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Abstract

A parametric framework for the analysis of transcriptome data is demonstrated to yield coincident results when applied to
data acquired using two different microarray platforms. Microarrays are widely employed to acquire transcriptome
information, and several platforms of chips are currently in use. However, discrepancies among studies are frequently
reported, particularly among those performed using different platforms, casting doubt on the reliability of collected data.
The inconsistency among observations can be largely attributed to differences among the analytical frameworks employed
for data analysis. The existing frameworks are based on different philosophies and yield different results, but all involve
normalization against a standard determined from the data to be analyzed. In the present study, a parametric framework
based on a strict model for normalization is applied to data acquired using several slide-glass-type chips and GeneChip. The
model is based on a common statistical characteristic of microarray data, and each set of chip data is normalized on the
basis of a linear relationship with this model. In the proposed framework, the expressional changes observed and genes
selected are coincident between platforms, achieving superior universality of data compared to other frameworks.
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Introduction

The transcriptome, the contents of mRNA, determines the

functions of a cell. Microarrays are currently widely used to

acquire comprehensive transcriptome information, and thus have

greatly facilitated transcriptome research. However, an appropri-

ate intellectual framework for systematizing the data collected

using various microarrays [1] has yet to be developed. An

intellectual framework is a set of basic assumptions or fundamental

principles [2] that structures the evaluation process. Many

measurements in the natural sciences conform to a framework

based on a universal system of rules, such as the International

System of Units. For the many different types of microarray

platforms, however, it is difficult to transform raw data so as to

accord with any one of the existing frameworks, precluding

reliable comparisons among dissimilar data sets. Consequently,

some form of data normalization is required for processing

microarray data in order to allow intercomparison of raw data.

Data normalization is generally performed by finding certain

definable characteristics in the data that with appropriate

calculations could be used to unify dissimilar data sets. The

characteristics to be unified, the standards, and the set of

calculations are prescribed by an intellectual framework, the basis

of which is the data normalization scheme. Many normalization

methods have been proposed for microarray studies, each with a

different set of basic assumptions. The dissimilarity of the

normalization methods and assumptions constituting the intellec-

tual frameworks thus result in discrepancies when comparing

measurements obtained using different frameworks. As there

presently exists no framework that yields consistent results among

different platforms, the reliability of numerous measurements in

the literature may have been compromised, particularly when

comparisons among different platforms have been performed,

which has raised many questions and criticisms [3–7].

Developing a universal framework for microarray analyses has

proved to be more problematic than may have been expected. The

essential character of a transcript is determined by its concentra-

tion, as the transcript acts as a template for the translation process,

and the rate of translation is linear when compared to the

concentration of the template in the cytosol. However, concen-

trations cannot be measured using present microarray systems.

Measurement of transcripts requires that RNA samples be isolated
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from tissue, for which the collection rates and cytosol volumes are

difficult to estimate. Consequently, even if the mass of each

transcript in a sample can be determined, the concentrations

cannot be calculated. This practical imprecision is further

complicated by the variety of platforms available for microarray

systems, which differ with respect to the probe sensitivity of the

hybridization systems and the nucleotide sequences employed.

The potential errors and biases will also differ between platforms,

and the level of additive noise and saturation will vary according to

the measurement approach. Such noise and error contribute to

further discrepancies among data sets. To achieve universality of

data and resolve the problems associated with incompatibility, a

unified intellectual framework is therefore required. Without an

adequate framework that is not affected by measurement

sensitivity and background, even the ratios of expression levels

cannot be estimated correctly as these are framework dependent.

However, relatively little attention has been paid to the

development of such a framework in microarray analyses [1].

A universal intellectual framework for microarray data analysis

should have the capacity to compensate for differences in

measurement related to the differences among platforms and/or

wet procedures. A parametric framework is expected to be suitable

for achieving such universality of data by allowing the transcrip-

tome to be described in terms of parsimonious models based on

thermodynamic models for the formation of the transcriptome in a

cell [8] and the detection of RNA by hybridization [1]. In such a

framework, data could be normalized with respect to a statistical

characteristic common to all measurements. The lognormal

pattern of the data distribution [9] has been proposed as a

promising basis for a parametric framework. By this approach, an

appropriate background specific to each hybridization is first

subtracted from the data. The logarithms of the background-

corrected data are then modified by subtracting a parameter

representing the center of the distribution (m), and then by dividing

by a parameter representing the width of the distribution (s). The

normalized data sets are then compared to a lognormal

distribution model to verify the suitability of the applied model.

This approach allows the normalized data to be compared with

other normalized data on the basis of linear characteristics.

Measurements can also be made to test the lowest value unaffected

by additive noise and the highest value unaffected by saturation,

since the data diverge from the expected pattern at these limits [9].

The differences among normalized data can then be evaluated

using generalized linear models [1,8,9].

In the present study, the universality of a parametric framework

is tested by comparing data acquired using several different

microarray platforms. While differences in the measurement

positions of each transcript could alter the obtained information,

the overall trend in the information obtained from platforms

should coincide. To test the coincidence, a series of data were

obtained from a rat toxicology project study [10]. Multi-sample

RNA isolated from rat organs were then hybridized to two

platforms: an in-house microarray (ToxArray III), and the

GeneChip microarray in three different laboratories [11,12].

The ToxArray III is a typical microarray on slide glass, consisting

of a single 60 mer probe per gene, and two samples are measured

simultaneously per chip. In contrast, the GeneChip consists of 11

perfect match (PM) and miss match (MM) 25 mer probes per gene,

and a single sample is measured per chip. In this report, the

coincidence of information is checked by examining the measured

logarithmic ratios and gene candidates that may be affected by

Safrol [12] treatment. An additional series of data was obtained

from an inter-platform comparison study [13] in which two pooled

mouse RNA samples were hybridized to various slide-glass and

GeneChip platforms. All data were normalized using a parametric

framework based on a three-parameter lognormal distribution

model [1,9]. In order to evaluate the methodology, GeneChip

data were also normalized using both MAS5 [14] and RMA [15],

slide-glass arrays with a two-color system were normalized by the

LOEWSS method [16], and slide-glass arrays with a single-color

system were normalized by quantile normalization [15]. MAS5 is

the original method described by the manufacturer and involves

classification of genes into ‘‘Present’’, ‘‘Marginal’’, and ‘‘Absent’’

in addition to normalization and summarization of data, and is a

complex framework consisting of many conditional branches.

RMA is a widely used alternative based on the quantile method

[15], in which data distributions of subject data sets are unified by

replacing the entire data set with average data while maintaining

the orders in each data set. LOWESS [16] cancels correlative

trends between signal intensities and logratios by dividing each

pair of data with customized functions. Although these frameworks

are widely used in transcriptome studies, all have a critical

drawback in that the appropriateness of the assumptions

comprising the frameworks have not been verified or are

intrinsically difficult to verify. Most of the assumptions introduce

for the conditional branches in MAS5 lack experimental evidence,

and one of the most basic assumptions, that the amount of

transcript is linear to the PM-MM value, has been proved to be

erroneous [1]. Both quantile normalization and LOWESS

invariably introduce some desired character or bias to the data,

making it difficult to develop appropriate calculations for

verification of the assumptions.

In the test of frameworks, superior coincidence is demonstrated

using the parametric framework. The proposed framework thus

appears to provide a means for the seamless integration of

information obtained in transcriptome studies. The highly reliable

data thus obtained may also provide clues for decoding the

hereditary traits within the genome [8], which may in turn lead to

rapid progress in the life sciences.

Results

Data distribution
The statistical characteristics of the data were determined using

conventional quantile-quantile (QQ) plots (Figure 1 and Support-

ing Information Figure S1). The QQ plot shows the degree of

coincidence between the data distributions of two numeric groups.

The distribution of logarithms of microarray data (y axis) is

compared in Figures 1 and S1 with the theoretical normal

distribution (x axis), that is, sorted normalized data (sorted z scores)

are plotted against the theoretical values. The y = x line thus

represents complete coincidence between the data distribution and

the theoretical prediction, while additive noise in the raw data will

bend the linear relationship in the weakest intensity range.

Although the signal intensity follows the theoretical distribution

pattern over a certain range for both chips, there is a marked

difference in the valid intensity range between the two chips. The

narrower valid range for ToxArray data suggests a higher level of

additive noise. The distribution of ToxArray data has a larger

scale parameter (s) than that of GeneChip data, with median

values of 1.02 and 0.685, respectively. The dynamic range of

signals, estimated from the ratio of the strongest to weakest signal

for 10 000 measurements, is 26105 for GeneChip, and 16108 for

ToxArray. The higher s value is likely to result in measurements

exceeding the limits of the scanner, which usually covers a range of

104–105. Additionally, unevenness in hybridization, as observed

from the pseudo images [17], was substantially higher for

ToxArray (see Supporting Information Figure S2).

Parametric Microarray Analysis
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Coincidence of logarithmic ratios between chip
platforms

For the genes common to slide-glass-type chips and GeneChip,

the logarithmic ratios determined by different frameworks are

compared in Figure 2. In the parametric framework, the

logarithmic ratios are coincident in the valid signal range

(Figure 2, left). Outside of the valid range, however, data obtained

using slide-glass-type chips become substantially divergent, while

the GeneChip data remain relatively close to the y = x line. This

may indicate the noise reduction effect associated with the

GeneChip due to the averaging of multiple PM cells for each

gene. In contrast, larger differences were observed between the

LOWESS- and RMA-normalized data (Figure 2, center and

right). The coincidence between LOWESS and MAS5 results is

very poor for data labeled ‘‘Absent’’ in MAS5, but improved

coincidence was observed for the ‘‘Present’’ data, although such a

relationship should not always be expected; for example, almost no

coincidence was observed in other cases (see Supporting

Information Figure S3).

Coincidence in selected genes
The lists of genes exhibiting expressional changes larger than

the threshold levels determined by noise level estimations are

compared in Figure 3. The numbers of selected genes correspond

to the estimated magnitude of differences and fluctuations in

measurements. Using the parametric framework, a larger overlap

and smaller disagreement between the lists for each platform are

obtained. This comparison also reveals differences in the detection

power of the chips. For example, 319 genes selected by GeneChip

were out of the detection range of ToxArray. Comparisons

between LOWESS and RMA or MAS5 methods resulted in a

markedly smaller overlap of selected genes (see Supporting

Information Figure S4). Many genes were selected by only one

of the platforms, indicating that the parametric framework does

not account for other substantial differences that exist between

platforms. Such conflicts suggest the inclusion of more false

positives than expected for the test.

Trends in selected gene contents were also observed using the

parametric framework. In estimating the physiological condition of

the sample, the simultaneous selection of a group of genes

indicative of a biological event is a more reliable indicator of that

event than the selection of a single pertinent gene. In the present

case, the parametric framework reveals an increase in genes

related to proteolysis by proteasomes and metabolism of steroids,

and a reduction in genes related to antigen presentation via MHC

class II. These genes constituted large parts of the gene list

Figure 1. QQ plots showing the distribution of normalized data for signals obtained for the same RNA sample. (A) NEDO ToxArray III
spots (without controls), (B) GeneChip PM data from the toxicology study, and (C) MWG chip data from platform comparison studies. Red line
denotes y = x, and arrows denote valid range of data with respect to model fit. (D) Simulated data distribution. Lognormally distributed signals form a
straight line on the QQ plot (black), while those with various levels of normally distributed noise fall in the lowest range (colored dots). Interactive
commands used in the R simulation are provided in Supporting Information S1.
doi:10.1371/journal.pone.0003555.g001

Parametric Microarray Analysis
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Figure 2. Coincidence in log2 ratio among estimations of expressional differences for slide-glass-type chips and GeneChip. Data
plotting on the y = x line (green) are coincident between platforms. Signals out of the valid range of the parametric and MAS5 framework are plotted
in blue (GeneChip) or orange (slide-glass).
doi:10.1371/journal.pone.0003555.g002

Parametric Microarray Analysis
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(Figure 4, lower rows). The inclusion of many genes related to a

specific function in the selected gene group results in a bias or

tendency within the group that is different from that of the

population. Such bias can be resolved by applying some of the key

words included in the gene annotations for the chips. Table 1

shows the appearance ratio and p values for genes that include a

key word for steroid metabolism, proteasome, or major histocom-

patible complex. Significant biases were only resolved by the

parametric method. Additionally, out of 100 key words randomly

selected from selected genes, 13 were judged to be significant by

the parametric framework, whereas only 4 and 1 words of this

group of 13 were determined to be significant by the RMA_LO-

WESS and MAS5_LOWESS frameworks, respectively. The

superior sensitivity of the parametric framework for resolving

such bias cannot be achieved simply by increasing the number of

selected genes through adjustment of the threshold.

Figure 3. Summary of selected genes showing coincidence between platforms. Values denote number of genes selected for each of the
array platforms. Signals outside of the valid model range are omitted (parametric and MAS5 framework). Isolated areas represent the genes that
could not be determined in the other platform due to the limitation of signal range.
doi:10.1371/journal.pone.0003555.g003

Parametric Microarray Analysis
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Discussion

The parametric framework appears to provide superior

reproducibility with greater testing power and a lower false-

positive rate compared to existing frameworks. In the present

study, although the purpose and subjects of measurement were

identical, the analytical results were not coincident between

platforms. The degree of coincidence and conflict appears to be

largely dependent on the framework employed for analysis of the

acquired data. Many of the discrepancies in the information

obtained from the two platforms considered here can be attributed

to differences in the fundamental philosophies of the frameworks

that have conventionally been applied to the respective platforms,

and not to inherent differences in the capacities of the chip

platforms. This is evidenced by the greater coincidence achieved

between data acquired using different platforms when analyzed

using the parametric framework.

Each of the frameworks normalizes and compares data using a

set of hypotheses and assumptions that form the fundamental basis

of the framework [1,2]. In the parametric framework, chip data

are normalized using a distribution model as the standard. Here

the term ‘‘parametric’’ means a strict description with the least

number of parameters and the least number of assumptions. On

the other hand, a standard is sought among the data sets in the

other frameworks. For example, the standard in other frameworks

may be determined for a pair of data in LOWESS [16] and shift-

log [18], and from the means of data quantiles in RMA.

Consequently, the normalization of a data set in existing

frameworks is affected by all of the data sets being processed at

the same time. This dependency on other data sets can be

expected to adversely affect the uniformity of the analysis, which

becomes apparent when comparing information among different

studies.

Another fundamental difference is associated with the testability

of the fundamentals of the framework. LOWESS and quantile

methods including RMA inevitably fulfill the assumptions

Figure 4. Functions of cross-selected genes in the toxicology study estimated from gene titles and biological processes of gene
annotations provided by the chip manufacturer.
doi:10.1371/journal.pone.0003555.g004

Table 1. List of ratios and p values of selected genes marked
with a key word.

Increase Parametric RMA_LOWESS MAS_LOWESS

Ratio p Ratio p Ratio p

Cholesterol 4/47 2.7E-05 0/38 1 0/30 1

Steroid 6/47 9.6E-05 2/38 0.1 3/30 0.01

Macropain 9/47 2.1E-12 0/38 1 0/30 1

Proteasome 9/47 4.5E-12 0/38 1 0/30 1

Decrease Ratio p Ratio p Ratio p

Antigen 7/62 8.9E-08 0/25 1 0/17 1

Extracellular space 7/62 8.6E-05 1/25 0.2 2/17 0.03

Histocompatibility 2/62 8.4E-04 0/25 1 0/17 1

MHC & RT1 5/62 1.7E-06 0/25 1 0/17 1

doi:10.1371/journal.pone.0003555.t001

Parametric Microarray Analysis
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regarding the assumed nature of the data, that is, that data take the

form of stable logarithmic ratios (LOWESS) or identical data

distributions (quantile method). MAS5 contains numerous condi-

tional judgments that are not based on factual knowledge. The

premises of these frameworks therefore preclude effective

evaluation of the model assumptions. The parametric framework,

on the other hand, employs a strict model and normalization

cannot be completed without coincidence between the model and

chip data. Any test of validity therefore relates to the reliability of

the obtained information.

The normalization process, which tests data distribution against

a model (Figure 1), is useful for identifying the likely range of data.

As with other measurement systems, microarrays inevitably

contain noise. With repeated measurements such as those shown

in Figure 3, the noise level can be reduced by taking the means of

repeats. However, the noise contained in each measurement may

still affect analyses, particularly when small numbers of repeats are

available. Even in such cases, the parametric framework allows the

data range that is likely to be affected by additive noise and

saturation to be clearly defined (Figure 1). The usefulness of this

method for data classification is clearly shown in Figure 2, and is

expected to increase the reliability of analyses by reducing the

false-positive rate.

The parsimonious character of the proposed parametric

framework assists in maintaining objectivity in analyses. As the

summarization of data with perfect objectivity in order to obtain

abstract representations of measurements such as shown in

Figure 4 is quite difficult, analysts tend to depend on personal

criteria to judge the importance of each piece of information.

However, by the proposed approach, the false-positives appearing

in the abstracted data can be controlled, allowing significant

increases in cell function apparent in the microarray data to be

tested by reference to the binominal distribution model (Table 1).

If the function is significant, many of the related key words will

become significant by this test. On the other hand, if only a limited

part of the key words tested show significance, the estimation of

cell function should be reconsidered by altering the category of the

function or by focusing on the speciality of the function. It should

be noted that this test can cause multiple comparison problems, as

false-positives will occur in accordance to the threshold value.

Furthermore, some positive key words will not directly represent

the probability of functional change, since many key words are not

independently used in annotations, and may be correlated.

However, such factors will not disturb the testing of each word

or phrase. The present tests clearly show that the proposed

parametric framework has superior sensitivity compared to the

other frameworks evaluated in this study, corresponding to lower

levels of false selection of genes.

The proposed parametric framework thus achieves superior

universality of data and allows for the evaluation of data reliability,

thereby providing a means of integrating knowledge obtained from

many different laboratories and chip platforms.

Materials and Methods

Test animals and microarrays used in the toxicology
study

Male Fischer 344 rats (SPF, 5 weeks of age) were administered

with 300 mg/kg/day of Safrol for up to 28 days at the Mitsubishi

Chemical Safety Institute [11,12]. RNA samples were isolated from

the liver of each test animal. Identical RNA samples were

investigated using GeneChip (Rat Genome 230 2.0 array;

Affymetrix) and a NEDO-ToxArray III ink-jet printed chip (6709

genes [10]). These microarrays share an overlap of 4433 genes.

Data obtained from the Gene Expression Omnibus
Data sets employed in a platform comparison study [13] were

obtained from the Gene Expression Omnibus [19]. In the

comparison study, two batches of RNA (mouse cortex samples

and retina samples) were hybridized to 9 platforms: ABI,

Amersham, and Mergen (single-color slides); Agilent, Cepko,

MGH, MWG, and Operon Compugen (two-color slides); and

Affymetrix (GeneChip). The present parametric normalization

scheme was applied to the raw signal intensity data for the slide

glass-type chips and the file data (CEL) for GeneChip assays.

Amersham data was not tested due to the non-availability of raw

data. Mergen and Cepko data were not analyzed due to the lack of

information to find correspondences to the other platforms.

Normalization
Parametric normalization was performed using SuperNORM

(Skylight Biotech, Akita). Other normalizations were performed

using R version 2.4 [20] with the implemented affy library [21] as

follows. The scanner-estimated background was subtracted from

the Cy3 and Cy5 data for each ToxArray chip and the printed

chips in the platform comparison study, and the logarithmic ratios

were stabilized using the LOWESS function [16] in R. The

GeneChip data were normalized and summarized using the

MAS5 function or the RMA [15] function of affy [21]. The data

obtained using Agilent chips were processed by parametric

scanning [17] in order to eliminate data affected by hybridization

unevenness. This step could not be performed for the other chips

due to the lack of necessary information, such as the position of

each spot on the chip. For the remaining data sets from the

platform comparison study, donated normalized values were used.

Estimation of differences in expression levels
The expressional difference for each gene (Eg) between samples

T and C are determined from the means of measurements using

the logarithmic forms of the normalized data for the each chip, as

follows.

Eg~

P
Tg,j

ng,T
{

P
Cg,j

ng,C

Here, ng,T and ng,C are the numbers of available data for samples T

and C, and i denotes the ith chip. Four samples (n = 4) were

assigned for treatment and control in the toxicology study, and

n = 5 samples were taken for pooled cortex and retina assay in the

platform comparison data. The logratio values are estimated by

unifying the bases of the logarithms to base 2. The parametric

framework data were further adjusted with respect to Eg by

multiplication by the mean s values of measurements [9]. The

logratio values are compared between array platforms in Figure 2.

Comparisons of selected genes
Gene selection was performed for the toxicology and platform

comparison projects using different criteria, although both criteria

are based on the expressional differences and noise levels in

measurements. The differences among frameworks are illustrated

by comparing the genes selected by slide-glass-type chips with

those selected by GeneChip assays. The areas in each diagram

denote the proportion of corresponding genes. The criteria

employed for the toxicology study are as follows. The priority of

selection assigned to the sensitivity in detecting expressional

changes, since the magnitude of differences and the number of

affected genes are expected to be limited. To maximize the

sensitivity, the thresholds were set in consideration of the noise

Parametric Microarray Analysis
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level of measurement. The noise level was determined from the

standard deviation of the fluctuations in the normalized logarith-

mic data. The standard deviation was estimated using the mean of

sample variances (sg
2), which was measured for each gene as

follows.

s2
g~

P
Tg,i{Tg

� �2
z
P

Cg,i{Cg

� �2

ng,Tzng,C{2
,

where T̄ and C̄ represent the mean of data T and C, respectively.

The threshold level (L) was then determined using the expression

L~3|

ffiffiffiffiffiffiffiffiffiffiffiffiP
s2

g

ngene
,

s

where ngene is the number of genes. Genes with |Eg| values larger

than L were selected. Assuming that the effects of noise on the

logarithmic data are normally distributed, the false-positive rate of

selection is estimated to be 0.27% in the subject genes. In the

parametric framework, only data in the valid range were used for

selection. In the GeneChip data, differences were estimated at

each PM data level. In MAS5, only ‘‘Present’’ data were used.

Genes without at least 3 cells making successful measurements

within the model-associated signal range in both control and

treatment were excluded.

The criteria used for selected data from the platform

comparison studies were as follows. As differences originate from

the differences between the two organs assayed, excessive numbers

of genes would be selected by the previous criterion. Therefore,

selection was performed by applying a more stringent criterion,

where only those genes with differences in expression levels having

a p value of less than 0.01 and a two-fold variation being selected.

In the estimation of p values, a paired t test was applied for the

two-color printed chips (pairs were formed in a chip-wise manner

giving 5 pairs of data per gene), an unpaired t test was applied for

single-color chips (5 data per gene), and a variance analysis was

applied for GeneChip data by gene-wise pairing in accordance

with PM data (20 pairs of PM data, 5 chips per gene). Forming the

pairs in a chip-wise manner has the advantage of reducing the

number of defects due to uneven hybridization (data not shown).

Test of bias in annotation key words among selected
genes

Augmentation of the specific functions of a cell results in an

increase in the transcripts of genes related to those functions. If

‘‘positive genes’’ are sought by microarray assay, many such

stimulated genes will be selected. Consequently, the selected group

of genes will exhibit trends in the functions of genes, resulting in a

bias in the population of chip contents. Such bias can be detected

in the key words appearing in the annotations for selected genes.

For a certain key word, the appearance rate, ratekey, can be

defined as the proportion of genes for which that key word appears

in the annotations. For a randomly selected group of genes from

the population, the number of ‘‘key’’-annotated genes in the group

will follow a binominal distribution. The probability that the

number of key genes is equal or larger than n in m selected genes

can be expressed by a cumulative distribution function, as given by

Xm

i~n

P i=m

� �
~
Xm

i~n

mCi ratekey

� �i
1{ratekey

� � m{ið Þ
:

When the probability is less than a threshold value, the

appearance rate of ‘‘key’’-annotated genes in the group is deemed

to be significantly high. In the present study, this procedure was

applied to 100 randomly selected words or phrases, and to words

that represent issues apparent in the diagrams shown in Figure 4.

Evidence for all the words included in the latter test are listed in

Table 1. Random words were chosen from the annotations of 921

genes selected in at least one of the methods or platforms. The

threshold of the test was 0.001, corresponding to one false-positive

in every 1000 key words. For example, the word ‘‘steroid’’

appeared in 70 genes in 4433 overlapping contents of ToxArray

and GeneChip, yielding ratiosteroid value of 0.0158. The

probability that 6 or more genes are included in 47 randomly

selected genes is therefore 9.6E-05. This value is far less than the

threshold, suggesting that the proportion of steroid-related genes is

significantly high.
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