
 International Journal of 

Molecular Sciences

Review

Recent Developments in Metal-Based Drugs
and Chelating Agents for Neurodegenerative
Diseases Treatments

Thais A. Sales 1 , Ingrid G. Prandi 1 , Alexandre A. de Castro 1, Daniel H. S. Leal 2 ,
Elaine F. F. da Cunha 1, Kamil Kuca 3,4,*,† and Teodorico C. Ramalho 1,3,*,†

1 Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras,
37200-000 Lavras, MG, Brazil; thaissales194@hotmail.com (T.A.S.); ingrid.prandi@gmail.com (I.G.P.);
alexandre.a.castro@hotmail.com (A.A.d.C.); elaineffdacunha@gmail.com (E.F.F.d.C.)

2 Department of Health Sciences, Federal University of Espírito Santo, 29932-540 São Mateus, ES, Brazil;
daniel.leal@ufes.br

3 Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove,
Czech Republic

4 Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
* Correspondence: kamil.kuca@uhk.cz (K.K.); teo@ufla.br (T.C.R.)
† These authors contributed equally to this work.

Received: 17 February 2019; Accepted: 9 April 2019; Published: 12 April 2019
����������
�������

Abstract: The brain has a unique biological complexity and is responsible for important functions
in the human body, such as the command of cognitive and motor functions. Disruptive disorders
that affect this organ, e.g., neurodegenerative diseases (NDDs), can lead to permanent damage,
impairing the patients’ quality of life and even causing death. In spite of their clinical diversity,
these NDDs share common characteristics, such as the accumulation of specific proteins in the cells,
the compromise of the metal ion homeostasis in the brain, among others. Despite considerable
advances in understanding the mechanisms of these diseases and advances in the development of
treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in
NDDs, a wide range of compounds have been developed to act by different means. Thus, promising
compounds with contrasting properties, such as chelating agents and metal-based drugs have been
proposed to act on different molecular targets as well as to contribute to the same goal, which is
the treatment of NDDs. This review seeks to discuss the different roles and recent developments
of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the
treatment of NDDs.
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1. Introduction

Neurodegenerative diseases (NDDs) are characterized by progressive dysfunction and loss of
neurons, which leads to distinct involvement of functional systems defining clinical presentation [1–3].
Among the pathologies that belong to this class, it can be highlighted Alzheimer’s disease (AD), which
is the most common cause of dementia, along with frontotemporal dementia (FTD), amyotrophic
lateral sclerosis (ALS), dementia with Lewy bodies (DLB), Parkinson’s disease (PD), Huntington’s
disease (HD), Friedreich’s ataxia (FRDA) and prion disease [4,5]. These NDDs cause social and
economic overload in societies worldwide. The speedy growth in knowledge, related to the pathogenic
mechanisms and disease-associated biomarkers, has sped up the design of novel diagnostic tools and
therapeutic techniques [6].
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The neurodegenerative diseases onset take place mainly in people above the age of 45 years
old [7,8]. According to the UN (United Nations) world population prospects, the number of individuals
aged 60 or over on the planet is estimated to grow about four times over the next 30 years, predicting
that diagnoses of dementia may also rise [9]. The symptoms progressively advance with the disease,
reducing the capacity for independent living, and, at long last causing, death [10,11]. The course
of the disease has an average duration of 10–15 years, regarding the onset of clinical symptoms,
but presenting a significant variability amongst individuals [10,11]. Researches around the world
strive to develop novel remediation techniques for NDDs, being a major concern due to the growing
increase of the elderly population and increasing burden on patients, families, and society. However,
the multifactorial nature of these NDDs diseases is one of the main obstacles to drug development [12].
Although significant advances have been made in the last decades to comprehend the underlying
genetic and biological causes of these diseases, only some symptomatic treatments are available [9,13].

Over the years, a great diversity of novel compounds and molecular targets have been studied,
aiming the development of new NDDs treatments. One of the most common targets, in this context,
is metal homeostasis. It is widely known that the presence of metal ions is essential for living
organisms, and many important enzymes require the presence of these ions to exert its catalytic activity.
Among the 1371 known structure enzymes registered in the PDB SwissProt Enzyme classification
database (PDBProtEC; PDB: Protein Data Bank), it is estimated that approximately 40.7% of them
require a metal cofactor [14]. However, the accumulation of metals such as copper, iron and zinc
in the brain is pointed out as the cause of oxidative damage, as well as other critical roles in the
brain of patients suffering from NDDs [12,15,16]. Based on these shreds of evidence, several metal
chelating agents are being developed with the purpose of regulating the concentration of metal
ions in the brain. Among these, a new generation of weaker chelating agents, called metal protein
attenuating compounds (MPACs), has the ability to only regulate the abnormal concentrations of
the metal ions, without causing damage to other processes that require the presence of metals [17].
In addition to chelating drugs, it can be highlighted other new approaches to NDDs drug design, such as
the development of multifunctional molecules, able to simultaneously combat several pathological
features [12]. These compounds, including natural products, are able to play many roles, acting as
chelating agents, antioxidants, anti-inflammatory drugs, peptide-aggregation reducers and AChE
inhibitors, among others [18–25].

Curiously, there is another class of compounds, the metal-based drugs, with opposite biochemical
activity to chelating agents, which is also being developed to act in the treatment of NDDs. Metallodrugs
can act on a variety of molecular targets, and can, for example, be able to bind to amyloid-β species [26],
or even to simulate the role of important enzymes, such as superoxide dismutases (SOD) [27].
Considering the wide range of studies that have been developed in these two different approaches,
and for NDDs treatment in general, this review brings novel perspectives into the NDDs-related
therapies, which treatment is dictated by the presence of metal-based or metal chelating drugs, playing
quite important roles in the remediation process.

2. Neurodegenerative Diseases (NDDs)

NDDs are characterized by the progressive loss of neuronal function. There are many pathologies
that belong to this class. As said before, the most ordinary cause of dementia is AD. Together with PD,
FTD, ALS, DLB, HD, FRDA, and prion disease [4,5], these NDDs cause social and economic overload
in societies worldwide.

The neurodegenerative disease onset takes place mainly in people above 45 years of age The
major symptoms related to NDDs are dementia, cognitive decline, high order brain alterations, motor
impairment, behavioural modification, psychosis and emotional disturbance [1,7]. The first symptom,
dementia, is a common neurological disease of heterogeneous origin, whose most important risk
factor is ageing. Dementia damages memory and other cognitive functions, interfering with the
patient’s ability to maintain usual daily activities. According to the UN world population prospects,
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the number of individuals aged 60 or over is estimated to grow about four times over the next 30 years,
bringing the prediction that diagnoses of dementia will also rise [9]. The severity of the symptoms
progressively advances with the disease development, leading these patients to a reduced capacity for
independent living, and, at long last causing, death [10,11]. The characteristic course of the disease
has an average duration of 10–15 years, regarding the onset of clinical symptoms, but presenting a
significant variability amongst individuals [10,11].

2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a well-known form of dementia, affecting an increasing number of
people around the world. Some available data indicate an exponential rise regarding the number
of cases of AD, reinforcing the need to develop effective treatments and therapies [28,29]. AD is an
illness of the central nervous system (CNS), being this frame of neurodegeneration irreversible to date.
It progressively damages patient memory and cognition, commonly in the geriatric population [30,31].
The disorder is often classified based on the age of onset, for instance, early and late-onset AD. Early
onset AD is responsible for about 1–6% of cases and manifests in individuals up to 60 years. On the
other hand, late-onset form accounts for around 90% of all cases, presenting an age at onset later than
60 years [28,32].

In current days, AD is reported as being a chronic and progressive neurodegenerative process,
characterized by the accumulation of amyloid-β protein (Aβ) in amyloid plaques and by the formation
of neurofibrillary tangles resulting from the hyperphosphorylation of the tau protein associated with
cellular microtubules [33,34]. Overaccumulation of these species fatally leads to synaptic dysfunctions,
resulting in neuronal losses. Concerning AD, the disease-involved molecular mechanisms are not fully
elucidated so far, but it is known that some risk factors favour the onset and worsening of the illness,
such as advanced age. Some hypotheses strive to explain the factors underlying the pathological frame
of AD. In this context, the main theories are related to the amyloid-β cascade hypothesis, oxidative
hypothesis, tau protein hypothesis and cholinergic hypothesis [35–37].

The theory related to the Aβ fragments deposits suggests the formation of toxic soluble oligomers,
which give rise to insoluble neuritic plaques [38]. It is also highlighted the appearance of inflammatory
processes [39,40]. Recent indications show that this process plays a role in the AD pathogenesis,
and its comprehension and control could be of significant importance in preventing or delaying the
onset of CNS diseases [41,42]. The major hypotheses which surround Aβ generation and tau protein
hyperphosphorylation are described in more details next.

2.1.1. Amyloid-β Cascade Hypothesis

AD is well known by the damages caused in synaptic and neuronal functions, leading to a gradual
loss of neurons, as previously commented [43]. The amyloid cascade hypothesis reports the role of Aβ

fragments in the production of plaques and the formation of neurofibrillary tangles (NFTs) [44,45].
It is important to highlight that the Aβ peptide is generated from the amyloid precursor protein

(APP), with aggregation and formation of senile plaques. APP is a membrane glycoprotein present in
neurons, being a substrate for two different enzymes: α- and β-secretases. After the first APP cleavage
catalysed by α- or β-secretase, a proteolysis process occurs, being assisted by a third enzyme known as
γ-secretase [46]. The soluble peptide p3, which is the product formed from the cleavage by α- and
γ-secretases, demonstrates no tendency to form aggregates, which is a characteristic of the proteolysis
via the non-amyloidogenic pathway. In addition, the processing by β- and γ-secretases leads to the
production of neurotoxic fragments of Aβ [47].

A range of works has suggested that soluble oligomers demonstrate higher toxicity than fibrils,
and, because of this, AD is clearly related to the existence of Aβ oligomers and deposits within the
brain [46]. This point of view is supported by indications that the concentration of senile plaques
within the brain of some patients does not predict the level of dementia; furthermore, a reduction in
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their concentration, by employing effective therapeutic agents, does not reverse the pathological frame
of the disorder [47,48].

Commonly, Aβ peptides are constituted by species with variable lengths, ranging from 37 to
42 residues. The fragment with 42 residues (Aβ42; Figure 1) presents pro-aggregating properties.
A pathological increase in the production of Aβ42 may indicates the presence of AD [49]. In this
context, appropriate tools for searching for bioactive agents against Aβ concern on the inhibition of
Aβ aggregates formation, decreasing Aβ fibrils generation [47]. Hence, the development of effective
therapies against Aβ is based on the reduction of the levels of highly toxic forms of Aβ, as well as
insoluble fibrils [47,50].
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Aβ could favour the appearance of an inflammatory process, which contributes to cognitive
decline. AD risk factors could increase the possibility of acquiring dementia, and systemic inflammation.
Among the factors that favour the onset of the disorder, it can be highlighted obesity, advanced age and
even traumatic brain damage [41]. Remarkably, midlife obesity is demonstrated as being a risk factor
in AD along with a sedentary lifestyle, high-cholesterol diet and decreased physical activity [41,52].

Nowadays, several novels β-secretase substrates have been identified [53,54]. Indications obtained
from some trials have demonstrated that inhibitors of β- and γ-secretases could be effective in the
treatment of early forms of AD. New works suggest that the formation of Aβ aggregates comes prior
to the onset of the primary symptoms of dementia, capable of bringing about some improvement for
the early pathogenic frame of AD [47,55]. The relationship between aggregates and soluble oligomers
of Aβ and gradual phosphorylation of the tau protein is a necessary discussion to support theories
referring to the development and evolution of AD [56].

Drug development for AD is an important step to provide a better life quality for patients with
this illness. This field focuses on directly preventing the formation of Aβ42 or removing the existing
Aβ42, along with the prevention of tau-related toxicity [57]. It is important to keep in mind that
the Aβ cascade is followed by some neuropathological processes, including tau phosphorylation,
agglomeration of paired helical filaments, astrocyte action, disrupted ion homeostasis, along with
oxidative stress [58]. Currently, the available treatment forms provide only symptomatic benefits for
AD people, leading to the necessity of developing more promising therapies [59].

The provision of high-quality assistance, services and information can be a potent tool, making
the difference in the life of people diagnosed with AD [40,43]. Worryingly, diverse attempts which aim
to develop more effective therapies have not so far reached success, with many high-profile clinical
trials failing to demonstrate benefits. It is worth mentioning that part of this failure is probably due to
the huge emphasis on the amyloid cascade as a molecular target for disease modification. Faced with
the existence of other molecular targets directly or indirectly involved in AD, it opens up a range of
possibilities for remediation and therapies [43,60].
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2.1.2. The Microtubule-Associated Protein Tau Hypothesis

An important approach in AD, which tries to interpret and explain the pathology related to the
disorder, is shrouded in the tau hypothesis. In this context, NFTs and helically twisted filaments
of hyperphosphorylated tau are crucial pathogenetic features in AD. The previously approached
β-amyloid hypothesis was proposed in 1991, and it is worth highlighting that the NFT generation
is preceded by Aβ deposits [61]. Toxic aggregation and senile plaques formation are related to
the unbalance regarding the generation and removal of Aβ from the brain. This frame leads to
the hyperphosphorylation process of tau protein, causing a destabilization of the cytoskeleton and
larger degeneration of nerve cells. Tau protein (Figure 2) is very important in the sense of stabilizing
cytoskeletal microtubules [62] and based on these data, tau becomes a significant biological target for
the development of novel effective therapies [63]. These therapies are mostly based on the inhibition of
tau phosphorylation, along with microtubule stabilization and prevention of tau oligomerization [47].

Int. J. Mol. Sci. 2019, 20, 1829 5 of 34 

 

An important approach in AD, which tries to interpret and explain the pathology related to the 
disorder, is shrouded in the tau hypothesis. In this context, NFTs and helically twisted filaments of 
hyperphosphorylated tau are crucial pathogenetic features in AD. The previously approached β-
amyloid hypothesis was proposed in 1991, and it is worth highlighting that the NFT generation is 
preceded by Aβ deposits [61]. Toxic aggregation and senile plaques formation are related to the 
unbalance regarding the generation and removal of Aβ from the brain. This frame leads to the 
hyperphosphorylation process of tau protein, causing a destabilization of the cytoskeleton and larger 
degeneration of nerve cells. Tau protein (Figure 2) is very important in the sense of stabilizing 
cytoskeletal microtubules [62] and based on these data, tau becomes a significant biological target for 
the development of novel effective therapies [63]. These therapies are mostly based on the inhibition 
of tau phosphorylation, along with microtubule stabilization and prevention of tau oligomerization 
[47]. 

 

Figure 2. Structure of microtubule-associated protein tau (PDB code: 2MZ7) [64]. 

In AD, tau phosphorylation is crucial to its function, but in extreme cases of 
hyperphosphorylated tau, the protein no longer binds to microtubules, but on the contrary, a process 
of aggregating into paired helical filaments occurs [65]. The outcome is a destabilization of 
microtubules and disruption of axonal transport, leading to neuronal injury and cell death. The 
increase in the levels of phosphorylated or total tau in the cerebrospinal fluid (CSF) is a significant 
indicator of NDDs or injury [66]. Although there is a strong connection between NFT topography 
and clinical phenotype [67], studies and development of novel therapies having NFTs as molecular 
targets are not given the same importance as those that target Aβ. The main purposes of these 
therapies are to decrease, stabilize or prevent hyperphosphorylation or agglomeration of the proteins 
[47]. 

2.2. Parkinson’s Disease 

Parkinson’s disease (PD) is another example of common NDD, reaching around 1% of the 
population above the age of 60 and about 4% above 85 years old [68]. Among the characteristic 
symptoms of the illness, it highlights the cognitive impairment generated, being a quite important 
non-motor aspect of PD, significantly affecting the life quality [69]. PD is characterized by 
bradykinesia, i.e., a condition where people find difficulties to move their body quickly. In addition, 
it can be cited a combination of symptoms, such as rigidity, resting tremor, postural instability, along 
with a range of non-motor symptoms, such as sleep disturbance, constipation, dysarthria, dysphonia, 
dysphagia, sialorrhoea, urinary incontinence and even constant sleepiness with slight delirium 
[70,71]. Similar to other NDDs, PD is clinically heterogeneous, presenting variations in some disease-
related aspects, for instance, the onset and progression of the disorder. An important fact referring to 
PD is that the progressive loss of dopamine-containing neurons in the substantia nigra pars compacta 
results in decreased levels of dopamine in the striatum [72,73]. 

Insoluble protein inclusions in neurons, termed Lewy bodies, mainly consisting of aggregated 
α-Synuclein (αSyn), are the main neuropathological hallmark of PD [74]. Lewy bodies and protein 
deposits are present in diverse brain regions, spreading with disease progression [75,76]. The exact 
biological mechanism leading to αSyn aggregation and neuronal loss remains unknown. Currently, 

Figure 2. Structure of microtubule-associated protein tau (PDB code: 2MZ7) [64].

In AD, tau phosphorylation is crucial to its function, but in extreme cases of hyperphosphorylated
tau, the protein no longer binds to microtubules, but on the contrary, a process of aggregating into paired
helical filaments occurs [65]. The outcome is a destabilization of microtubules and disruption of axonal
transport, leading to neuronal injury and cell death. The increase in the levels of phosphorylated or total
tau in the cerebrospinal fluid (CSF) is a significant indicator of NDDs or injury [66]. Although there is
a strong connection between NFT topography and clinical phenotype [67], studies and development of
novel therapies having NFTs as molecular targets are not given the same importance as those that target
Aβ. The main purposes of these therapies are to decrease, stabilize or prevent hyperphosphorylation
or agglomeration of the proteins [47].

2.2. Parkinson’s Disease

Parkinson’s disease (PD) is another example of common NDD, reaching around 1% of the
population above the age of 60 and about 4% above 85 years old [68]. Among the characteristic
symptoms of the illness, it highlights the cognitive impairment generated, being a quite important
non-motor aspect of PD, significantly affecting the life quality [69]. PD is characterized by bradykinesia,
i.e., a condition where people find difficulties to move their body quickly. In addition, it can be cited
a combination of symptoms, such as rigidity, resting tremor, postural instability, along with a range
of non-motor symptoms, such as sleep disturbance, constipation, dysarthria, dysphonia, dysphagia,
sialorrhoea, urinary incontinence and even constant sleepiness with slight delirium [70,71]. Similar
to other NDDs, PD is clinically heterogeneous, presenting variations in some disease-related aspects,
for instance, the onset and progression of the disorder. An important fact referring to PD is that
the progressive loss of dopamine-containing neurons in the substantia nigra pars compacta results in
decreased levels of dopamine in the striatum [72,73].

Insoluble protein inclusions in neurons, termed Lewy bodies, mainly consisting of aggregated
α-Synuclein (αSyn), are the main neuropathological hallmark of PD [74]. Lewy bodies and protein
deposits are present in diverse brain regions, spreading with disease progression [75,76]. The exact
biological mechanism leading to αSyn aggregation and neuronal loss remains unknown. Currently,
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only the symptoms of PD are treated with dopamine-replacement therapy, and in some cases, deep brain
stimulation [9]. Although there are large investments in the search for neuroprotective compounds
for PD, no convincing effects in clinical trials have emerged so far [9]. It is observed that cognitive
deterioration in PD people takes place due to the dysmetabolism of both amyloid protein, α-Synuclein
and cholinergic dysfunction [77]. Some investigations have shown that a long time occupational
exposure to certain chemicals, such as pesticides and heavy metals, is associated with an elevated risk
of developing PD [78,79].

2.3. Other Known NDDs

Besides Alzheimer’s disease, other NDDs have been associated with misfolding protein
aggregation into fibrils that are not completely able to perform their neuronal function.

Amyotrophic lateral sclerosis is a fatal motor neuron disorder characterized by progressive loss
of the upper and lower motor neurons at the spinal or bulbar level [80]. It affects about 1–3 per 106

individuals. ALS classification is based on the firstly affected area: limb onset with loss of motor
capability in arms and legs; or bulbar onset associated with loss of motor neurons that enervate facial
and throat muscles. It leads to difficulties in chewing, swallowing, or speaking. The progressive nature
of the disease spreads in both instances to all motor neuron populations, although it is slower in limb
versus bulbar onset. Both types of ALS patients, however, ultimately succumb to respiratory failure
from the loss of diaphragm function and intercostal muscle enervation [12].

Huntington’s disease is a neurodegenerative disorder that has manifestations as chorea,
behavioural and psychiatric symptoms and dementia. It is caused by a CAG triplet repeat expansion
in the huntingtin gene, which encodes an expanded polyglutamine stretch in the huntingtin protein.
The average CAG tract length in the general population is 16 to 20 repeats. In HD, the CAG tract
is expanded to 36 repeats or greater. Its clinical diagnosis is based on the development of chorea.
It is often observed together with movement abnormalities like dystonia, bradykinesia, and motor
incoordination. There are other characteristic behavioural or psychiatric features, such as dementia,
personality changes, poor attention, cognitive rigidity, and irritability [81].

Frontotemporal dementia is a disorder of language, cognition and behaviour that affects older
segments of society, characterised clinically by progressive behavioural changes and frontal executive
deficits and/or selective language difficulties. Some of its most prominent features are progressive
aphasia and bizarre affect with personality changes. On average, FTD occurs in patients about a decade
earlier than the onset of AD. There are reported cases beginning as early as 21 years old and as late as
80 years old. Apparently, the risk of FTD does not increase with age. Instead, it was found a normal
Poisson-like distribution of ages at diagnosis in FTD, with onset arrayed around a mean age of about
62 years. This suggests an underlying pathophysiology in FTD that is less tightly governed by age
and differs fundamentally from a condition like AD where the risk of the disease accumulates with
age [82,83].

In dementia with Lewy bodies, the defining pathological characteristic is the formation of abnormal
protein inclusions called Lewy bodies (LBs) in the cerebral cortex, in brain stem nuclei and parts of
the basal forebrain cholinergic system. These inclusion bodies are found in the cytoplasm of cells of a
wide variety of subcortical nuclei, including monoaminergic neurons. They are more likely to occur in
cortical neurons in patients with PD when the patients also have dementia. A defining constituent is the
presence of fibrillar aggregates of alpha-synuclein, a presynaptic protein involved in vesicle formation.
The three core clinical diagnostic features of DLB are: cognitive fluctuation (marked variations in
attention and alertness occurring over periods ranging from minutes to weeks); mild and spontaneous
Parkinsonism (typically bradykinesia and rigidity); and visual hallucinations, such as imagining seeing
a family member or pet. Some supporting diagnostic features for DLB include sensitivity to neuroleptic
drugs, frequent falls, and rapid eye movement sleep behaviour disorders [84,85].

The Friedreich’s ataxia is a slowly progressive disorder, characterised by a decreased production
of the mitochondrial protein frataxin. This deficiency results in abnormal mitochondrial respiration,
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increased free-radical production, and intramitochondrial iron accumulation in the heart, liver, dentate
nucleus of the cerebellum, and fibroblasts. The disorder has, as characteristics, progressive gait and
limb ataxia, dysarthria, cardiomyopathy, diabetes, abnormal proprioception and vibratory sense,
and loss of reflexes, with a slowly progressive course that culminates in reliance on hands-on assistance
for self-care and wheelchair dependence. The usual onset of symptoms is during adolescence (mean
15.5 ± 8 years) with unsteadiness of gait. About 20% of the patients are younger than 5 years at onset.
The average time to lose independent gait is 8 years. Patients usually become wheelchair-bound after
a mean disease duration of 11–15 years (range 3 to 44 years). The disease onset before 20 years old
and cardiac involvement are associated with faster progression of neurological symptoms. Dysarthria
manifests within 10 to 15 years and diabetes within 16 years whereas loss of proprioception takes more
than 40 years to develop [86,87].

A prion is a protein able to self-replicate. Prion diseases or transmissible spongiform
encephalopathies (TSE) are rapidly progressive neurodegenerative disorders caused by the misfolding
of the normal cellular prion protein (PrPc) into the disease-causing prion protein (PrPSc), which is
perpetuated through an autocatalytic cycle [88]. Prion proteins (PrP) are present in normal cells,
but abnormal forms of them may cause infectious diseases by the misfolding of their form [88,89].
Prion disease affects the nervous system of many mammals, including humans [90]. Indeed, because
of the huge similarity of the protein aggregation, some scientists do not discard that other NDDs like
AD, ALS and other syndromes are caused (and transmitted) by prion-like proteins [91,92].

3. Metal-Based Drugs for NDDs Treatment

The understanding of the different factors related with neurodegeneration processes is of great
importance to the design of novel treatment methods and therapies. NDDs involve various pathological
conditions, which have in common similar critical metabolic processes, for instance, processes related
to protein aggregation and oxidative stress. It is demonstrated that these processes are associated with
the involvement of metal ions [93]. Metal ions are clearly fundamental for the performance of a series
of significant biological functions within the brain, such as nerve transmission, synthesis/metabolism
of neurotransmitters, in addition to oxygen transport [94]. It is quite important to highlight the
chelating therapy, which could be a remarkable therapeutic approach, keeping in mind that metals
are shown to be molecular targets for the rational design of novel therapeutic agents, aiming the
treatment of these disorders [93]. Metal-based drugs have demonstrated to be a new and promising
alternative to treat NDDs. Particularly, lithium-based treatment has been linked to neuroprotection
against neurodegenerative frames, for instance, those observed in PD, AD, and HD as well as
ALS [78]. Lithium treatment has indicated to provide neuroprotection against neurological disturbances,
including excitotoxicity, ischemic damage and traumatic brain injury [95,96]. Works have indicated that
lithium could be an efficient therapy for mood disorders and neurodegenerative conditions. On the
other hand, there are many reports about lithium-induced neurotoxicity. High lithium doses are
generally required for inducing neurotoxicity, however, it can also take place at therapeutic dosages as
well [78,97]. Several lithium studies in AD, PD, and other NDDs have been carried out and included
both in vitro and in vivo investigations.

In addition to the already well-known effects of lithium over NDDs, metals such as platinum,
copper, zinc, manganese and ruthenium have shown potential benefits for the treatment of NDDs.
More details are given in the next section.

3.1. Lithium-Based Treatment

Lithium is considered a first-line drug, commonly applied to the treatment of bipolar depression.
This element has presented the potential to regulate glycogen synthase kinase-3 (GSK-3); this is a
kinase directly related to the phosphorylation process of tau protein [98]. Preclinical investigations
have indicated that GSK-3 activity (considering both the GSK-3α and GSK-3β isoforms) could be
inhibited by lithium [98,99]. GSK-3β accounts for the phosphorylation process of the majority of the
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paired helical filament phosphorylation sites [100]. It is noteworthy that the GSK-3α isoform is quite
important in the Aβ generation by interacting with γ-secretase [101]. A significant feature of lithium is
that it decreases GSK-3 activity in two ways: a direct competition with Mg2+ and an indirect increase
of phosphorylation of the inhibitory site on GSK-3 [102,103]. Recent in vitro and in vivo works have
demonstrated that lithium decreased the phosphorylation of tau protein at AD-specific sites, blocking
accumulation of Aβ in the brain [101,104]. In this context, if GSK-3 is related to tau pathology, it shows
potential as being a target for possible therapeutic interventions [105].

Lithium salts have been broadly employed in medicine for decades, assisting in the treatment
of psychiatric disorders [106]. It is found in the literature reports on one of the first mechanisms of
action regarding lithium, which involves the inhibition of inositol monophosphatase (IMP), causing
the depletion of inositol triphosphate (IP3). Lately, this outcome has been demonstrated to upregulate
autophagy [107–109], thus being significant in the prevention or attenuation of neurodegeneration.
It is important to keep in mind that autophagy is an intracellular protein degradation pathway,
which results in the clearance of mutant and abnormally processed proteins that could accumulate
in neurons [109]. As a matter of fact, autophagy-related mechanisms could bring about benefits to a
range of animal templates of NDDs [110].

The pharmacological mechanisms referring to lithium are not fully unveiled, but on the other hand,
evidence suggests the direct relation of classic pharmacological targets affecting neurotransmission and
signal transduction. According to this datum, it highlights the modulation of cell-surface receptors,
the release of second messengers and downstream signaling molecules, and also outcomes on the
activity of pertinent regulatory systems, influencing on the release of transcription factors and gene
expression [111,112]. With more details, it is shown that the monovalent lithium (Li+) competes with
bivalent magnesium (Mg2+) due to the similar ionic radii of these cations, being 0.60 and 0.65 Å,
respectively, making lithium capable of binding to Mg2+ substrate sites. With the exposed so far,
lithium is then capable of inhibiting diverse enzymes that depend on Mg2+ as a cofactor [113,114].
The competition observed between lithium and Mg2+ on these substrate sites significantly influences the
activity of many enzymes. In addition, it is possible to cite some important lithium targets, for instance,
glycogen synthase kinase-3 beta (GSK-3β), inositol monophosphatase (IMP) and Akt/β-arrestin2
(Akt stands for Protein kinase B). Interestingly, the modification of these intracellular pathways
through enzymatic inhibition is quite significant in the sense of getting a good comprehension of the
pathogenesis of specific neuropsychiatric and neurodegenerative disorders [112].

As said previously, GSK-3 has two isoforms, alpha and beta, each one with particular patterns of
distribution and homeostatic roles. It is shown that GSK-3β is found in larger amounts in the brain,
being involved in cytoskeletal organization and remodeling [115]. Reciprocally, cerebral GSK-3α is
related to neurodevelopment, and it is observed certain relation regarding its inhibition by lithium with
disease modification, taking into account the transgenic mouse template of AD [101,116]. Undoubtedly,
the inhibition of GSK-3β by lithium is one of its most significant mechanisms of action, making it a
promising candidate for disease-modifying drugs in the treatment or prevention of AD [112,117].

Recent data in the literature indicate that lithium therapy enhances the mitochondrial respiratory
rate, decreases oxidative stress, and protects DNA against damages caused by these oxidative processes,
beyond modulating calcium influx in the mitochondria [118–122]. In studies performed with transgenic
mice overexpressing GSK-3β, and also considering other animal templates of AD, it was noticed that
chronic lithium-based therapies significantly decreased tau phosphorylation [123–125]. Furthermore,
this kind of treatment decreased Aβ42 generation by direct modulation of APP processing and through
GSK-3β inhibition [126,127]. It is worth mentioning that the mitigation or reversal of AD-related
neuropathology was observed along with a relevant improvement in memory deficits, based on these
animal templates [128–130]. In addition, lithium could also provide protection for neurons against the
neurotoxic effects of Aβ42 [131]. Chen and Chuang demonstrated that lithium increases the expression
of p53 and Bcl-2, contributing to neuronal survival [132]. Chen et al. [133] indicated that the chronic
administration by combining two structurally dissimilar mood stabilizing agents; in this case, lithium
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plus valproic acid (1), see Figure 3, leads to higher levels of Bcl-2 in the cortex, which results in beneficial
neuroprotective outcomes. According to Macdonald et al. [134], lithium therapy in AD elderly people
presents few side effects and those that were seemingly due to treatment were demonstrated to be
mild and reversible.
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3.2. Inert Complexes Metal Ions

Inspired by the great potential of cisplatin against cancer, many scientists developed their
researches in the promising field of inorganic complexes as therapeutic drugs. With NDDs, this trend
was not different, and many metallocomplexes were studied to combat those diseases. In the next
sections, some inorganic complexes with potential biologic activity are described. They are divided
according to their different biological roles.

3.2.1. SODs Mimic Metal-Containing Drugs

Superoxide dismutases (SODs; Figure 4) are metalloenzymes that play the important role of
protecting cells of the oxidative stress caused by high concentrations of reactive oxygen species (ROS)
like superoxide radical anion (O2−). As their name indicates, SODs act as catalysts on the dismutation
of O2− to O2 and H2O2. The presence of ROS is normal in cells and is balanced by enzymes like SOD
that are able to reduce those harmful species. In some NDDs such as AD and PD, it is documented
an excess of free radicals, especially in the brain. In this way, many Cu, Zn and Mn metallodrugs
are being tested with the objective of mimic SOD enzymes and act as neuroprotectors due to their
antioxidant properties. This idea comes from the fact that SODs contain the cited metal ions in their
active site [27,135,136].
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Metal–curcumin complexes are being studied against oxidative stress in neurons acting as
neuroprotective agents. Recent studies reveal that the phenolic hydroxyl groups in curcumin are
the main responsible for its antioxidant properties. The intrinsic antioxidant activity of curcumin
associated to a favorable non-planar coordination geometry of the complex Cu(Curc)(OAc)(OH) (3;



Int. J. Mol. Sci. 2019, 20, 1829 10 of 33

Figure 5) yields a powerful superoxide radical anion (O2−) reductor catalyst. In addition, studies with
similar curcumin complexes but with Mn(II) ions instead of Cu(II), Mn(Curc)(OAc)(H2O) (4; Figure 5)
and Mn(DACurc)2 (5; Figure 5), showed, beyond the O2− reduction properties, a good NO radical
scavenging, becoming a neuroprotector and a potential agent in the treatment of epilepsy and other
NDDs induced by oxidative stress [138,139]. Indeed, because of the promising in vitro activity of Mn
curcumin complexes, in vivo studies started to be done. Those studies were developed in mice brains
and corroborate that Mn curcumin complexes are potent neuroprotective agents and may be used in
the treatment of NDDs [140,141].
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In another interesting work, Belda et al. [142] synthesized and tested homo and heterobinuclear
Cu2+ and Zn2+ complexes as SOD mimics. The experiments showed high catalytic activity of all
tested Cu homobinuclear cyclic hexa-azapyridinocyclophanes, although, for almost all tested ligands,
the substitution of one of the Cu2+ ions by a Zn2+ ion yields a decrease in catalytic dismutase activity.
Many other studies need to be done in order to transform those complexes in metallodrugs, but, because
of their low IC50, some of the studied complexes may act as Cu-SOD mimics and may be also applied
as neuroprotective agents [142].

3.2.2. Metal-Based Prion Protein Aggregation Inhibitors

As said before, a prion (Figure 6) is a protein (without nucleic acid genome) that is able to
self-replicate. In this paper, we discuss some complexes that may inhibit PrPs aggregation.

Because of their low cytotoxicity, ruthenium complexes are studied as metallodrugs in the
treatment of many diseases. In particular, Wang et al. studied the inhibition of a prion neuropeptide
aggregation by six Ru complexes. It was found that all the complexes (like 6 and 7; Figure 7) could bind
to the studied prion known as PrP106–126. The studied aromatic rings ligands were more efficient in
the aggregation inhibition [143].
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3.2.3. Aβ Aggregation Inhibitors

Focusing on AD, Messori et al. [145] studied three Ru(III) complexes as inhibitors of Aβ42

aggregation. The authors found out that the complex PMRU20 (8) (Figure 8) was very effective in
blocking the Aβ42 aggregation in comparison with the other two studied complexes. In addition,
in vitro experiments indicated low toxicity of the complex, placing the novel complex as a promisor
neuroprotective agent. Based on the fact that the acetylcholinesterase (AChE) inhibitors are already a
possible treatment for AD [146], Vyas et al. [147] studied Ru(II) polypyridyl complexes (9,10) (Figure 8)
as multi-target drugs: AChE inhibitors and Aβ aggregation blockers. In this very complete work,
theoretical and experimental data were analyzed and, for the first time in the literature, it was proposed
one drug for those two different purposes.
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Another very interesting dual-role metallodrug study was performed recently by Lu et al. [148].
The principal idea of this innovative research was to synthesize and characterize luminescent Ir(III)
complexes to act as probes for Aβ40 peptide and as inhibitors of its fibrillation. In the mentioned work,
14 iridium complexes were synthesized and tested. Among them, a phenyl-imidazo-phen ligand (11)
(Figure 8) was the most promising one, inhibiting almost completely the aggregation of Aβ40 peptide.
In this study, cell viability analysis was performed and it turned out that the complex is able to act as a
neuroprotective agent [148].

In a pioneer work and inspired by cisplatin, Barnham et al. [149] studied a set of Pt complexes
(12 to 14) (Figure 8) on the inhibition of the Aβ peptide and compared the results with cisplatin. In vivo
tests were also performed in mice. After this work, many other Pt complexes were tested as therapeutic
agents for AD [149–152]. Despite, just some of those studies showed promising results about the
toxicity of the novel complexes. Although permitted Pt drugs are used in different types of treatments
(but mainly in chemotherapy), studies reveal that many already approved drugs are responsible for
platinum-induced peripheral neurotoxicity. With this indication, it is extremely important to perform
rigorous toxicity tests not just on Pt complexes, but on all the others in order to prevent new diseases [153].

In order to enhance the selectivity of Aβ and consecutively prevent side effects, Li et al. [154]
introduced a novel class of chiral inhibitors. The work is based on the fact that the α-helix in the 13−23
segment of the Aβ enzyme has a critical role in the fibril formation. Thus, the authors took advantage
of the chirality of the l-amino acids and the 3D peptide structure of the α-helix to develop chiral Fe
supramolecular complexes. The metallocomplexes are able to enantioselectively inhibit Aβ fibrillation.
In addition, experimental tests also showed a superoxide dismutase activity of the compounds [154].
This work opened a new important door to selective drugs in AD.

4. Chelating Agents

As previously mentioned, many studies indicate that abnormal metal homeostasis is an important
pathogenic factor in many neurodegenerative diseases [155]. The imbalance of metal ion concentrations
in the brain could be responsible for damages related to neuronal cell apoptosis [156]. The first kind
of metal-promoted damage is the oxidative stress. The aggregation of peptides, like Aβ peptide,
with metal ions, such as copper, zinc or iron, promotes the intracellular accumulation of ROS [157].
High concentrations of ROS species promote degradation of many cells and tissues, leading to several
pathophysiological conditions, including PD and AD [156]. A secondary consequence of metal
imbalance is the protein modification and aggregation, which induces the formation of intra and
extracellular Aβ peptide deposits [156]. In addition, it is demonstrated, through in vitro studies,
that high concentrations of metal ions, such as Cu(II) and Fe(III), allow these charged species to bind to
and increase the fibrillization of the α-synuclein protein [158].

Having in mind all these problems related to the presence of metal ions in the brain, many studies
have been developed exploring the potential of chelating agents, which are capable of capturing the
redox-active metal [155,159]. In order to be an eligible chelating agent in the treatment of AD, it must
present a low molecular weight, chelation selectivity, avoiding depletion of other metal ions, and it
must be able to tear off the metal ions of pathogen proteins [160]. Furthermore, suitable chelating agents
should be capable of capturing the free redox active metal, besides preventing the ROS production [155].

4.1. Multifunctional Agents

The incorporation of chelating properties in a single molecule is the main characteristic of
multifunctional compounds (MFCs) [161]. The development of these multitarget-directed ligands
(MTDLs) has been one of the main focuses of current research in the search for AD drugs [162].

The first metal ligand used as a therapeutic agent was clioquinol (CQ) (15) (Figure 9),
a 8-hydroxyquinoline derivative [163]. However, it was verified that a long-term use of CQ produces
several side effects [160]. In this sense, a wide range of molecules has been developed, focusing on
possible multitarget drugs for the treatment of AD and other NDDs. Among these drugs, there may be
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highlighted the molecules derived from various compounds, as triazole (TRI) (16) [164–169] diferiprone
(DFP) (17) [170–173], 8-hydroxyquinoline (8-HQ) (18) [163,174–178], cyclam (CY) (19) [179–183],
thioflavine T (ThT) (20) [19,184–187], p-I-stilbene (pISTIB) (21) [188–196], chalcone (CHAL) (22) [167,168],
resveratrol (RESV) (23) [197,198], flavone (FLAV) (24) [199,200], donepezil (DONE) (25) [201–205],
tacrine (TAC) (26) [206–219], dopamine (DOP) (27) [220] and peptide-based inhibitors (PEP) [221–223],
which can be seen in Figure 9. These derived molecules, besides presenting chelating property, can also
act on different molecular targets, such as oxidative stress and Aβ, cholinesterases (ChEs), tau and
monoamine oxidases (MAOs) enzymes [12]. Some molecules already developed with some of these
templates are described below.
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Figure 9. Template molecules for the development of multifunctional compounds. Clioquinol
molecule, 5-chloro-7-iodo-quinolin-8-ol (15); triazole (TRI), 1,2,3,4-tetrahydroacridin-9-amine (16);
diferiprone (DFP), 1,2-dimethyl-3-hydroxypyridin-4-on (17); 8-hydroxyquinoline (8-HQ) (18), cyclam
(CY) (19), thioflavine T (ThT), 4-(3,6-dimethyl-1,3- benzothiazol-3-ium-2-yl)-N,N-dimethylaniline
(20); p-I-stilbene (pISTIB) (E)-4-iodo-4′-dimethylamino-1,2-diphenylethylene (21); chalcone (CHAL),
(2E)-1,3-diphenylprop-2-en-1-one (22), resveratrol (RESV), 3,5,4′-trihydroxy-trans-stilbene (23); flavone
(FLAV), 2-phenyl-4H-1-benzopyr-4-one (24); donepezil (DONE), 2-[(1-benzylpiperidin-4-yl)methyl]-
5,6-dimethoxy-2,3-dihydro-1H-inden-1-one (25), tacrine (TAC), 1,2,3,4-tetrahydro-9-acridinamine (26)
and dopamine (DOP), 4-(2-amino-ethyl)-benzene-1,2-diol (27).
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Baleh and collaborators [157] developed a novel series of TRI derivatives (28,29) (Figure 10), which
act as MTDL and also as neuroprotective agents. Most of the compounds showed neuroprotection
effects increasing the cell viability in the presence of H2O2, anti-cholinesterase activity (varying the
effect according to the length of carbon spacer and being a four-carbon spacer the best inhibitor), good
antioxidant activity and metal chelating properties. Based on the idea of developing metal chelators
from functionalized small molecules with amyloid recognition units, the 8-HQ, pISTIB and RESV
structures were used to develop the azo dyes-based compounds 30 and 31 (Figure 10). Compounds
30 and 31 are able to bind on Cu2+ ions and control amyloid formation [151]. However, cell toxicity
studies revealed that azo-dyes compounds, although non-toxic, may present significant toxicity when
a nitro group substitution occurs.Int. J. Mol. Sci. 2019, 20, 1829 15 of 34 
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(HL2), 32 is the tris(dopamine) derivative benzene-1,3,5-tricarboxylic acid tris-{[2-(3,4-dihydroxy-
phenyl)-ethyl]-amide} and 33 is an 8-hydroxyquinoline derivative 3-(2-chloro-phenyl)-1-[4-(8-hydroxy-
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Regarding the iron-chelating agents, one effective compound is tris(DOP) derivative L1H6 (32)
(see Figure 10) [215]. This molecule has a favorable geometric arrangement when coordinated to
Fe(III) ion. The accumulation of iron can induce many neurodegenerative disorders, including PD,
and the high affinity and selectivity of compound 32 allow it to be applied in situations where the
concentrations of other essential ions, such as Zn(II) and Mg(II), should be maintained [215]. In addition,
these molecules have great potential to act as antioxidant agents and show relatively low cytotoxicity.

The ability of 8-HQ derivatives to act as MTDLs was tested by Yang and collaborators [174].
The compounds substituted with Cl and H (33), as shown in Figure 7, reveal great potential in exerting
metal-chelating activity, among other properties, such as antioxidant effect and inhibition of Aβ
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aggregation. Tacrine-hydroxyphenylbenzimidazole hybrids also show moderate metal chelating
ability, as well as inhibitory activity against AChE and capacity for recovering cholinergic neurons [18].

Metal binding peptides, such as methanobactin (Mb) from Methylosinus trichosporium OB3b,
are also a drug alternative [224]. The Mbs are peptides secreted by methanotrophs in response to low
concentrations of copper ions in their environment. These peptides are catalytic redox enzymes, which
have a preference for copper ions, reducing Cu(II) to Cu(I). The potential of this class of peptides as
chelating agents for the treatment of NDDs, related to alterations of copper ions in the organism, has
been studied continuously. Selectivity tests were done employing Ag(I), Pb(II), Co(II), Fe(II), Mn(II),
Ni(II) and Zn(II). As results, the authors found that the selectivity of Mb peptide, at pH 6.5, follows the
order Ag(I) ≈ Cu(I) > Ni(II) ≈ Zn(II) > Co(II) >> Mn(II) ≈ Pb(II) > Fe(II). On the other hand in a pH
range from 7.5 to 10.4, the selectivity order is changed by: Ag(I) > Cu(I) > Ni(II) > Co(II) > Zn(II) >

Mn(II) ≈ Pb(II) > Fe(II). The results are an expansion of previous works and were able to determine the
reaction products of Mb for selected metal ions, which can be useful in the treatment of NDDs.

Many other compounds have been studied with this same chelating purpose, such as
propargylamine-modified pyrimidinylthiourea derivatives [159], iminochromene-2H-carboxamide
derivatives [225] hydroxy-substituted trans-cinnamoyl derivatives [226], CQ derivatives [160],
phenanthroline derivatives [227], pyrrolidine dithiocarbamate [228], macrocyclic polyamine [160,229]
among many others [12]. As the cause of these diseases is multiple, the incorporation of many functions
in a single molecule is a promising strategy to improve NDDs treatment [230].

4.2. Drug Repositioning for Chelating Agents

An interesting strategy for the development of new NDDs therapies is drug repositioning, also
known as drug reprofiling or drug repurposing [231]. This methodology consists in the identification
of new therapeutic applications for existing drugs [232]. The great advantage of this method is the
low investment in time and cost [233] since the data about pharmacokinetic, toxicology and safety
are already existent [232]. Many commercialized drugs have been repositioned for AD treatment,
acting through different mechanisms of action. Among them are the galantamine (34) [234], used in
AD, carmustine (35) [235], tamibarotene (36) [236], imatinib (37) [237], bexarotene (38) [238], paclitaxel
(39) [239], thalidomide (40) [240] and azithromycin (41) [241], all represented in Figure 11.

Preclinical tests strongly support evidence of deferiprone (42) as neuroprotector [242,243].
Traditionally used in the treatment of thalassemia major, deferiprone is a chelating agent for intracellular
iron that has been proposed for PD treatment [244]. Due to its physicochemical characteristics, such
as a favorable partition coefficient, low molecular weight and neutral charge, deferiprone is able to
cross the BBB [245]. Considering that iron is a key factor in the progression of PD, the removal of
excess cerebral iron may be a useful strategy in its treatment [246]. Deferiprone can redistribute the
excess of intracellular iron to the extracellular apotransferrin, which is important in avoiding systemic
iron losses, different from other chelating agents [247]. The non-steroidal anti-inflammatory drug
4-aminosalicylic acid (43) also has neuroprotective effects and prevents Mg2+ accumulation [248].

As already mentioned, there is an advantage to employ known drugs in new treatments, since
these drugs have a longer study time, and many parameters are better established. With respect to
pharmacogenetics, for Donepezil and Galantamine, for example, 80 allelic variants have been described
due to genetic polymorphisms in CYP2D6 gene [249]. These studies have been performed considering
the fact that the Cytochrome P450 (CYP) 2D6 enzyme is the major responsible for the metabolism of this
drugs and that functional polymorphisms in CYP2D6 gene can affect. Resistance to Imatinib treatment
also has been described, and genetic variation the activity of CP450, and consequently affect the drugs
metabolism [250–255] ns in influx transporter gene SLC22A1 [255] as well as ABCB1 [256] are associated
with this resistance. For the last, CAC haplotype was associated with a high level of resistance, once the
1236C-2677A-3435C haplotype have been found only in resistant patients. For Paclitaxel, the resistance
is linked to high expressions of gene encoding P-glycoprotein (PGP). In addition, the use of this drug
increases the expression of the MDR1 gene by altering cellular mechanisms [257,258]. In relation to
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toxicity, the expression of the ABCB1 gene (also known as MDR1, encoding the P-glycoprotein) have
studied, and an overexpression of MDR1 is the strongest predictive biomarker of taxanes (Paclitaxel
and Docetaxel) resistance in general [257]. Pharmacogenetic studies of adverse drug response to
Deferiprone found that the UGT1A6 2 Arg184Ser polymorphism of the UGT1A6 gene may interfere in
adverse drug reactions (ADR), but not in drug resistance [259].Int. J. Mol. Sci. 2019, 20, 1829 17 of 34 
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Figure 11. Chemical structures of commercialized drugs proposed for NDD treatment: galantamine,
(4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-3-methoxy-11-methyl-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-
6-ol (34); casmustine (35), 1,3-Bis(2-chloroethyl)-1-nitrosourea; tamibarotene (36), 4-[(1,1,4,4-
tetramethyltetralin-6-yl)carbamoyl]benzoic acid; imatinib (37), 4-[(4-methylpiperazin-1-yl)methyl]-
N-[4-methyl-3-[(4-pyridin-3-ylpyrimidin-2-yl)amino]phenyl]benzamide; bexarotene (38), 4-[1-(5,6,7,8-
tetrahydro-3,5,5,8,8-pentamethyl-2-naphthalenyl)ethenyl]benzoic acid; paclitaxel (39), (2α,4α,5β,7β,
10β,13α)-4,10-bis(acetyloxy)-13-{[(2R,3S)-3-(benzoylamino)-2-hydroxy-3-phenylpropanoyl]oxy}-1,7-
dihydroxy-9-oxo-5,20-epoxytax-11-en-2-yl benzoate; thalidomide (40), 2-(2,6-dioxopiperidin-3-yl)-
2,3-dihydro-1H-isoindole-1,3-dione; azythromicin (41), (2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-2-ethyl-
3,4,10-trihydroxy-3,5,6,8,10,12,14-heptamethyl-15-oxo-11-{[3,4,6-trideoxy-3-(dimethylamino)-β-d-xylo-
hexopyranosyl]oxy}-1-oxa-6-azacyclopentadec-13-yl 2,6-dideoxy-3C-methyl-3-O-methyl-α-l-ribo-
hexopyranoside; deferiprone (42), 3-hydroxy-1,2-dimethylpyridin-4(1H)-1 and 4-aminosalicylic acid
(43), 4-Amino-2-hydroxybenzoic acid.
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As can be seen, there are many molecules already developed that can be used as chelating agents.
Besides the ability of chelating metal ions, it seems appropriate to consider other perspectives, such as
side effects, toxicity, adverse effects and many other factors. It is also important to consider that
a powerful chelating agent can remove more metal ions from the body than necessary, which may
compromise cellular functions [251]. In this sense, a new class of compounds has been studied, called
metal protein attenuating Compounds (MPACs).

4.3. Metal Protein Attenuating Compounds (MPACs)

Metal protein attenuating compounds (MPACs) are a different class of chelating agents which
moderate affinity for metal ions. As previously mentioned, copper and zinc ions are responsible for
mediating the Aβ aggregation and toxicity, as well as the production of neurotoxic hydrogen peroxide.
In this way, the removal of these metal ions promotes the solubilization of Aβ [260]. MPACs compete
with the target protein for metal ions, correcting abnormal concentrations of these metals, which means
that their affinity for metal ions is reduced, compared to traditional chelating agents [261]. This concept
should not be exchanged by the concept of “chelating agents” mentioned above. Chelating metals
are responsible to remove bulk metals, as in the case of Wilson’s disease, which involves abnormal
concentrations of copper ions [261]. The MPACs are capable of crossing the BBB and have subtle
effects on metal homeostasis, decreasing oligomerization of Aβ by inhibiting Zn2+ and Cu2+ ions [17].
This compounds may have the characteristic of both solubilizing and rescinding the oxidation and
toxicity of Aβ peptide mediated by metal ions [260].

The first compound used as MPAC was the previously mentioned CQ (15) [260]. This molecule is
able to restore metal homeostasis, to reduce levels of Aβ peptides, among other positive effects [262].
Initially used as an oral antibiotic [263], CQ was withdrawn from the market after presenting side
effects related to neurological effects [264]. Clioquinol seems to favor the entrance of copper and
zinc ions into cells, triggering activation of metalloproteases and degrading Aβ [264,265]. The ability
to cross the BBB and the approval by the U.S. agency FDA (Food and Drug Administration) have
also motivated its use [266]. A pilot phase 2 of a clinical trial was conducted by Ritchie and
collaborators and, over 36 months, 36 patients participated in the test [267]. CQ treatment showed
a decrease in cognitive deterioration and a reduction in Aβ levels, maintaining copper levels in
plasma. Despite the promising results, large scale synthesis limitation and side effects [268], such as
the induction of myelinopathies [269], led to the discontinuation of the studies. The second generation
of 8-hydroxyquinoline derivatives was developed. One of these derivatives, PTB2 (44) (Figure 12),
has shown to be more promising than CQ, with fewer side effects. PTB2 has a higher solubility,
easier chemical synthesis, and also increases BBB permeability [268]. However, despite presenting
good safety and tolerability on patients with mild AD, a phase II of the clinical trial did not show a
considerable reduction of Aβ concentrations [230,270,271]. Nowadays, PBT2 is in clinical development
for the treatment of HD [272].

In order to improve the metal affinity, among other features, the 8-HQ derivative with an
arylhydrazone moiety, INHHQ (45) [273] (Figure 12) was developed. INHHQ shows in vitro MPAC
activity, being nontoxic for male Wistar rats and able to interact with Cu(II) and Zn(II) from Aβ.
Besides that, it is able to cross the BBB, disrupt anomalous Cu-α-Syn interactions, and also inhibits
oligomerization of this enzyme, which is an advantage in PD treatment [272]. In order to investigate
the role of arylhydrazone moiety in MPAC activity, the compound HPCIH (46) (Figure 12) [274] was
tested, and it also showed competition with Aβ for Zn2+ ions. Peptidic ligands can also act as a
MPAC compound. GSH-LD (47) (Figure 12) is an example. Together with L-Dopa, the GSH, a peptide
known for its pleiotropic action in NDDs, was employed for the development of the GSH-LD molecule.
GSH-LD is able to selectively remove the excess of Cu2+, and partially Zn2+ excess from Aβ peptide.
Biological tests revealed that the compound could also counteract oxidative stress.

Aiming to potentialize the MPACs’ effects, SOD-mimics compounds were tested by Ji and
Zang [275]. Considering that SOD-mimics are metal chelating agents, the authors evaluated
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four compounds with possible chelating activity close to that of CQ. Based on theoretical
calculations [276,277], it was found that the compounds 1-BYT (48) and 1,4-BYT (49) exhibited
metal-chelating ability similar to clioquinol, having the advantage of being a SOD-mimic compound.
The imidazole group found in both compounds have many sites in which modifications may be made,
aiming to reach other interesting properties such as prevention of Aβ aggregation. This is a possible
pathway for the development of new, more specific and potent MPACs for the treatment of NDDs [265].
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Figure 12. Chemical structures of metal protein attenuating compounds PBT2, (44), 5,7-Dichloro-
2-dimethylaminomethyl-quinolin-8-ol; INHQ (45), 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl
hydrazone; HPCH (46), pyridine-2-carboxaldehyde isonicotinoyl hydrazone; GSH-LD (47), 2-Acetylamino-
4-[1-({[2-(3,4-dihydroxy-phenyl)-1-methoxycarbonyl-ethylcarbamoyl]-methyl}-carbamoyl)-2-mercapto-
ethylcarbamoyl]-butyric acid methyl ester; 1-BYT (48), 1-(benzimidazole-2-ylmethyl)-1,4,7-triazacyclononane
and 1,4-BYT (49), 1,4-bis(benzimidazole-2-ylmethyl)-1,4,7-triazacyclonone.

5. Conclusions

The present review provides a description of some of the alternatives that are currently being
developed for the treatment of neurodegenerative diseases, regarding metallic ions, metallodrugs and
also chelating agents. It is known that metal ions are fundamental to organisms and perform many
significant biologic functions of great importance. It is also known that abnormal metal homeostasis
is a relevant pathogenic factor for NDDs. Having in mind that only some symptomatic treatments
are currently available, the implantation of new treatments is still a great challenge and can improve
the quality of life of patients with these diseases and even their cure. Based on the fact that many
compounds are already developed and present great potential for implantation in the remediation
process. Nonetheless, many of these compounds also have great potential to be used in NDDs.
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However, in practical terms, a great amount of work needs to be done to optimize the conditions of use
and make the introduction of new compounds feasible in the market. Moreover, there should be an
improvement in their pharmacodynamics and pharmacokinetics, improving not only the permeability
of some of these compounds in the BBB, but also its mode of action and specificity, among other aspects.
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Abbreviations

8-HQ 8-Hydroxyquinoline
Aß Amyloid-ß
AD Alzheimer’s disease
ALS Amyotrophic lateral sclerosis
APP Amyloid precursor protein
BBB Blood-brain barrier
CHAL Chalcone
ChEs Cholinesterases
CNS Central nervous system
CQ Clioquinol
CSF Cerebrospinal fluid
CY Cyclam
DFP Diferiprone
DLB Dementia with Lewy bodies
DONE Donepezil
DOP Dopamine
FLAV Flavone
FNHK
FRDA Friedreich’s ataxia
FTD Frontotemporal dementia
GSK-3 Synthase kinase-3
HD Huntington’s disease
IMP Inositol monophosphatase
IP3 Inositol triphosphate
MAOs Monoamine Oxidases
Mb Methanobactin
MFCs Multifunctional compounds
MPACs Metal Protein Attenuating Compounds
MTDLs Multitarget-directed ligands
NDDs Neurodegenerative diseases
NFTs Neurofibrillary tangles
PD Parkinson’s disease
PDB Protein Data Bank
pISTIB p-I-stilbene
P-Tau Hyperphosphorylated tau
RESV Resveratrol
ROS Reactive oxygen species
SOD Superoxide dismutases
TAC Tacrine
ThT Thioflavine T
TRI Triazole
UHK
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217. Dgachi, Y.; Sokolov, O.; Luzet, V.; Godyń, J.; Panek, D.; Bonet, A.; Martin, H.; Iriepa, I.; Moraleda, I.;
García-Iriepa, C.; et al. Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and
acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur. J. Med. Chem. 2017, 126, 576–589. [CrossRef]

218. Li, S.-Y.; Wang, X.-B.; Xie, S.-S.; Jiang, N.; Wang, K.D.G.; Yao, H.-Q.; Sun, H.-B.; Kong, L.-Y. Multifunctional
tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the
treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013, 69, 632–646. [CrossRef]

219. Sun, Q.; Peng, D.-Y.; Yang, S.-G.; Zhu, X.-L.; Yang, W.-C.; Yang, G.-F. Syntheses of coumarin–tacrine hybrids
as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation,
and β-secretase. Bioorg. Med. Chem. 2014, 22, 4784–4791. [CrossRef] [PubMed]

220. Zhang, Q.; Jin, B.; Shi, Z.; Wang, X.; Lei, S.; Tang, X.; Liang, H.; Liu, Q.; Gong, M.; Peng, R. New tris(dopamine)
derivative as an iron chelator. Synthesis, solution thermodynamic stability, and antioxidant research.
J. Inorg. Biochem. 2017, 171, 29–36. [CrossRef]

221. Rajasekhar, K.; Madhu, C.; Govindaraju, T. Natural Tripeptide-Based Inhibitor of Multifaceted Amyloid β

Toxicity. ACS Chem. Neurosci. 2016, 7, 1300–1310. [CrossRef]
222. Trapaidze, A.; Hureau, C.; Bal, W.; Winterhalter, M.; Faller, P. Thermodynamic study of Cu2+ binding to the

DAHK and GHK peptides by isothermal titration calorimetry (ITC) with the weaker competitor glycine.
JBIC J. Biol. Inorg. Chem. 2012, 17, 37–47. [CrossRef]

223. Márquez, M.; Blancas-Mejía, L.M.; Campos, A.; Rojas, L.; Castañeda-Hernández, G.; Quintanar, L.
A bifunctional non-natural tetrapeptide modulates amyloid-beta peptide aggregation in the presence
of Cu(ii). Metallomics 2014, 6, 2189–2192. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00044-014-0931-2
http://dx.doi.org/10.1021/jm5010804
http://dx.doi.org/10.1016/j.bmcl.2008.03.073
http://dx.doi.org/10.1021/acs.jmedchem.6b01178
http://www.ncbi.nlm.nih.gov/pubmed/27736061
http://dx.doi.org/10.1002/cmdc.201402409
http://www.ncbi.nlm.nih.gov/pubmed/25537267
http://dx.doi.org/10.1021/jm100329q
http://www.ncbi.nlm.nih.gov/pubmed/20545360
http://dx.doi.org/10.1016/j.ejmech.2018.02.083
http://dx.doi.org/10.1016/j.nbd.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22426395
http://dx.doi.org/10.1111/cbdd.13111
http://www.ncbi.nlm.nih.gov/pubmed/28944565
http://dx.doi.org/10.1016/j.bmc.2012.07.045
http://dx.doi.org/10.1016/j.ejmech.2016.11.050
http://dx.doi.org/10.1016/j.ejmech.2013.09.024
http://dx.doi.org/10.1016/j.bmc.2014.06.057
http://www.ncbi.nlm.nih.gov/pubmed/25088549
http://dx.doi.org/10.1016/j.jinorgbio.2017.03.003
http://dx.doi.org/10.1021/acschemneuro.6b00175
http://dx.doi.org/10.1007/s00775-011-0824-5
http://dx.doi.org/10.1039/C4MT00257A
http://www.ncbi.nlm.nih.gov/pubmed/25350343


Int. J. Mol. Sci. 2019, 20, 1829 31 of 33

224. McCabe, J.W.; Vangala, R.; Angel, L.A. Binding Selectivity of Methanobactin from Methylosinus trichosporium
OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II). J. Am. Soc.
Mass Spectrom. 2017, 28, 2588–2601. [CrossRef]

225. Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Tavakkoli, M.; Mahdavi, M.; Nadri, H.; Edraki, N.; Miri, R.
Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole
with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur. J.
Med. Chem. 2017, 141, 690–702. [CrossRef]

226. De Simone, A.; Bartolini, M.; Baschieri, A.; Apperley, K.Y.P.; Chen, H.H.; Guardigni, M.; Montanari, S.;
Kobrlova, T.; Soukup, O.; Valgimigli, L.; et al. Hydroxy-substituted trans-cinnamoyl derivatives as
multifunctional tools in the context of Alzheimer’s disease. Eur. J. Med. Chem. 2017, 139, 378–389. [CrossRef]

227. Hayne, D.J.; Lim, S.; Donnelly, P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and
treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014, 43, 6701–6715. [CrossRef]

228. Kim, I.; Kim, C.H.; Kim, J.H.; Lee, J.; Choi, J.J.; Chen, Z.A.; Lee, M.G.; Chung, K.C.; Hsu, C.Y.; Ahn, Y.S.
Pyrrolidine dithiocarbamate and zinc inhibit proteasome-dependent proteolysis. Exp. Cell Res. 2004, 298,
229–238. [CrossRef] [PubMed]

229. Thom, V.J.; Hosken, G.D.; Hancock, R. Anomalous Metal Ion Size Selectivity of Tetraaza Macrocycles.
Inorg. Chem 1985, 24, 33783381.

230. Sharma, A.; Pachauri, V.; Flora, S.J.S. Advances in Multi-Functional Ligands and the Need for Metal-Related
Pharmacology for the Management of Alzheimer Disease. Front. Pharmacol. 2018, 9, 1247. [CrossRef] [PubMed]

231. Lanza, V.; Milardi, D.; Di Natale, G.; Pappalardo, G. Repurposing of Copper(II)-chelating Drugs for the
Treatment of Neurodegenerative Diseases. Curr. Med. Chem. 2018, 25, 525–539. [CrossRef]

232. Kim, T.-W. Drug Repositioning Approaches for the Discovery of New Therapeutics for Alzheimer’s Disease.
Neurotherapeutics 2015, 12, 132–142. [CrossRef]

233. Durães, F.; Pinto, M.; Sousa, E.; Durães, F.; Pinto, M.; Sousa, E. Old Drugs as New Treatments for
Neurodegenerative Diseases. Pharmaceuticals 2018, 11, 44. [CrossRef]

234. Mucke, H.A. The case of galantamine: repurposing and late blooming of a cholinergic drug. Futur. Sci. OA
2015, 1, FSO73. [CrossRef] [PubMed]

235. Hayes, C.D.; Dey, D.; Palavicini, J.P.; Wang, H.; Patkar, K.A.; Minond, D.; Nefzi, A.; Lakshmana, M.K.
Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of
carmustine. BMC Med. 2013, 11, 81. [CrossRef]

236. Fukasawa, H.; Nakagomi, M.; Yamagata, N.; Katsuki, H.; Kawahara, K.; Kitaoka, K.; Miki, T.; Shudo, K.
Tamibarotene: A Candidate Retinoid Drug for Alzheimer’s Disease. Biol. Pharm. Bull. 2012, 35, 1206–1212.
[CrossRef]

237. Netzer, W.J.; Dou, F.; Cai, D.; Veach, D.; Jean, S.; Li, Y.; Bornmann, W.G.; Clarkson, B.; Xu, H.; Greengard, P.
Gleevec inhibits beta-amyloid production but not Notch cleavage. Proc. Natl. Acad. Sci. USA 2003, 100,
12444–12449. [CrossRef] [PubMed]

238. Tousi, B. The emerging role of bexarotene in the treatment of Alzheimer’s disease: current evidence.
Neuropsychiatr. Dis. Treat. 2015, 11, 311. [PubMed]

239. Brunden, K.R.; Yao, Y.; Potuzak, J.S.; Ferrer, N.I.; Ballatore, C.; James, M.J.; Hogan, A.-M.L.; Trojanowski, J.Q.;
Smith, A.B.; Lee, V.M.-Y. The characterization of microtubule-stabilizing drugs as possible therapeutic agents
for Alzheimer’s disease and related tauopathies. Pharmacol. Res. 2011, 63, 341–351. [CrossRef] [PubMed]

240. Ryu, J.K.; McLarnon, J.G. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis
factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol. Dis. 2008, 29, 254–266.
[CrossRef]

241. Diomede, L.; Cassata, G.; Fiordaliso, F.; Salio, M.; Ami, D.; Natalello, A.; Doglia, S.M.; De Luigi, A.;
Salmona, M. Tetracycline and its analogues protect Caenorhabditis elegans from β amyloid-induced toxicity
by targeting oligomers. Neurobiol. Dis. 2010, 40, 424–431. [CrossRef] [PubMed]

242. Dexter, D.T.; Statton, S.A.; Whitmore, C.; Freinbichler, W.; Weinberger, P.; Tipton, K.F.; Della Corte, L.;
Ward, R.J.; Crichton, R.R. Clinically available iron chelators induce neuroprotection in the 6-OHDA model of
Parkinson’s disease after peripheral administration. J. Neural Transm. 2011, 118, 223–231. [CrossRef]

243. Molina-Holgado, F.; Gaeta, A.; Francis, P.T.; Williams, R.J.; Hider, R.C. Neuroprotective actions of deferiprone
in cultured cortical neurones and SHSY-5Y cells. J. Neurochem. 2008, 105, 2466–2476. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s13361-017-1778-9
http://dx.doi.org/10.1016/j.ejmech.2017.09.057
http://dx.doi.org/10.1016/j.ejmech.2017.07.058
http://dx.doi.org/10.1039/C4CS00026A
http://dx.doi.org/10.1016/j.yexcr.2004.04.017
http://www.ncbi.nlm.nih.gov/pubmed/15242777
http://dx.doi.org/10.3389/fphar.2018.01247
http://www.ncbi.nlm.nih.gov/pubmed/30498443
http://dx.doi.org/10.2174/0929867324666170518094404
http://dx.doi.org/10.1007/s13311-014-0325-7
http://dx.doi.org/10.3390/ph11020044
http://dx.doi.org/10.4155/fso.15.73
http://www.ncbi.nlm.nih.gov/pubmed/28031923
http://dx.doi.org/10.1186/1741-7015-11-81
http://dx.doi.org/10.1248/bpb.b12-00314
http://dx.doi.org/10.1073/pnas.1534745100
http://www.ncbi.nlm.nih.gov/pubmed/14523244
http://www.ncbi.nlm.nih.gov/pubmed/25709453
http://dx.doi.org/10.1016/j.phrs.2010.12.002
http://www.ncbi.nlm.nih.gov/pubmed/21163349
http://dx.doi.org/10.1016/j.nbd.2007.08.019
http://dx.doi.org/10.1016/j.nbd.2010.07.002
http://www.ncbi.nlm.nih.gov/pubmed/20637283
http://dx.doi.org/10.1007/s00702-010-0531-3
http://dx.doi.org/10.1111/j.1471-4159.2008.05332.x
http://www.ncbi.nlm.nih.gov/pubmed/18331585


Int. J. Mol. Sci. 2019, 20, 1829 32 of 33

244. Abbruzzese, G.; Cossu, G.; Balocco, M.; Marchese, R.; Murgia, D.; Melis, M.; Galanello, R.; Barella, S.; Matta, G.;
Ruffinengo, U.; et al. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation.
Haematologica 2011, 96, 1708–1711. [CrossRef] [PubMed]

245. Fredenburg, A.M.; Sethi, R.K.; Allen, D.D.; Yokel, R.A. The pharmacokinetics and blood-brain barrier
permeation of the chelators 1,2 dimethly-, 1,2 diethyl-, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyridin-4-one
in the rat. Toxicology 1996, 108, 191–199. [CrossRef]

246. Athauda, D.; Foltynie, T. Drug Repurposing in Parkinson’s Disease. CNS Drugs 2018, 32, 747–761. [CrossRef]
[PubMed]

247. Sohn, Y.-S.; Mitterstiller, A.-M.; Breuer, W.; Weiss, G.; Cabantchik, Z.I. Rescuing iron-overloaded macrophages
by conservative relocation of the accumulated metal. Br. J. Pharmacol. 2011, 164, 406–418. [CrossRef]

248. Li, S.-J.; Qin, W.-X.; Peng, D.-J.; Yuan, Z.-X.; He, S.-N.; Luo, Y.-N.; Aschner, M.; Jiang, Y.-M.; Liang, D.-Y.;
Xie, B.-Y.; et al. Sodium P -aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation
in rats by modulating MAPK and COX-2. Neurotoxicology 2018, 64, 219–229. [CrossRef] [PubMed]

249. Noetzli, M.; Eap, C.B. Pharmacodynamic, Pharmacokinetic and Pharmacogenetic Aspects of Drugs Used in
the Treatment of Alzheimer’s Disease. Clin. Pharmacokinet. 2013, 52, 225–241. [CrossRef]

250. Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Zumbach, S.; Giannakopoulos, P.; von Gunten, A.; Csajka, C.;
Eap, C.B. Relationship of CYP2D6, CYP3A, POR, and ABCB1 Genotypes With Galantamine Plasma
Concentrations. Ther. Drug Monit. 2013, 35, 270–275. [CrossRef]

251. Chianella, C.; Gragnaniello, D.; Maisano Delser, P.; Visentini, M.F.; Sette, E.; Tola, M.R.; Barbujani, G.;
Fuselli, S. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase
inhibitors. Eur. J. Clin. Pharmacol. 2011, 67, 1147–1157. [CrossRef]

252. Pilotto, A.; Franceschi, M.; D’Onofrio, G.; Bizzarro, A.; Mangialasche, F.; Cascavilla, L.; Paris, F.; Matera, M.G.;
Pilotto, A.; Daniele, A.; et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with
Alzheimer disease. Neurology 2009, 73, 761–767. [CrossRef]

253. Varsaldi, F.; Miglio, G.; Scordo, M.G.; Dahl, M.-L.; Villa, L.M.; Biolcati, A.; Lombardi, G. Impact of the CYP2D6
polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s
disease patients. Eur. J. Clin. Pharmacol. 2006, 62, 721–726. [CrossRef]

254. Seripa, D.; Bizzarro, A.; Pilotto, A.; D’Onofrio, G.; Vecchione, G.; Gallo, A.P.; Cascavilla, L.; Paris, F.;
Grandone, E.; Mecocci, P.; et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of
donepezil in patients with Alzheimer’s disease. Pharmacogenet. Genom. 2010, 21, 1. [CrossRef]

255. Makhtar, S.M.; Husin, A.; Baba, A.A.; Ankathil, R. Genetic variations in influx transporter gene SLC22A1
are associated with clinical responses to imatinib mesylate among Malaysian chronic myeloid leukaemia
patients. J. Genet. 2018, 97, 835–842. [CrossRef]

256. Ben Hassine, I.; Gharbi, H.; Soltani, I.; Ben Hadj Othman, H.; Farrah, A.; Amouri, H.; Teber, M.; Ghedira, H.;
Ben Youssef, Y.; Safra, I.; et al. Molecular study of ABCB1 gene and its correlation with imatinib response in
chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017, 80, 829–839. [CrossRef]

257. Andriguetti, N.B.; Raymundo, S.; Antunes, M.V.; Perassolo, M.S.; Verza, S.G.; Suyenaga, E.S.; Linden, R.
Pharmacogenetic and Pharmacokinetic Dose Individualization of the Taxane Chemotherapeutic Drugs
Paclitaxel and Docetaxel. Curr. Med. Chem. 2017, 24. [CrossRef]

258. Kroetz, D.L.; Pauli-Magnus, C.; Hodges, L.M.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; Ferrin, T.E.;
DeYoung, J.; Taylor, T.; et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1,
multidrug resistance transporter) gene. Pharmacogenetics 2003, 13, 481–494. [CrossRef]

259. Dadheech, S.; Rao, A.V.; Shaheen, U.; Hussien, M.D.; Jain, S.; Jyothy, A.; Munshi, A. Three most common
nonsynonymous UGT1A6*2 polymorphisms (Thr181Ala, Arg184Serand Ser7Ala) and therapeutic response
to deferiprone in β-thalassemia major patients. Gene 2013, 531, 301–305. [CrossRef] [PubMed]

260. Ritchie, C.W.; Bush, A.I.; Masters, C.L. Metal-protein attenuating compounds and Alzheimer’s disease.
Expert Opin. Investig. Drugs 2004, 13, 1585–1592. [CrossRef]

261. Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev.
Drug Discov. 2004, 3, 205–214. [CrossRef] [PubMed]

262. Matlack, K.E.S.; Tardiff, D.F.; Narayan, P.; Hamamichi, S.; Caldwell, K.A.; Caldwell, G.A.; Lindquist, S.
Clioquinol promotes the degradation of metal-dependent amyloid- (A) oligomers to restore endocytosis and
ameliorate A toxicity. Proc. Natl. Acad. Sci. USA 2014, 111, 4013–4018. [CrossRef] [PubMed]

263. Richards, D.A. Prophylactic value of clioquinol against travellers’ diarrhoea. Lancet 1971, 1, 44–45.

http://dx.doi.org/10.3324/haematol.2011.043018
http://www.ncbi.nlm.nih.gov/pubmed/21791473
http://dx.doi.org/10.1016/0300-483X(95)03301-U
http://dx.doi.org/10.1007/s40263-018-0548-y
http://www.ncbi.nlm.nih.gov/pubmed/30066310
http://dx.doi.org/10.1111/j.1476-5381.2010.01120.x
http://dx.doi.org/10.1016/j.neuro.2017.06.012
http://www.ncbi.nlm.nih.gov/pubmed/28651968
http://dx.doi.org/10.1007/s40262-013-0038-9
http://dx.doi.org/10.1097/FTD.0b013e318282ff02
http://dx.doi.org/10.1007/s00228-011-1064-x
http://dx.doi.org/10.1212/WNL.0b013e3181b6bbe3
http://dx.doi.org/10.1007/s00228-006-0168-1
http://dx.doi.org/10.1097/FPC.0b013e32833f984c
http://dx.doi.org/10.1007/s12041-018-0978-9
http://dx.doi.org/10.1007/s00280-017-3424-4
http://dx.doi.org/10.2174/0929867324666170623093445
http://dx.doi.org/10.1097/00008571-200308000-00006
http://dx.doi.org/10.1016/j.gene.2013.08.078
http://www.ncbi.nlm.nih.gov/pubmed/24036429
http://dx.doi.org/10.1517/13543784.13.12.1585
http://dx.doi.org/10.1038/nrd1330
http://www.ncbi.nlm.nih.gov/pubmed/15031734
http://dx.doi.org/10.1073/pnas.1402228111
http://www.ncbi.nlm.nih.gov/pubmed/24591589


Int. J. Mol. Sci. 2019, 20, 1829 33 of 33

264. Cherny, R.A.; Atwood, C.S.; Xilinas, M.E.; Gray, D.N.; Jones, W.D.; McLean, C.A.; Barnham, K.J.; Volitakis, I.;
Fraser, F.W.; Kim, Y.; et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid
accumulation in Alzheimer’s disease transgenic mice. Neuron 2001, 30, 665–676. [CrossRef]

265. Zatta, P.; Drago, D.; Bolognin, S.; Sensi, S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy.
Trends Pharmacol. Sci. 2009, 30, 346–355. [CrossRef]

266. Rodríguez-Rodríguez, C.; Telpoukhovskaia, M.; Orvig, C. The art of building multifunctional metal-binding
agents from basic molecular scaffolds for the potential application in neurodegenerative diseases.
Coord. Chem. Rev. 2012, 256, 2308–2332.

267. Ritchie, C.W.; Bush, A.I.; Mackinnon, A.; Macfarlane, S.; Mastwyk, M.; MacGregor, L.; Kiers, L.; Cherny, R.;
Li, Q.-X.; Tammer, A.; et al. Metal-Protein Attenuation With Iodochlorhydroxyquin (Clioquinol) Targeting Aβ

Amyloid Deposition and Toxicity in Alzheimer Disease. Arch. Neurol. 2003, 60, 1685. [CrossRef] [PubMed]
268. Adlard, P.A.; Cherny, R.A.; Finkelstein, D.I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J.P.;

Perez, K.; et al. Rapid Restoration of Cognition in Alzheimer’s Transgenic Mice with 8-Hydroxy Quinoline
Analogs Is Associated with Decreased Interstitial Aβ. Neuron 2008, 59, 43–55. [CrossRef]

269. Zhang, Y.-H.; Raymick, J.; Sarkar, S.; Lahiri, D.K.; Ray, B.; Holtzman, D.; Dumas, M.; Schmued, L.C. Efficacy
and toxicity of clioquinol treatment and A-beta42 inoculation in the APP/PSI mouse model of Alzheimer’s
disease. Curr. Alzheimer Res. 2013, 10, 494–506. [CrossRef]

270. Faux, N.G.; Ritchie, C.W.; Gunn, A.; Rembach, A.; Tsatsanis, A.; Bedo, J.; Harrison, J.; Lannfelt, L.; Blennow, K.;
Zetterberg, H.; et al. PBT2 Rapidly Improves Cognition in Alzheimer’s Disease: Additional Phase II Analyses.
J. Alzheimer’s Dis. 2010, 20, 509–516. [CrossRef]

271. Lannfelt, L.; Blennow, K.; Zetterberg, H.; Batsman, S.; Ames, D.; Harrison, J.; Masters, C.L.; Targum, S.;
Bush, A.I.; Murdoch, R.; et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a
modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial.
Lancet Neurol. 2008, 7, 779–786.

272. Cukierman, D.S.; Pinheiro, A.B.; Castiñeiras-Filho, S.L.P.; da Silva, A.S.P.; Miotto, M.C.; De Falco, A.;
de P Ribeiro, T.; Maisonette, S.; da Cunha, A.L.M.C.; Hauser-Davis, R.A.; et al. A moderate metal-binding
hydrazone meets the criteria for a bioinorganic approach towards Parkinson’s disease: Therapeutic potential,
blood-brain barrier crossing evaluation and preliminary toxicological studies. J. Inorg. Biochem. 2017, 170,
160–168.

273. Hauser-Davis, R.A.; de Freitas, L.V.; Cukierman, D.S.; Cruz, W.S.; Miotto, M.C.; Landeira-Fernandez, J.;
Valiente-Gabioud, A.A.; Fernández, C.O.; Rey, N.A. Disruption of zinc and copper interactions with Aβ(1–40)
by a non-toxic, isoniazid-derived, hydrazone: A novel biometal homeostasis restoring agent in Alzheimer’s
disease therapy? Metallomics 2015, 7, 743–747. [CrossRef]

274. Cukierman, D.S.; Accardo, E.; Gomes, R.G.; De Falco, A.; Miotto, M.C.; Freitas, M.C.R.; Lanznaster, M.;
Fernández, C.O.; Rey, N.A. Aroylhydrazones constitute a promising class of ‘metal-protein attenuating
compounds’ for the treatment of Alzheimer’s disease: A proof-of-concept based on the study of the
interactions between zinc(II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazone. JBIC J. Biol. Inorg.
Chem. 2018, 23, 1227–1241. [CrossRef]

275. Ji, H.-F.; Zhang, H.-Y. A new strategy to combat Alzheimer’s disease. Combining radical-scavenging potential
with metal-protein-attenuating ability in one molecule. Bioorg. Med. Chem. Lett. 2005, 15, 21–24. [CrossRef]

276. Kuca, K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Ramalho, T.C.;
França, T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016,
27, 641–649. [CrossRef]

277. Gonçalves, A.S.; França, T.C.C.; Caetano, M.S.; Ramalho, T.C. Reactivation steps by 2-PAM of tabun-inhibited
human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biom.
Struct. Dyn. 2014, 32, 301–307.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0896-6273(01)00317-8
http://dx.doi.org/10.1016/j.tips.2009.05.002
http://dx.doi.org/10.1001/archneur.60.12.1685
http://www.ncbi.nlm.nih.gov/pubmed/14676042
http://dx.doi.org/10.1016/j.neuron.2008.06.018
http://dx.doi.org/10.2174/1567205011310050005
http://dx.doi.org/10.3233/JAD-2010-1390
http://dx.doi.org/10.1039/C5MT00003C
http://dx.doi.org/10.1007/s00775-018-1606-0
http://dx.doi.org/10.1016/j.bmcl.2004.10.047
http://dx.doi.org/10.5935/0103-5053.20160048
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Neurodegenerative Diseases (NDDs) 
	Alzheimer’s Disease 
	Amyloid- Cascade Hypothesis 
	The Microtubule-Associated Protein Tau Hypothesis 

	Parkinson’s Disease 
	Other Known NDDs 

	Metal-Based Drugs for NDDs Treatment 
	Lithium-Based Treatment 
	Inert Complexes Metal Ions 
	SODs Mimic Metal-Containing Drugs 
	Metal-Based Prion Protein Aggregation Inhibitors 
	A Aggregation Inhibitors 


	Chelating Agents 
	Multifunctional Agents 
	Drug Repositioning for Chelating Agents 
	Metal Protein Attenuating Compounds (MPACs) 

	Conclusions 
	References

