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Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that
end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include
preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact
on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no
pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process
and describe some pharmacological options that may target oxidative stress-states.

1. Introduction

As early as 1986, Murry et al. [1-3] observed that, after occ-
lusion of the coronary artery and posterior reperfusion,
lesions were present in myocardial tissue in the dog,
which seemed to accelerate necrotic damage. In addition,
histopathological changes in tissues observed at 30-60 min
of reperfusion were similar to that observed at 24 h of per-
manent ischemia. Ischemia/reperfusion (I/R) lesions are
present in many diseases that affect multiple health systems
[4-8]. The effect of these lesions can range from irreversible
damage to death of the injured tissue (e.g., cardiovascular,
renal, neuronal, and hepatic) [8].

One of the main events that contribute to this damage is
the formation of reactive oxidative species (ROS) and reactive
nitrogen species (RNS) and subsequent redox signaling dis-
ruption in mitochondria [3, 9-11].

The current therapeutic approaches include pharmaco-
logical and mechanical interventions. To date, the mechanical

approaches (preconditioning, postconditioning, and remote
ischemic preconditioning) have proven to be the most
promising; however, these methods are invasive, cannot be
used for all cases, and the end results can vary. In contrast, the
pharmacological interventions currently available are unable
to produce any significant effects on patient prognosis [12-
20]. The establishment of animal models of I/R injury has
aided in determining the molecular mechanisms involved
and possible pharmacological targets.

2. What Is I/R Lesion?

I/R lesions can be defined as a phenomenon that occurs foll-
owing the block of arterial blood flow to tissue or an
organ, which produces a severe imbalance in oxygen and
metabolic substrates. This imbalance causes tissue hypoxia
and inhibits metabolic processes within cells; paradoxically,
the restoration of arterial blood flow and reoxygenation is
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FIGURE 1: Ischemia reperfusion process. Sequence of stapes and clinical states.

associated with the exacerbation of tissue damage and a sev-
ere inflammatory response (Figure 1) [3, 12-22].

3. Mechanism of Lesion

The formation of lesions is caused by multiple events that
are triggered by the block of arterial flow and its restoration.
The most critical time point in lesion formation is 72 h after
reperfusion and the limitation in damage is at 7 days after the
initial reperfusion, with recovery taking more than 15 to 90
days [3, 10, 11, 20].

There are eight pathophysiological processes that con-
tribute to lesion formation (Figure 2). These processes can
act separately and consecutively, and although their order
varies depending on the tissue, they all overlap in one crucial
step: permanent mitochondrial lesion and redox signaling
disruption [3, 10, 11, 21-25].

4. Imbalance in Metabolic
Substrates and Oxygen

Metabolic substrates such as glucose and oxygen are nec-
essary for mitochondrial ATP production. When oxygen
concentration is depleted and aerobic glycolysis stopped,
cells switch to anaerobic metabolism, causing an increase in
lactic acid production that diminishes cytosolic pH. This acid
microenvironment within the cytosol helps cells to survive
ischemia. Time is an essential component in reaching this
imbalanced state and varies depending on the tissue; for
example, cardiac cells can tolerate 20 min of ischemia before
necrosis and hepatocytes and renal cells more than 30 min,
while neuronal cells can tolerate no more than 20 min. Some
tissues (e.g., skeletal muscle cells) excel compared with others
and can tolerate 2 h of ischemia [2, 3, 13, 15, 53, 54, 64, 65, 91—
106].

5. Increase in Cytosolic Cation Levels

During arterial blood flow occlusion (ischemia), cellular
metabolism continues. However, the moment an imbalance
in cation levels is detected, a series of changes in the cell
occurs, which starts with the activation of the Na*/Ca*?

exchanger and L-type Ca*? channels, which cause an increase
in the levels of cytoplasmic Ca*?. This increase triggers the
activation of Na*/H" exchangers that consequently results
in an increase in H* and changes the pH of the cell. These
events impair the metabolic processes of the cell and affect K*
channels in mitochondria 21, 23, 33, 64, 100, 101, 107-115].

During the reperfusion process, the cell tries to restore the
change in pH by activating the Na*/HCO3~ exchanger. The
efflux of H* produces an influx of Na* increasing the con-
centration of Na* in the cytosol. This increase activates the
Na*/Ca* exchanger, which leads to an increase in cytosolic
Ca™ [21, 23, 33, 64, 100, 101, 107-115]. The high concentration
of Ca** in the cytosol activates several proteases and other
proteins that lead to dysfunction and destruction of organelle
membranes and corruption of normal metabolism [21, 23, 33,
64,100, 101, 107-115].

In myocardial cells, changes in membrane potential traffic
activity and water migration secondary to voltage-dependent
channel aperture lead to arrhythmia and myocardial stun-
ning. In the kidney, glomerular charge is inverted and
overloads filtration solutes, increasing water, protein, and
electrolyte loss through urine production. In hepatocytes,
membrane potential and pH changes are detected, which
suppress and activate many enzymes that optimally operate
at a neutral pH, and lead to edema and necrosis [21, 23, 33,
64,100, 101, 107-115].

6. Mitochondrial Lesions

The metabolic changes in the cytosol following ischemia aff-
ect the normal function of mitochondria, which produces
an adaptive response brought about by increasing levels
of cytosolic Ca*? and decreases in oxygen, NADH, pyru-
vate, ADP, and Pi. The high concentration of Ca*? acti-
vates mitochondrial calcium-sensitive K™ channels (mtKca)
and mitochondrial nitric oxide synthase (mtNOS), which
increases the levels of nitric oxide (NO®) (Figure 3) [21, 23,
33, 64, 100, 101, 107-115]. NO® blocks complex IV in the
respiratory chain, inducing an influx of electrons into the
mitochondrial matrix and depletion of ATP. NO" reduces
molecules to superoxide anions (O, ) and produces high
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FIGURE 2: Chronology and correlation of I/R lesion “hot-points.” The ischemic process is distinct in each tissue but can be divided into three
segments that are shared among all cell types yet show differences in specific details (e.g., timing). The time to damage is prior point.

levels of peroxynitrite (ONOO™). The loss of ATP is caused
by the impairment to ATP recycling, depletion of substrates,
and inhibition of complex IV in the respiratory chain [21,
23, 33, 64, 100, 101, 107-116]. This influx of electrons into the
mitochondrial matrix and the efflux of protons to the cytosol
maintains mitochondrial membrane potential; however, it
results in an increase in the production of ROS, RNS, and
edema and makes the mitochondrial matrix an alkaline
environment [21, 23, 33, 64, 100, 101, 107-116].

The ATP depletion induces the activation of mitochon-
drial ATP sensitive K™ channels (mtK,p), resulting in the
influx of K* to the mitochondrial matrix and efflux of H'.
This change accelerates mitochondrial electron transport in
the respiratory chain and produces more influx of electrons
to the mitochondrial matrix, which in turn produces more
ROS and RNS [21, 23, 33, 64, 100, 101, 107-118].

During reperfusion, the entry of oxygen and metabolic
substrates in mitochondria (Figure 3) produces more ROS
and RNS. The levels of ROS and RNS and the imminent
mitochondrial membrane potential change activate the mito-
chondrial permeability transition pore (mtPTP), mtK,p,
and mtK, dissipating membrane potential and releasing all
ROS and RNS [21, 23, 33, 64, 100, 101, 107-118].

This is known as the “point of safe return” (PSR): mito-
chondria have lost their membrane potential, cell activity is
dampened until subsequent death, and the I/R lesion has
spread to contiguous cells. These contiguous cells attempt

to survive injury but enter the I/R lesion state when ROS,
RNS, and other molecules are released from the dying cell.
It should be noted that the establishment of any therapeutic
prevention must take place before PSR, with these strategies
known as preconditioning. Any strategies that take place
after PSR are known as postconditioning. The PSR process in
mitochondria is present in all cells, but the ability to adapt
to injury is tissue dependent. This is because of the high
levels of oxidative stress (OS) in different tissues, and their
mechanisms for adapting to sudden microenvironmental
changes [21, 23, 33, 64, 100, 101, 107-118].

7. What Is Oxidative Stress?

OS refers to an imbalance between the prooxidant and antiox-
idant levels, in favor of the prooxidants, in cells and tissues.
These changes lead to modification or damage to lipids,
proteins, and DNA. Prooxidants cause or promote oxidation.
Antioxidants are molecules that inhibit the formation of
prooxidants and inhibit oxidation [33, 66, 107, 119-126].

8. Formation of Free Radicals

The major source of free radicals in I/R is mitochondria [21,
23, 33, 66, 107, 108, 111, 112, 119-127]. Normally, the electron
transport mechanism in the mitochondrial respiratory chain
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Oxidative Medicine and Cellular Longevity

le” B
0, ——0,

00 00 00 OO-
0 o o o o o
o o o
00 00 00 00

Oxygen Superoxide anion

FIGURE 4: Formation of superoxide anion. The two molecules of
oxygen, which are in equilibrated energetic form (6 electrons each
one), accept one electron in the last orbital which leads to unstable
energy form (7 and 8 electrons), making the molecule of oxygen
need to take one electron from the environment to be in its energetic
equilibrium form again.

is impaired, this produces ROS from one-electron reduction
of oxygen (see (1)) [33, 66, 107, 119-126, 128].

0,20, ~=H,0, <= OH->H,0 (O
is the metabolic process of reduction of free electron. Observe
the production of 4 free electrons that must be reduced to
water and one diapered electron.

The lifespan of O, (Figure 4) in biological systems is less
than a second (50 ps) and has a diffusion distance of ~320 nm.
It rapidly reacts with another molecule of superoxide to form
hydrogen peroxide (H,0,) [33, 66, 107, 119-126, 129, 130].

In mitochondria, one of the important reactions is the dif-
fusion reaction between O, with NO® (termed the radical-
radical reaction) (see (2)) to form ONOO™, which can diffuse
across biological membranes at a 400 times greater rate
than O,. The half-life of ONOO™ is <0.1s and it has high
reactivity with organic molecules, especially lipids [33, 66,
107, 119-126, 129, 130].

0,” +NO" — ONOO~ )

is radical to radical reaction to form peroxynitrite on one of
the most instable radicals.

Under physiological states, the production of O, pro-
duces H,O, via manganese superoxide dismutase (MnSOD)
in the mitochondrial matrix. This enzyme is found in
tetramers, with each subunit consisting of 151 amino acids.
MnSOD maintains the steady-state concentration of O, at
10-10 M during acute phases of ischemia, but when this phase
is over, the activity of MnSOD increases, which results in
the production of massive levels of O, that are reduced by
NO®. Because of membrane potential, this molecule stays
in the mitochondrial matrix. During reperfusion, the respi-
ratory chain accelerates and O," is overproduced. MnSOD
competes with NO® to reduce the amount of O,  and
consequently forms more ONOO™, which is released into the
cytoplasm via the mtPTP [33, 66, 107, 119-126, 129, 130].

9. How Free Radicals Can Cause
Damage to Cells?

The free radicals “take” one electron from the adjacent
molecule, which leads to the formation of a new free radical

that will “take” one electron from the adjacent molecule.
Therefore, a chain reaction occurs that will only end when the
free radicals are reduced by antioxidants [25,123, 125,126,128,
130].

10. Damage to Lipids in I/R

The interaction between OS and lipids is one of the most
prevalent causes of cellular injury. The degradation products
of lipid peroxidation are aldehydes, such as malondialdehyde
(MDA), 4-hydroxynonenal (4-HNE), and hydrocarbons such
ethane and ethylene. Lipid peroxidation in mitochondria is
particularly cytotoxic and has multiple effects on enzyme
activity and ATP production, as well as on the initiation of
apoptosis [107, 110, 115, 116, 119, 122-125, 130].

11. Damage to Proteins in I/R

Damage to proteins occurs through site specific amino acid
modifications, fragmentation of the peptide chain, aggre-
gation of cross-linked reaction products, altered electri-
cal charges, and increased susceptibility to removal and
degradation. The activity of ONOO™ produces nitrotyrosine;
meanwhile O, inactivates enzymatic function [107, 110, 115,
116, 119, 122-125, 130].

12. Damage to DNA in I/R

OS can induce numerous lesions in DNA that cause deletions,
mutations, and other lethal genetic effects. The sugar and
the base fraction are susceptible to oxidation causing base
degradation, single-strand breakage, and cross-linking to
proteins. One product of DNA damage is 8-oxo-7,8-dihydro-
2'—deoxyguanosine (8-Oxo0-dG) [107, 110, 115, 116, 119, 122-
125, 130].

13. Pathways Affected by Redox
Signaling in I/R

Redox signaling describes the action of ROS and RNS on
altering intrinsic cellular activity. At low concentrations
ROS and RNS work as signaling molecules, while at high
concentrations they damage multiple structures, especially
mitochondria [23-25, 67, 119, 122, 129, 131].

The mechanism by which OS alters protein function
and structure involves redox-reactive cysteine residues on
proteins. Oxidation of these residues forms reactive sulfenic
acid, which in turn forms disulphide bonds with nearby
cysteines, and undergoes further oxidation into sulfinic or
sulfonic acid, or sulfenamide when nitrogen is present locally.
These redox modifications are reversible through reducing
systems such as thioredoxin and peroxiredoxin [23-25, 67,
119, 122, 129, 131].

14. The Mitogen-Activated Protein
Kinase Cascade in I/R

The mitogen-activated protein kinase (MAPK) cascade con-
sists of a three-rung kinase tier. The canonical cascade occurs



when MAPK kinase kinases (MAPKKK) phosphorylate and
activate MAPK kinases (MAPKK), which phosphorylate and
activate MAPKSs [23, 132-139].

There are two noncanonical pathways: the apoptosis sig-
nal-regulated kinase 1 (ASK1) pathway and cGMP-dependent
protein kinase (PKG) pathway. In the former MAPK cas-
cade, ASK1 is an upstream MAPKKK that regulates c-Jun
N-terminal kinases (JNK) and p38 kinase (p38), leading
to apoptosis via phosphorylation of MKK4, MKK3, and
MKK6 MAPKKs. ASK1 is activated by OS and mediates
p38 signaling, which leads to differentiation and immune
signaling. However, activation of ASKI by high levels of
OS (via oxidization of two cysteine residues in the redox
center of thioredoxin) induces ASK1 dissociation and allows
its complete oligomerization with tumor necrosis factor-«
receptor associated factor (TRAF) and ASK2, thereby pro-
moting cell death. Alternatively, the PKG pathway is inte-
grated by PKGla, protein kinase A (PKA), and protein kin-
ase C (PKC) and, similarly, is also regulated by a redox mech-
anism [23, 132-139].

15. The Phosphoinositide 3-Kinase
Signaling Pathway in I/R

Phosphoinositide 3-kinase (PI3K) consists of one catalytic
(p110) and one regulatory (p85) subunit and is firmly coupled
with the receptor tyrosine kinase (RTK) family, which are
activated by several growth factors. PI3K catalyzes phos-
phatidylinositol 4,5-diphosphate (PIP2) to synthesize the
second messenger, phosphatidylinositol 3,4,5-triphosphate
(PIP3). PIP3 serves as a membrane-bound signaling molecule
that recruits proteins containing pleckstrin homology (PH)
domains, such as phosphoinositide-dependent protein kinase
(PDK) and protein kinase B (AKT) serine threonine/kinase,
which mediate further downstream signaling events. Phos-
phatase and tensin homolog (PTEN) phosphorylates PIP3,
causing inhibition and ensuring that the PI3K pathway is
subject to reversible redox regulation by OS. Oxidation of
PTEN by OS leads to persistent activation of the PI3K
pathway, causing permanent activation of RTKs [14, 19, 134,
140-146].

16. The Redox Factor-1 and
NF-E2-Like 2 (Nuclear Factor Erythroid 2)
Pathway in I/R

Redox factor-1 (Ref-1) is a multifunctional protein that
regulates transcription factor activity and also mediates base
excision repair. The transcriptional regulatory function of
Ref-1 is exerted by its redox activity on several transcription
factors, including activator protein 1 (AP-1), p53, nuclear
factor kappa B (NF-«B), and hypoxia inducible factor 1 (HIF-
1).

Ref-1 activates the AP-1-Fos-Jun complex via redox regu-
lation of cysteine residues in Fos-Jun DNA binding domains.
As it mediates both DNA repair and redox activation of key
transcription factors involved in cellular defense (including
AP-1 and NF-«B), upregulated Ref-1 activity protects DNA
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from oxidative damage. Consequently, OS conditions can
activate detoxification genes such as glutathione S-transferase
(GST), NADPH quinone oxidoreductase-1 (NQO1), heme
oxygenase-1 (HOI), and ferritin H (FH) [23-25, 67, 119, 122,
129, 131].

NF-E2-like 2 (Nrf2) is another transcription factor, which
activates antioxidant responsive element- (ARE-) dependent
transcription of target genes under OS. These genes serve as
antioxidants in processes such as electrophile detoxification,
glutathione synthesis, and ROS homeostasis [23-25, 67, 119,
122,129, 131, 147].

The interaction between these two pathways has a protec-
tive, synergistic effect against OS. During I/R, Ref-1 and Nrf2
upregulation increases expression of NF-«B, which increases
apoptosis and inflammation [23-25, 67, 119, 122, 129, 131, 147,
148].

17. Transcriptional Reprograming in I/R

The alteration in transcriptional control of gene expression
induced by I/R lesions is known as transcriptional repro-
graming. Oxygen depletion and increased ROS, RNS, and
apoptosomes lead to transcriptional alterations within the
nucleus. Damage (secondary to redox signaling disruption)
causes toll-like receptor (TLR) expression in the membrane
of affected cells, indirectly affects NF-«B expression, and
increases MAPK and interferon activity. TLR3 is overex-
pressed in necrotic cells, TLR2 is overexpressed in hypoxic
and inflammatory states, while TLR4 is exclusively overex-
pressed in renal I/R lesions. During the process of adaption,
cells affected by I/R lesions show specific expression of micro-
RNAs (miRNAs), which modulate gene expression through
transcriptional and posttranscriptional pathways. For exam-
ple, miRNA-21 blocks PTEN expression in the ischemic state
and reduces apoptosis in the first 48 h but shows persistent
overexpression during this time and subsequently increases
apoptosis as a result of PTEN reduction. Moreover, miRNA-
378 blocks caspase-3 expression and reduces apoptosis in the
reperfusion state. Expression of multiple genes depends on
the amount of OS, time of ischemia, and number of necrotic
cells produced during ischemia [10, 11, 19, 22, 23, 93, 98, 132-
139, 149-170].

18. Apoptosis, Autophagy, and Necrosis in I/R

The process of cellular destruction starts after mitochondrial
lesion, disruption of redox signaling, and transcriptional
reprograming. During apoptosis and after PSR is reached,
the mtPTP releases cytochrome C from the membrane,
activating the caspase cascade and pannexin hemichannels,
which release ATP and work as beacons for phagocytic cells.
Redox signaling disruption and transcriptional reprograming
lead to NF-«B activation, which activates apoptosis and is
histologically characterized by nuclear fragmentation, endo-
some formation, mitochondrial and cellular contraction, and
loss of membrane potential. Autophagy is also produced as
an adaptive response to sublethal OS, with metabolic change
and transcriptional survival reprograming in endosomes,
loss of organelles, and formation of coil-shaped vacuoles
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observed. Cell damage can progress to necrosis, with or
without the presence of edema within cells and organelles, or
cause cell membrane disruption and efflux of enzymes to the
extracellular space [10, 11, 19, 22, 23, 93, 98, 132-139, 149-176].

19. Immunity-Mediated Lesions in I/R

During the I/R lesion, three pathways are activated: sterile
inflammation, adaptive response, and innate autoimmunity.
Sterile inflammation is mediated by TLRs, which lead to
NF-xB, MAPK, and interferon activation. These receptors
also produce chemotaxis of inflammatory and phagocytic
cells, which start the inflammatory response. After 24 h of
reperfusion, the adaptive response begins, with expansion
and recruitment of T cells. At 72h, the highest level of
response and T,., depletion is reached. This affects the
innate response, leading to autoimmunity characterized by
autoantibody formation by B cells, complement activation,
and Bcl3 depletion, which inhibits granulopoiesis production
(10, 11, 22, 97, 152, 177-180].

20. Endothelial Lesion

Endothelial lesions that present during the ischemic state
are principally affected by decreased oxygen, increased
ROS and RNS, and redox signaling disruption, followed by
membrane potential loss and increasing membrane per-
meability, chemotaxis, and imbalanced capillary vasocon-
striction/vasodilatation factors. In the reperfusion state, the
endothelium suffers lesions caused by the immune response
and activation of the coagulation system, increasing leu-
cocitary adherence, and platelet-leucocitary interaction. This
process is produced by mechanical brushing that occurs in
the damaged endothelium and causes e-selectin adherence
protein expression in the membrane, which interacts with
the ligand, selectin-1, and in neutrophils coactivates integrin-
apf32. Following interaction and formation of this complex,
neutrophils are able to bind to erythrocytes and platelets
through their membrane, which directs them to the damaged
tissue and increases the inflammatory response in affected
tissue [10, 11, 22, 117, 127, 180, 181].

21. No Reflow Phenomenon

The no reflow phenomenon is present in the reperfusion
state because of endothelial cell injury, activation of the
coagulation process, and increased leucocitary adherence.
This phenomenon increases impedance of microvascular
flow and capillary occlusion by leucocytes and is present in
60%-68% of all I/R cases [9-11, 22, 91, 182].

22. Analysis of the Pharmacological
Approach in I/R

The actual pharmacological approach to prevent or mitigate
I/R lesions has so far been unsuccessful. This is likely
because one drug cannot cure all disturbances, and, indeed,
the phenomenon is a result of several events that follow
a specific sequence. Consequently, attempting to cover the

physiopathological process with just one medication is likely
not enough. Most studies have attempted to show that one
drug will make a difference, and regarding I/R lesion in
vitro experiments and preclinical studies have shown good
results. Nonetheless, the lesion is manifested systemically
and affects several processes; therefore, the correct approach
needs several drugs targeting the physiopathological process
(Figure 3) [1-3, 55, 64, 65, 75, 92, 94, 95, 100, 104, 183-185].

23. The Gender Aspect of I/R

Recent studies dealing with survival in specific pathological
conditions related to I/R have shown significantly better
patient survival in females than males. However, other studies
have shown a much poorer outcome associated with female
patients. The reason for these controversial results is not clear,
but a variety of different factors may influence interpretation
of these studies. For example, age (postmenopausal), race,
underlying disease, and/or medications may impact the
outcome. Failure to account for and control these different
variables makes it difficult to accurately assess the role
of gender in reducing or increasing survival expectancy
following I/R lesions [186-191].

24, The Physiopathological Approach

The critical points in OS in I/R are the production of
prooxidants, the depletion of SOD, the accumulation of free
radicals, loss of mitochondrial membrane potential with
subsequent release from mitochondria, and redox signaling
disruption. There are several drugs that may have therapeutic
potential (Table 1).

25. Electron Acceptor

The process of reducing free radicals is made possible based
on the structure of the molecules. These drugs are equipped
by one or more aromatic ring with hydroxyl groups in their
structures. Therefore, they can exchange the free radical
with the hydroxyl group and end the chain reaction of
free radical accumulation. The structure of curcumin and
cannabidiol (Figure 5) has a typical antioxidant architecture
that confers no enzymatic scavenging ability [24, 26-29, 33-
35]. Besides, the cannabidiol in the liver and cardiac I/R lesion
has shown that it could interact directly with the cannabinoid
CB, receptor. In the heart the agonism of the CB, receptor
was shown to modulate the myocardial inflammation and
attenuates the infarct size (142) and decreases the myocardial
ROS and RNS generation, restores the glutathione content
and SOD activity, and modulates the signaling redox and the
NF-«B activation (143). In the liver the cannabidiol attenuates
tissue oxidative and nitrative stress, acute and chronic hepatic
inflammatory response, signaling redox, and cell death by its
strong antioxidant ability and the interaction with the CB,
receptor (144).

26. Block of Mitochondrial Respiratory
Chain Complex I

Complex I in the mitochondrial respiratory chain is the most
important for the production of O,", which is produced by
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TABLE 1: Promising drugs in the I/R lesion.
Drug Molecu.l ar Beneficial effect in IR Adverse effects Or.gan cell Literature
mechanism major effect support study
Curcumin Electron Reductlc?n of free Dermatltls Neurons [26-32]
acceptor radicals Bitter taste
Reduction of free
Electron radicals, modulation Neurons
Cannabidiol R, . Neuronal disorders Hepatocyte [24, 33-43]
acceptor of inflammation and :
Lo Cardiomyocyte
signaling redox
Lactic acidosis
. Modulated Blood -coagulatlon Hepatocyte
. Block of complex I in . disorder :
Metformin ) ) production of free . . Cardiomyocyte [44-52]
respiratory chain . Liver function test
radicals Neurons
abnormal
Encephalopathy
Congestive heart
e pulure Endothelial cell
Pioglitazone PPAR-y agonist “MnSOD and some Liver function test Cardiomyocyte [50-63]
. Hepatocyte
other survival gens abnormal
Osteopenia
Diabetes mellitus
. ion of
Reduction of free Red.ucnon © .
radicals. increments ubiquinone level Endothelial cells
. . . S Liver function test Cardiomyocyte [30-32, 64-
Atorvastatin Pleiotropic effects on expression of
. abnormal Hepatocyte 74]
MnSOD, modulation . .
. Autoimmune disease Musculoskeletal
of survival gens .
Rhabdomyolysis
Acute kidney injury
. Angina pectoris
Re.ductl‘on of free Edema Endothelial cells
radicals, increments Carcinogen effect Cardiomyocyte
Telmisartan Pleiotropic effects on expression of Liver fu ngc tion test He ato}; Zt [58, 75-90]
MnSOD, modulation P ¥t
. abnormal
of survival gens
*PPAR-y: peroxisome proliferator activated receptor-y. “* MnSOD: manganese superoxide dismutase.
O b ~ O O L
OH OH
H.C OH
OCH, OCH;,4 2 CH, CH,
Curcumin Cannabidiol

FIGURE 5: Structure of curcumin and cannabidiol, with properties to interact with free radicals in their proximity.

the reverse transport of electrons from complex II. During
the ischemic phase, the partial disablement of this primary
component results in free radical formation because of the
strain it has on the electron transport to complex III, and,
during the reperfusion phase, the production of O, is
attenuated [36-38, 44]. One of the actions of complex I
inhibitor metformin is to induce mild and specific inhibition
of mitochondrial respiratory chain complex I, which reduces
free radical formation [44].

27. Peroxisome Proliferator Activated
Receptor-y (PPAR-y) Agonist

This class II nuclear receptor interacts with multiple survivor
genes and can down- or upregulate proteins involved in
the tolerance to I/R injury. Normally, PPAR-y works as a
heterodimer with retinal receptor but interacts with multiple
response systems in the DNA; activation of this receptor
can increase the expression of MnSOD and other enzymatic
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scavengers and blocks the induction of apoptosis. The PPAR-
y agonists pioglitazone and telmisartan increase the bioavail-
ability and action of PPAR-y to improve cell survival [45-
47, 53-55,76-78,192-194].

28. Pleiotropic Effects

There are multiple pathways involved in the production of
OS that can be modulated, and several in vitro studies and
animal models have shown promising results. In vitro exper-
iments using atorvastatin have shown a reduction in ROS
and RNS levels in I/R and various injury models including
degenerative pathologies and chronic diseases. In addition,
atorvastatin was shown to activate nuclear receptors such
PPAR-y. Telmisartan has a similar effect and reduces OS by
activating PPAR-y, blocking the angiotensin II receptor, type
1 (AT1 receptor), increasing levels of enzymatic scavengers,
and activating cell survival pathways [45-47, 53-58, 65-68,
76-78,192-194].

29. Prejudice in the Physiopathological
Approach

The adverse effect of drugs may influence the therapeutic eff-
ect, with possibly the most questionable drugs being ator-
vastatin (statins) and pioglitazone (PPAR-y agonist). The
atorvastatin controversy owes to the associated increased risk
of diabetes mellitus, with a meta-analysis showing that, after
at least 4 years of treatment, patients have an incidence of
5%-6% for diabetes mellitus onset and decrease in serum
ubiquinone levels of 32%-54% during statin use for at least
three months. However, treatment for I/R lesions last for
only a short period of time and should be administered
during the first hours of diagnosis and for not longer than
two weeks, to reduce the chance of suffering major adverse
effects. It is well known that pioglitazone should not be used
in class II or IIT New York Heart Association heart failure
scale patients, or those with a depressed ejection fraction of
less than 40%, due to exacerbation of congestive heart failure
(approximately 9%) in studies when the treatment time lasted
from 3 weeks to 3 months using the maximal recommended
dose. Treatment with pioglitazone for I/R lesions should not
surpass the recommended dose or last longer than two weeks,
as mentioned above.

30. Future Prospects

Several attempts have been made to inhibit I/R lesions,
but the real challenge lies in attenuating the processes
that lead to the formation of lesions, which include the
mitochondrial production of ROS and RNS and disruption
of signaling redox. To date, most research has focused on
the inflammatory response [96, 97], and there is limited
knowledge on the effect of preconditioning, postcondition-
ing, and remote ischemic preconditioning. The most studied
therapeutic approaches with respect to I/R lesions are the
mechanical process of preconditioning, postconditioning,
and remote preconditioning [1, 2, 10, 12, 13, 15-18, 20, 21,
64, 92, 93, 108, 109, 114, 118, 142, 195-204]; however, the

results are controversial, and the greatest benefits have only
been observed in animal models [2, 10, 64, 197]. In addition,
meta-analysis and randomized trials have shown that this
procedure has no beneficial effect on mortality but can
improve periprocedural myocardial infarction and afford
some neuroprotection [196, 203, 204]. However, it should be
noted that this procedure needs to be performed within a
strict timeframe and is dependent on the condition of the
patient. Therefore, not all patients are suitable candidates.
To complicate matters, the heterogeneity of injury also limits
the effectiveness of this method. These variables have biased
the statistical evaluation of this approach. Nevertheless, no
one has implemented a pharmacological regimen for the
management of OS, before, during, or after the procedure
despite all the evidence for the involvement of OS.

31. Conclusion

OSinI/Rlesions has a big impact on the activation of multiple
secondary mechanisms of damage. Therefore, the search for
a therapeutic pharmacological regimen that can inhibit the
production of ROS and RNS and can modulate the signaling
redox should take priority in the treatment of I/R lesions.
There are currently no studies on pharmacological regimens
at any institution or clinical trials for patients who suffer
the I/R phenomenon in combination with other strategies
of mechanical procedure. The establishment of new animal
models and studies focusing on the mechanism of action
of known drugs that have been used for other pathological
states has revealed that reducing OS can provide beneficial
outcomes. Perhaps combination therapy could attenuate OS
further and provide a better prognosis for patients who sufter
from this phenomenon following mechanical procedures.
There is no sufficient data to confirm or reject this hypothesis.
Therefore, more studies should be performed to determine
a standardized therapeutic regimen to control or prevent
the OS damage in I/R before, during, and after mechanical
procedures.
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