov
jumps into Europe and Mexico. The United States on the
other hand has a smaller swine population (nearly 70 million
swine) but is estimated to have seeded multiple PEDV intro-
ductions into Japan, Korean, China, Mexico, and to a lesser
extent Colombia and Canada. We note the low number of
inferred transmission events (as estimated through Markov
jumps) from Canada to the United States, despite a high
number of live swine being exported from Canada into the
United States. Unfortunately, only six Canadian sequences
could be included in our data set, limiting the number of
transition events into Canada that can be estimated from
any other country. We also note that the important predic-
tors that contribute to the global PEDV spread are similar but
not identical to those found in a previously published global

FIG. 2. The support and contribution of PEDV diffusion predictors among 26 Chinese provinces when using live swine trade data from 2017.
Among 34 predictors being considered, four were estimated to have a very strong impact on the spread of PEDV between provinces: live swine
trade between provinces, pork consumption at destination, human population size at origin and human population density at origin. Support for
each predictor is represented by an inclusion probability that is estimated as the posterior expectation for the indicator variable associated with
each predictor (E[d]). Indicator expectations corresponding to Bayes factor support values of 3, 20, and 150 are represented by a dotted vertical in
this bar plot. The contribution of each predictor is represented by the mean and credible intervals of the GLM coefficients (b) on a log scale
conditional on the predictor being included in the model (bjd¼ 1). Only predictors whose credible interval excluded zero are shown.
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(a) (b)

(c)

(d)

FIG. 3. PEDV phylogeographic reconstruction across the world. (a) Maximum clade credibility tree with annotated countries on the ancestral
nodes, depicting the global spread of PEDV G2. The PEDV epidemic is estimated to have started in China toward the start of 2003 (with a wide 95%
HPD that ranges from September 1996 to July 2005), but only started gaining momentum after 2008. Many of the major clades are only poorly
supported preventing strong conclusions concerning the timing of long-range introduction events. (b) Visual representation of the main live swine
trade routes in 2010–2018 show that by far the most live swine are transported from Canada to the United States and internally within Europe (not
shown), with much smaller levels of intercontinental trade occurring. Only trade routes transporting more than 3,000 pigs per year are shown.
Although live swine are imported into China from across the world, China is not a major exporter of live swine. (c) Reconstructed spread of PEDV
using spreaD3 (Bielejec et al. 2016) shows the estimated number of lineages maintained in each country (as indicated by the size of the polygons)
and reconstructed transmissions between countries/regions. (d) Estimated number of Markov jumps between the countries/regions shows a large
number of introductions events from the United States to mostly (and in that order) Japan, Korea, China, and Mexico. As China plays a small role in
terms of live swine export, only a few Markov jumps from China to Vietnam and Europe are estimated, coming in at less than 10% of the jumps
from the United States to Japan.

He et al. . doi:10.1093/molbev/msab364 MBE

6



swine influenza A (swIAV) study (Nelson et al. 2015).
Although those authors also found very strong support for
the contribution of live swine trade to the spread of swIAV,
they did not report a strong contribution of swine population
size, although they did find strong supports for the contribu-
tion of swine population size change, as well as positive sup-
port for sample size at the destination country.

Discussion
Prevention and control of animal coronaviruses in China and
across the world depend critically on a deep understanding of
how these viruses spread and their mode of transmission
across geographic and national boundaries. In this study,
we assembled the largest collection of available PEDV sequen-
ces, including 247 newly sequenced viruses, and uniquely col-
lated them with previously inaccessible swine trade data. By
doing so, we were able to test and quantify a range of poten-
tial predictive variables for the spatial spread of emerging
PEDV G2 both at local (China) and at global scale. In an
increasingly globalized world, animal coronaviruses such as
PEDV have ample opportunities to spread between countries
and continents. As we have shown, there is international
and even intercontinental trade of live swine between coun-
tries with millions of pigs being transported worldwide.
Meanwhile, China hosts the largest swine population in the
world with over 450 million heads. With such a large popu-
lation, the probability of new strains of viruses emerging
increases. Studying the dissemination patterns of PEDV on
both a local and global scale offers key insights into the drivers
of local and global PEDV spread and the main regions/coun-
tries that contribute to the emergence of PEDV in new
territories.

We found that the spread of PEDV within China is
strongly driven by live swine trade between provinces, with
Guangdong and Henan acting as the main hubs of viral

spread, seeding PEDV introductions into the other provinces,
whereas Hubei province might have acted as a tertiary hub
later in the epidemic, which mostly contributed to spread
toward the west of the country. Our results provide further
insights into large-scale swine viral disease outbreaks in China
and help to identify key regions (as hot spots) that can be
targeted to mitigate the progress of an epizootic epidemic. In
addition, feed pollution (indirectly related) and pork con-
sumption (leading to indirect abattoir pollution and vehicle
pollution) may also be important factors contributing to the
spread of PEDV in China, and these factors have previously
been reported as influencing the spread of PEDV (Lowe et al.
2014; Dee et al. 2016). Our study also accurately recon-
structed the early transmission of PEDV G2 from
Guangdong to Henan in China, and the subsequent rapid
spread to the northeast and southwest China such as to
Sichuan province, an early long-distance movement which
was most likely caused by live swine transportation. This find-
ing was confirmed by the wider geographic spread of PEDV
G2 in the Chinese Mainland from 2010 to 2013 (Sun et al.
2015). Given that Guangdong and Henan are the most in-
tensely sampled provinces in our data set, we conducted a
sensitivity analysis in order to ascertain a possible effect of
unequal sampling on our inferred origin of the PEDV G2
epidemic within China. To this end, we performed a subsam-
pling analysis in which we limited the number of sequences
per province to at most 60 sequences. In practice, we ran-
domly removed 59 sequences from Guangdong, 31 Henan,
and 12 from Sichuan. This subsampling procedure results in
five provinces having nearly equal sequence counts, reducing
any artificial preference for Henan or Guangdong (the prov-
inces with the highest number of sequences in our data set)
to act as source provinces (above the other three provinces).
The ensuing phylogeographic analysis yielded the same back-
bone structure of our location-annotated MCC tree

FIG. 4. The support and contribution of PEDV diffusion predictors among 12 countries. Among the predictors being considered, four were
estimated to have a very strong impact on the global spread of PEDV: live swine trade between provinces, sample size at origin, sample size at
destination, and swine population size at destination. Support for each predictor is represented by an inclusion probability that is estimated as the
posterior expectation for the indicator variable associated with each predictor (E[d]). Indicator expectations corresponding to Bayes factor
support values of 3, 20, and 150 are represented by a dotted vertical in this bar plot. The contribution of each predictor is represented by the mean
and credible intervals of the GLM coefficients (b) on a log scale conditional on the predictor being included in the model (bjd¼ 1). We note that
there is a high degree of correlation between some of these variables including sample size (see supplementary fig. S11, Supplementary Material
online). As sampling sizes are expected to have an impact on the number of location transitions, we considered origin and destination sample sizes
as separate predictors in our GLM. However, even when taking into account sampling biases, we still found support for other factors in addition to
sampling size predictors, which may suggest that they are robust (Lemey et al. 2014). Furthermore, including or excluding the sample sizes in the
GLM analysis had minimal to no effect on the geographic reconstruction, further indicating robustness of the results. Only predictors whose
credible interval excluded zero are shown.
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(supplementary fig. S14, Supplementary Material online),
again pointing to Guangdong and Henan as the key hubs
for the spread of PEDV in China. The inferred Markov jump
counts (supplementary fig. S15, Supplementary Material on-
line) out of Guangdong but also out of Hubei are actually
higher than in the full data set, whereas those out of Henan
are lower compared with the full data set. This confirms our
assessment that Guangdong and Henan play an important
role as source locations, offering insights into where preven-
tion and control efforts could be targeted to disrupt the
movement of live swine to impact the spread of PEDV within
China.

On a global scale, the United States and China maintain
the highest number of PEDV lineages. We estimate that, after
an initial introduction out of China, the United States acted as
an important source of PEDV introductions into Japan, Korea,
China, and Mexico. Most of the Asian and American intro-
duction events came from the United States (as can be seen
in fig. 3), which suggests the need for more intensified sur-
veillance efforts on the export of live pigs, pork products, and
feed from the United States to Latin America and Asia. Note
that multiple studies have highlighted the genetic similarity
between multiple outbreaks and the outbreak in the United
States, characterizing these new strains as “US-like” (Lee and
Lee 2014; Van Diep et al. 2018; Sung et al. 2019; Chen et al.
2021). China is not a major exporter of live swine, as reflected
in our results: we estimated only a few PEDV transmission
events from China, mostly to Vietnam and Europe. We also
observe some introduction events back into China (from the
United States, but also a few from Korea and Japan), further
illustrating the interconnectedness of the global spread of
PEDV.

We performed a state-of-the-art Bayesian discrete phylo-
geographic inference with its popular extension in the form of
a GLM to test the contribution of a large number of predic-
tors to the spread of PEDV. In doing so, we have guarded
against identifying a too large number of predictors by con-
trolling for sampling bias. We find strong support for live
swine trade as a driver of the local and global PEDV G2 ep-
idemic. However, we acknowledge that trade data can be
variable through time and is challenging to obtain. In the
case of the Chinese live swine trade data, supplementary fig-
ure S5, Supplementary Material online, shows a steady year-
on-year increase between 2017 and 2018 (no data for the
trade of live swine between China’s provinces are available
prior to 2017). However, due to the impact of ASFV on the
trade of live swine within China and the measures imposed by
the MARA, this is not the case for 2019 (as can be seen in
supplementary fig. S4, Supplementary Material online). Live
swine trade information was missing for many pairs of coun-
tries in our global analysis, as can be seen in supplementary
figure S10, Supplementary Material online. It is not always
clear if this is meant to imply that there is no trade between
a given pair of countries, or if these data are simply missing.
This is due to the fact that Comtrade combines multiple data
sources and the sporadic nature of the numbers being
reported (sometimes only one country reports a trade
flow). This presents a possible limitation in our study, as

any missing trade information is treated by the analysis as a
(near) zero value. When a trade flow was reported unilaterally,
we opted to include the data that indicated presence of trade
over using a missing value. We cross referenced the obtained
values with other sources of information but could not find
any indications of inconsistency that would potentially alter
our inference results. Further, live swine trade data and the
trade of related swine products have been subject to drastic
changes over the past years. Per capita meat consumption
has increased as a result of rising income in many Asian
countries and fueled the (global) trade of live swine. For ex-
ample, at the end of 2017, Singapore started importing its first
shipments of live swine from Malaysia in 18 years. In 2016,
767,375 pigs were imported from Vietnam into China, a num-
ber that decreased to 47,304 in 2017 and to only 625 in 2018.
A final example is Belgium, where as a consequence of ASFV,
export of swine and swine products to 24 countries outside of
Europa—including to China, India, Vietnam, Singapore, and
South Korea—was prohibited until the end of 2019. The var-
iable nature of these trade data presents a particular challenge
for modeling the contribution of live swine trade to the local
(i.e., within China) and global spread of PEDV. A possible
extension of the GLM we used could be to employ an epoch
structure (Bielejec et al. 2014) in case trend changes through
time could be properly delineated or identified. This would
give rise to a multiepoch phylogeographic model which
would create a number of discrete diffusion processes to infer
spatiotemporal history. Although more plausible to model
the evolution of live swine trade over time, the use of such
an epoch-GLM has computational and potentially statistical
ramifications given the added complexity and increase in the
number of parameters, as the number of sequences to inform
each epoch interval would be limited.

Few studies have performed detailed investigations into
the time and place of origin of the PEDV G2 epidemic. We
have estimated mean evolutionary rates of 1.93E-3 substitu-
tions per site per year (95% HPD: [1.83E-3; 2.03E-3]) for the
global analysis and 1.23E-3 substitutions per site per year (95%
HPD: [1.11E-3; 1.35E-3]) for the within-China analysis, with
corresponding tMRCAs of December 2001 (95% HPD: [April
1998; December 2004]) for the global analysis and April 2002
(95% HPD: [April 2000; February 2004]) for the within-China
analysis. Earlier studies have found diverging, but roughly sim-
ilar results concerning the evolutionary rates for the spike
protein in PEDV. For example, Stott et al. (2017) found evo-
lutionary rates between 1E-3 and 7.5E-3 substitutions per site
per year, (Lee et al. 2019) found evolutionary rates of 14.80E-4
and 7.18E-4 substitutions per site per year (depending on
geographic location), and (Jarvis et al. 2016) reported an evo-
lutionary rate of 1.50E-3 substitutions per site per year. The
estimated time of origin predates the first known cases of
PEDV G2 in 2010 by several years. One previous study
reported a tMRCA for G2 PEDV of 1988, that is, 14 years
earlier than our own estimate (Jang et al. 2018). However,
note that the authors included both G1 and G2 sequences
in their analysis, hence the difference in temporal signal and
evolutionary rate dynamics between the G1 and G2 clades
could explain this discrepancy. Note that the earliest G2
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sequence identified in our data set (i.e., n after the G1/G2
detection and the recombination analyses) was a Chinese
sequence dated to October 16, 2006. This sequence was
not included in our final data set as a result of the TempEst
analysis, but its existence further suggests the existence of
PEDV G2 for quite some years before 2010. Why G2 variants
did not cause any noticeable outbreaks, nor produce a fair
number of sequences before 2010 has been a topic of discus-
sion for years. We can speculate that G2 has become more
infectious over time, leading to cryptic transmission before
2010. However, it does seem that there was sufficient diver-
gence to explain possible phenotypic differences (see the fig-
ure below of a sample of G2 sequences from China including
the oldest ones; note that there are clear issues with the top
2007 sequence, which is one of the sequences that was re-
moved from our data set after a TempEst analysis). The func-
tional host cell receptor for PEDV remains unidentified (Zhao
et al. 2021), yet PEDV has been shown to infect and replicate
in porcine, simian, and human cells (Wrapp and McLellan
2019) and these abilities may have changed/improved over
time. Identification of the PEDV key receptor in the future
may assist in identifying additional G2 sequences to fill the
gaps in our data collection. Adding to this point is the fact
that early G2 outbreaks may have remained overlooked due
to a lack of routine PCR detection efforts before 2010. The
current availability of next-generation sequencing however
may enable sequencing old PEDV samples. These combined
aspects offer the possibility of studying the early history and
more accurately pinpoint the inferred time of origin of both
the within-China and global PEDV epidemic.

There have been a few studies who have estimated the
origin of the American PEDV G2 epidemic, which place the
tMRCA around 2010, corresponding to our own results
(Huang et al. 2013; Jarvis et al. 2016). This would pre-date
the discovery of PEDV G2 in the United States in 2013 by
3 years. There are thus indications that PEDV G2 might have
circulated undetected for a significant amount of time.
Although it is not unusual to obtain a tMRCA preceding
the discovery time of a virus by several years (Smith et al.
2009; Nelson et al. 2011; Michaud et al. 2013; Lo Presti et al.
2016), the 95% HPD interval for the tMRCA in the global data
set reflects considerable uncertainty, which can in part be
attributed to the use of an uncorrelated relaxed clock model.
Including a wider range of dates and increasing the overall
number of sequences may help narrow down the uncertainty
in the tMRCA estimation. Note that for some locations, such
as the United States, the range of sampling dates is quite
narrow, with all but 18 of the 384 American sequences being
collected between 2013 and 2014. To test the impact of this
abundance of American samples during this narrow time
period, we reran our global analysis using two subsampling
schemes, one with only half the sequences from the United
States and one with half the sequences from both the United
States and China. The estimated Markov jump plots showed
little difference compared with the analyses on the full
data set, as can be seen in supplementary figure S16,
Supplementary Material online. In terms of the GLM analyses,
the results are similar besides the fact that one more variable

is found to be significant (import at destination). Regarding
the geographic origin of the global PEDV epidemic, previous
work has suggested that the first introduction of PEDV into
China occurred via South Korea, possibly in connection with a
recombination event (Lee 2015). This hypothesis is based on
the discovery of early South Korean samples (CHINJU99 and
strains from Iksan, South Korea in 2002 and 2009), which may
constitute among the earliest reported G2 sequences (Yeo
et al. 2003; Kang et al. 2005; Lee et al. 2010; Sun et al. 2015).
These sequences, however, were excluded in our analysis dur-
ing the recombination analysis. Although our data set enables
us to infer the timing and origin of local transmission within
China, without older unrecombination sequences we remain
unable to look more closely at the origin of the G2 clade in
Asia. Running our entire analysis pipeline utilizing complete
genomes also constitutes an interesting avenue to further
uncover the early history of the G2 epidemic (Dudas and
Bedford 2019), provided that recombination issues can be
properly dealt with.

Finally, we have focused our study on the global dynamics
of PEDV in swine, but our findings invite investigation of how
trade, quarantine, and swine-farming practices affect the spa-
tial dynamics of other globally dispersed swine pathogens,
such as PRRSV and ASFV, or other emerging virus spread
among livestock in the future. Modeling studies rooted in
pathogen sequence information, demographics, and trade
data have the power to inform global surveillance and control
strategies for major animal-origin infectious disease threats.

Materials and Methods

Sequence Data
As part of a previous nationwide swine virome metagenomics
research project (He et al. 2020), we had collected PEDV
sequences from 21 Chinese provinces during 2017–2020. In
PEDV, the S1 gene carries important biological functions with
a rapid rate of evolution and is often used as a genetic marker
to differentiate PEDV genotypes with the largest number of
reference sequences (Li et al. 2016). Given these character-
istics, the S1 gene is often used to characterize PEDV genetic
diversity and evolution, and we chose to select only this gene
our study (Wen et al. 2018). To obtain the S1 gene of PEDV,
we designed a pair of primers for PCR amplification (forward:
ATAACGATGTTACAACAGGTCGT; reverse: TAGCACAAT
CAACACTAACAGG). PCR products were amplified with 30
cycles at 95 �C for 1 min, 56 �C for 1 min, and 72 �C for 3 min,
with a final extension at 72 �C for 10 min and sequenced
using Sanger sequencing by Sangon Biotech (Shanghai) Co.,
Ltd. A total of 247 S1 genes were sequenced and submitted to
the National Center for Biotechnology Information’s
GenBank (accession numbers MW330010–MW330256). In
addition, we downloaded all available PEDV S1 sequences
on GenBank up until July 2, 2020. Sequences that were found
to have/be either: 1) missing sampling dates, 2) duplicate
copies where the sampling location and time were an exact
match, 3) cell passage sequence, 4) vaccine strain, and 5) low-
quality sequences, were removed. Multiple sequence align-
ments were constructed using MAFFT v7.471 (Katoh and
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Standley 2013) and manually inspected and corrected where
necessary. The final data set consisted of 2,371 sequences,
which we used in subsequent analyses.

Recombination Analysis
Recombination in virus genomes can have a negative impact
on the accuracy of phylogenetic reconstruction. Previously,
evidence has been found for the presence of recombination
in PEDV genomes (Arenas and Posada 2010; Li et al. 2016). We
found that the N-terminal region of the S1 gene was often
classified as being recombinant (not shown). In order to re-
duce the number of sequences marked as recombinant, we
decided to remove the 1AA-230AA part of the S1 gene. We
subsequently used RDP4 (Martin et al. 2015), which offers
formal testing for recombination using up to eight different
methods, to further identify and remove recombinant
sequences from our data set. For our analysis, the following
methods were considered: RDP (Martin and Rybicki 2000)
MAXCHI (Wiuf et al. 2001), CHIMAERA (Arenas and
Posada 2010), 3SEQ (Boni et al. 2007), and GENECONV
(Padidam et al. 1999). We ran two additional approaches,
BootScan (Salminen et al. 1995) and SiScan (Gibbs et al.
2000), as secondary methods. We used the recommended
settings for all methods, and sequences that were classified
as recombinant by three or more methods were subsequently
removed from the data set in an iterative manner until no
more sequences were flagged as recombinant. In total, 545
putative recombinant sequences were detected and removed
from the data set.

G1/G2 Clade Detection
We subsequently aimed to assess the temporal signal in the
resulting data set of 1,826 sequences. By exploiting the se-
quence data and associated sampling times, a molecular clock
can be calibrated to perform time-stamped phylogenetic in-
ference. The estimated evolutionary rate can vary across sub-
strains of a virus, making it potentially difficult to obtain
reliable divergence times. Around 2010, a new variant of
PEDV emerged in China, gradually becoming the main sub-
type worldwide. We can currently classify PEDV into either
this newer strain (known as G2) or the historical and more
sporadic G1 strain (Lee 2015). PEDV sequences are not easily
assigned to either the G1 or G2 clade, even though G1 is
known to be a paraphyletic group with G2 nested inside of
it. We hence performed a formal classification study to accu-
rately identify the collected PEDV sequences as either G1 or
G2. We constructed a maximum-likelihood (ML) phylogeny
using IQ-TREE 2 (Nguyen et al. 2015), making use of ultrafast
bootstrap (UFBoot) (Hoang et al. 2018) to compute 1,000
bootstrap replicates. We performed multiple independent
IQ-TREE 2 analyses with increasingly demanding search set-
tings and selected the tree with the highest ML. We per-
formed midpoint rooting on this tree and resolved any
polytomies using the phytools and ape packages in R
(Revell 2012; Paradis and Schliep 2019). We then used this
rooted ML tree along with the bootstrap support values to
perform an automated ClusterPicker (Ragonnet-Cronin et al.
2013) analysis to identify monophyletic clusters. ClusterPicker

works as follows: starting from the root, the tree is divided
into subtrees, the sequences within the subtree are identified
and their pairwise genetic distances are calculated. If the larg-
est of these is smaller than or equal to the user-provided
maximum genetic distance threshold, the group of sequences
is identified as a cluster. If the maximum pairwise distance is
larger than the provided threshold, the cluster is rejected and
the algorithm proceeds to inspect a different subtree.
ClusterPicker thus offers a within-cluster versus between-
cluster assessment of the genetic distances in the phylogeny.
Given that we were interested in the split between G1 and
G2, we opted for fairly high settings for bootstrap support and
genetic distance. We consistently identified one large clade
with 1,745 sequences and four smaller clades together con-
taining 81 sequences. The small clades included the prototype
European PEDV strain CV777 (supplementary fig. S1,
Supplementary Material online) and were identified as be-
longing to G1. We tested the impact of various cluster thresh-
olds on the detected clusters but found our results to be
robust to these settings. To ensure clear temporal signal in
our PEDV G2 data set to estimate time-stamped phylogenetic
trees through a molecular clock, we excluded these 81 diver-
gent sequences from our data set.

Global and Local Data Sets
The aim of this study is 2-fold: studying PEDV on both a local
and global scale, by focusing on the spatiotemporal evolution
of PEDV within China and across the world. We first con-
structed a data set to study the evolution and spread of PEDV
within China. To this end, we selected the three large clades of
PEDV sequences predominantly sampled in China from the
ML tree (see supplementary fig. S2, Supplementary Material
online; the three large clades are shown in blue). Within these
clades, we pruned all non-Chinese clusters—that is, all clades
that represented introductions into other countries, even if
these clusters end up seeding introductions back into
China—from the estimated ML tree. This approach was taken
in order to maximize the number of PEDV sequences sam-
pled in China without selecting clades that did not originate
within China (i.e., introduction events from other countries
into China which may seed new epidemics and would pre-
vent from making this a China-specific analysis). This resulted
in a collection of 824 sequences from 26 provinces. TempEst
(Rambaut et al. 2016) analysis revealed the presence of 40
outliers that could be linked to very long branches in the ML
tree, which we also removed. Finally, we checked if these
sequences contained geographic information on the provin-
cial level. When the province of origin was not available, we
were able to extract this information either based on the fact
that the sequence name contained an ISO 3166-2 code, or by
contacting the authors of the publications in which these
sequences were made available. For 15 sequences we were
however unable to obtain the geographical origin, and we
further removed these sequences, resulting in a final data
set of 769 sequences from the following provinces: Anhui
(45), Beijing (6), Chongqing (3), Fujian (35), Gansu (6),
Guangdong (119), Guangxi (16), Guizhou (10), Hebei (20),
Heilongjiang (28), Henan (91), Hubei (58), Hunan (14),
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Inner Mongolia (4), Jiangsu (60), Jiangxi (32), Jilin (15),
Liaoning (19), Shaanxi (3), Shandong (46), Shanghai (10),
Shanxi (24), Sichuan (72), Xinjiang (1), Yunnan (7), and
Zhejiang (25).

For the global data set, we first removed two sequences for
which no location information was available. TempEst
(Rambaut et al. 2016) analysis revealed the presence of 43
outliers (including the oldest available sequence from China,
sampled on October 15, 2006) that could be linked to very
long branches in the ML tree, and we further removed these
sequences which resulted in a final global data set size of 1,700
sequences. These sequences originated from the following
countries: Austria (8), Belgium (1), Canada (6), China (947),
Colombia (22), Ecuador (1), France (2), Germany (36),
Hungary (2), Italy (5), Japan (87), Mexico (51), The
Netherlands (10), The Philippines (1), Romania (2), Slovenia
(3), South Korea (103), Thailand (3), Ukraine (1), United
States (384), and Vietnam (25). We provide a histogram of
the available sequences and those that were removed as a
result of the TempEst analysis, in supplementary figure S3,
Supplementary Material online. Given the low number of
sequences from individual European countries, we aggregated
these sequences into a single “European” location consisting
of 70 sequences. This aggregation makes for a set of locations
similar to those employed in an influential global swine influ-
enza study (Nelson et al. 2015).

Bayesian Phylogeographic Analysis
We performed a joint estimation of the phylogeny and the
dispersal history using BEAST v1.10.4 (Suchard et al. 2018). To
reconstruct the spatial dispersal process, we modeled the in-
stantaneous rate of transitions between the different states as a
continuous-time Markov chain (CTMC) process (Lemey et al.
2009). Under this formulation, movement between K discrete
locations (i.e., the 26 provinces in the analysis that focuses on
China, and 12 countries for the global analysis) is parameterized
in terms of a K� K infinitesimal rate matrix K, where Kij is the
instantaneous, relative transition rate from location I to j. We
parameterized these rates as a function of a number P of po-
tential explanatory predictors in a GLM framework (Lemey et al.
2014). The relative transition rates Kij are defined as a log linear
function of these P predictors, with each predictor having a
coefficient bp for p¼ 1, . . ., P that quantifies its contribution
to K, and an indicator variable dp that determines its inclusion
or exclusion in the model. We employed Bayesian stochastic
search variable selection (BSSVS) to explore the space of 2P

possible predictor combinations within the GLM, and to obtain
a posterior probability on the indicator variables dp which ena-
bles assessing each predictor’s relative contribution to PEDV
spatial spread. We assigned Bernoulli prior probability distribu-
tions on dp, to ensure that 50% of the prior probability mass is
placed on no predictor being included. We assume a priori that
all bp were independent and normally distributed, with mean 0
and standard deviation equal to 2 (Lemey et al. 2014). This
approach allows for a potentially large number of predictors
being evaluated simultaneously (Hong et al. 2020). To deter-
mine the degree of support for each predictor, we make use of
the Bayes factor cut-offs proposed by Kass and Raftery (1995): a

Bayes factor higher than 150 indicates very strong support, a
Bayes factor higher than 20 indicates strong support, and a
Bayes factor higher than 3 indicates positive support for a pre-
dictor’s contribution to the spread of PEDV. We also estimated
the expected number of transitions, known as Markov jumps,
between each pair of provinces along the phylogenetic branches
of the trees (Minin and Suchard 2008a, 2008b).

We describe a total of 17 potential predictors for the phylo-
geographic reconstruction of PEDV within China (see
Supplementary Material online for more details). For
province-specific measures (e.g., human population size), we
specified an origin and destination predictor that uses the mea-
sure at the origin and destination, respectively, as predictor value
for each pairwise transition rate, bringing the total number of
predictors to 34. Included in this list of predictors are the sample
sizes in the different provinces reflecting a considerable hetero-
geneity among provinces. Importantly, we control for sampling
bias, this time by including the residuals for the regression of
sample size against case count as in Dudas et al. (2017). These
residuals represent how much the actual sample size in a loca-
tion varies from the expected sample size given the number of
cases in that location. If there is sampling bias, we could expect
the size of the residuals to influence the transmission dynamics.
Of key importance in this study is the availability and assess-
ment of the impact of live swine trade between provinces. Such
data are available for the years 2017, 2018, and 2019 (see sup-
plementary fig. S4, Supplementary Material online), with the
latter year showing great discrepancies compared with the for-
mer two, which can be attributed to the emergence of African
swine fever (ASFV) in China in the summer of 2018. First
reported in northeastern China in August 2018, ASFV is a highly
contagious and often fatal swine disease that quickly spread
through the country (Zhou et al. 2018). ASFV caused massive
swine deaths in swine farms when imported from abroad, and
many long-distance dispatches of live swine were affected and
even halted. The monthly live swine trade data show a marked
decrease in the number of traded pigs after August 2018 (sup-
plementary fig. S5, Supplementary Material online). Given the
impact of ASFV on the trade of live swine from the summer of
2018, we have performed our phylogeographic reconstructions
and GLM modeling using live swine trade data from 2017. We
added pseudocounts for predictors that had zero entries and
subsequently performed log-transformation and standardiza-
tion on the predictor data. For a detailed description of each
predictor, we refer to the Supplementary Material online. We
used BEAST v1.10.4 (Suchard et al. 2018) to perform this joint
phylogeographic reconstruction, making use of BEAGLE v3.1.0
(Ayres et al. 2019) to improve computational performance on
graphic cards for scientific computing.

To reconstruct the global spread of PEDV, we sidestepped
the joint estimation of phylogeny and geographic history by
fitting the phylogeographic diffusion model to pre-estimated
posterior tree distributions. We hence first inferred an empir-
ical distribution of time-calibrated phylogenies using BEAST
v1.10.4 (Suchard et al. 2018) with BEAGLE v3.1.0 (Ayres et al.
2019) and subsequently conditioned our phylogeographic
reconstructions on an empirical tree distribution of 1,000
phylogenetic trees evenly spaced throughout the posterior
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simulation after burn-in. We describe a total of eight potential
predictors for the global phylogeographic reconstruction of
PEDV. For country-specific measures (e.g., human population
size), we again specified an origin and destination predictor
that uses the measure at the origin and destination, respec-
tively, as predictor value for each pairwise transition rate,
bringing the total number of predictors to 14. We again
added pseudocounts for null values, standardized, and log-
transformed all the variables. We also check for sampling bias.
However, we were not able to obtain case counts for the
countries in our global data set, making it impossible to run
a regression analysis of sample size against case counts.
Instead, as in Lemey et al. (2014), we included the sample
size by itself as a variable. As can be seen in supplementary
figure S11, Supplementary Material online, sample size is
highly correlated with some of the other predictors, especially
population size, feed production, and gross domestic product
(GDP). Our aim here was not to demonstrate a role for sam-
ple sizes in the global spread of PEDV, but to raise the cred-
ibility that other predictors are not included in the model
because of sampling bias by explicitly including them as pre-
dictive variables. For a detailed description of each predictor,
we refer to the Supplementary Material online. We estimated
the Markov jumps between each pair of countries along the
phylogenetic branches of the empirical tree distribution
(Minin and Suchard 2008a, 2008b).

We made use of the following models in the BEAST analyses
that were performed for both data sets. We modeled molecular
evolution according to an HKYþC4 (Hasegawa et al. 1985;
Yang 1994) substitution model with estimated nucleotide fre-
quencies and employing a nonparametric coalescent model
known as the skygrid (Gill et al. 2013) as the tree-generative
process. Efficient estimation of the skygrid model parameters
was achieved using a Hamiltonian Monte Carlo transition ker-
nel (Baele et al. 2020). We employed the default prior distribu-
tions as offered by BEAUti. Initial data set explorations revealed
that a strict clock was the most appropriate molecular clock
model for the within-China analysis, as the posterior estimates
of the standard deviation of the popular uncorrelated relaxed
clock model with an underlying lognormal distribution in-
cluded zero. For the global analysis on the other hand, we opted
for an uncorrelated relaxed clock with an underlying lognormal
distribution. We assumed a CTMC reference prior on the
(mean) clock rate parameter (Ferreira and Suchard 2008). A
sizeable number of sequences only had partial sampling date
information in the form of the sampling month or year. For
these sequences, we performed tip-date sampling from a uni-
form prior that spans the entire month or year. The Markov
chain Monte Carlo analyses in BEAST were run sufficiently long
to ensure adequate statistical mixing on all relevant parameters
as assessed through Tracer 1.7 (Rambaut et al. 2018). For the
data set focusing on China, this implied running a total of 2
billion iterations in BEAST for the joint phylogeographic recon-
struction, whereas the phylogenetic reconstruction to deter-
mine the empirical tree distribution for the global data set
required a total of 800 million iterations to achieve adequate
statistical mixing. The geographic reconstruction on the empir-
ical trees for the global data set was run for 30 million iterations.

We computed maximum clade credibility (MCC) trees for
both data sets using TreeAnnotator. Tree visualizations were
constructed using FigTree (http://tree.bio.ed.ac.uk/software/fig-
tree/), and visualizations of PEDV on geographic maps were
performed using SpreaD3 (Bielejec et al. 2016).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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