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Experimental high-throughput techniques, like next-generation sequencing or microarrays, are
nowadays routinely applied to create detailed molecular profiles of cells. In general, these
platforms generate high-dimensional and noisy data sets. For their analysis, powerful
bioinformatics tools are required to gain novel insights into the biological processes under
investigation.Here,wepresent an overviewof theGeneTrail tool suite that offers rich functionality
for the analysis and visualization of (epi-)genomic, transcriptomic, miRNomic, and proteomic
profiles. Our framework enables the analysis of standard bulk, time-series, and single-cell
measurements and includes various state-of-the-art methods to identify potentially deregulated
biological processes and to detect driving factors within those deregulated processes. We
highlight the capabilities of our web service with an analysis of a single-cell COVID-19 data set
that demonstrates its potential for uncovering complex molecular mechanisms.

GeneTrail can be accessed freely and without login requirements at http://genetrail.bioinf.
uni-sb.de.

Keywords: COVID-19, enrichment analysis, gene regulation, web server, time-serie analysis, single-cell analysis,
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1 INTRODUCTION

Modern high-throughput techniques enable detailedmolecular profiling of hundreds of thousands of
single cells. The resulting data sets are usually high-dimensional and noisy, making a manual
inspection impossible. To facilitate the analysis of bulk- and single-cell data, various computational
approaches have been developed that help to study the molecular signatures of the analyzed cells.

A common task in the analysis of molecular high-throughput profiles is the identification of
biological processes that show differences between two groups of samples, e.g., disease versus control.
For this purpose, three different generations are described in (Khatri et al., 2012): over-representation
analysis (ORA), functional class scoring (FCS) procedures, and network-based methods. The first two
classes, often referred to as enrichment analysis methods, use set-based statistics to check if biological
categories are potentially deregulated without considering interactions between the considered
molecular entities, e.g., genes. For the analysis of biological networks with a given pathway
topology, network-based approaches have been developed that utilize the topology of these graphs
to identify deregulated networks, signaling cascades, or subgraphs. Over the years, many tools have
been developed that provide solutions for at least one of the three classes discussed above. The web
services DAVID (Jiao et al., 2012), Enrichr (Kuleshov et al., 2016), and g:Profiler (Raudvere et al., 2019),
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for example, offer ORA-based approaches, whereas Babelomics
(Alonso et al., 2015) is able to conduct different FCS and network-
based approaches. WebGestalt (Liao et al., 2019) provides access to
ORA, FCS procedures and network-based methods for a wide
range of organisms. PaintOmics3 (Hernández-de Diego et al.,
2018) offers solutions for ORA and network-based analyses and
is capable of performing integrative analyses of multi-omics data
sets. For a detailed review of existing tools and approaches see
(Khatri et al., 2012; Das et al., 2020; Maleki et al., 2020).

In 2007, we launched the GeneTrail (Backes et al., 2007) web
service that provided only enrichment analysis methods. Since
then, it has been used in hundreds of thousands of analyses by
many groups worldwide. Over the years, we have continuously
extended its functionality and broadened the scope of application
beyond traditional enrichment analysis, thereby creating an
extensive framework for the integrative analysis of (epi-)
genomics, transcriptomics, miRNomics, and proteomics data
sets (Stöckel et al., 2016; Gerstner et al., 2020).

For our web service, we integrated 40 different external
databases including biological categories from databases, like
GO (The Gene Ontology Consort, 2021), KEGG (Kanehisa
et al., 2021), and Reactome (Jassal et al., 2020). This
comprehensive collection enables the analysis of putatively
deregulated biological processes for 15 organisms. For their
analysis, the toolbox currently offers well-established methods
from a variety of enrichment and network analysis procedures.
These include standard gene set based enrichment methods like
over-representation analysis (ORA) (Drǎghici et al., 2003) and
gene set enrichment analysis (GSEA) (Subramanian et al., 2007).
For biological networks with a known topology, we also provide
several methods to identify potentially deregulated networks,
signaling cascades, or even subnetworks (Stöckel et al., 2013).
Some of these approaches can also be used to identify molecular
driving factors within those networks that may have induced the
detected deregulation. In this context, we also offer a class of
algorithms for the detection of transcriptional regulators that play
essential roles in the investigated processes (Kehl et al., 2017).

Furthermore, in version 3.0, we added three specialized
workflows that set GeneTrail apart from all other approaches
(Gerstner et al., 2020). For the integrated analysis of various
epigenetic modifications, we implemented a pipeline that detects
biological processes affected by changes in the chromatin
structure. Furthermore, our framework offers methods for
exploring time-resolved expression signatures and identifying
pathways whose activities change over time. Over the past
years, advances in single-cell high-throughput methods shifted
the focus of gene expression experiments from standard bulk
samples to the investigation of thousands of individual cells. For
this reason, we extended GeneTrail with a powerful single-cell
analysis toolbox that offers functionality for the comparison of
single cells of groups of cells (Gerstner et al., 2020).

2 MATERIALS AND METHODS

GeneTrail is a comprehensive framework for the analysis of
molecular high-throughput profiles with the goal to identify

potentially deregulated biological processes and the driving
molecular factors that might be responsible for these
alterations. Our web service integrates the functionality of a
variety of tools into one platform and thereby enables users to
conduct different analyses on the same data set with minimal
effort. Here, most of the core functionality is implemented as
highly optimized C++ code that is available on GitHub (https://
github.com/unisb-bioinf/genetrail3).

In all tools, users are guided through the analyses in an intuitive
step-by-step manner. Here, automatic scripts analyze the
properties of the input data and preselect suitable methods and
parameters. This reduces the interactions required by the user and
facilitates the analysis for non-experts. Furthermore, the different
processing steps are well documented such that users can retrace
the parameter choices and adapt them if needed. The analyses are
supported by interactive visualizations ranging from broad
overviews of the results to specialized in-depth representations.

In order to fulfill the different tasks, we integrated biological
knowledge from 40 different external databases. An overview of
this data collection is depicted in Supplementary Material S1
and a graphical overview of the tool suite is given in Figure 1. In
the following, we will provide a brief overview of the functionality
of our web service. Although most methods can be applied to
analyze measurements of genes, proteins, and miRNAs, we
restrict the subsequent description to the gene-level to
improve readability.

In many application scenarios, two groups of samples, e.g.,
disease versus control, are compared. For this purpose, a user can
upload a gene expression matrix with samples from both groups,
which can be analyzed for differential expression by our
framework. To this end, our toolbox offers 15 different
methods, including non-parametric measures, such as fold-
changes or the Wilcoxon rank-sum test, but also parametric
tests, like t-tests, DESeq2 (Love et al., 2014), edgeR (Robinson
et al., 2010), or RUVSeq (Risso et al., 2014). Each of these
methods produces a score per gene that mirrors the difference
in expression. Additionally, GeneTrail provides several functions
to optionally process the resulting scores. For example, scores can
be transformed to absolute values if users are not interested in the
direction of the expression changes. Additionally, the subsequent
enrichment and network analysis methods require as input either
a complete list of genes with assigned scores or a set of
deregulated genes. In order to select these deregulated genes,
our framework offers several filter procedures.

For DESeq2, edgeR, and RUVSeq, we used the respective R
libraries. We implemented all remaining methods in C++ and the
code is available in the GeneTrail C++ library (Stöckel et al., 2016)
(see Supplementary Material S1).

2.1 Enrichment Analysis
An important task in the analysis of molecular high-throughput
profiles is the identification of putatively deregulated biological
processes, e.g., pathways that differ in activity between two
sample groups.

The input for an enrichment analysis is either a small set of
genes, e.g., the most differentially expressed ones, or a complete
list of genes with scores that indicate their degree of deregulation.
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These data sets can either be directly uploaded to the web server
or calculated based on a given gene expression matrix, as
described above.

In addition to this input, enrichment methods require a set of
biological processes or categories that should be analyzed. Here,
GeneTail offers a large collection of categories that are extracted
from external databases, covering nearly 65,000 gene-based
categories for humans alone. These include biological
processes, molecular functions, or cellular components from
the Gene Ontology (The Gene Ontology Consort, 2021) and
signaling pathways from KEGG (Kanehisa et al., 2021), Reactome
(Jassal et al., 2020), or WikiPathways (Martens et al., 2021) (cf.
Supplementary Material S1).

For the analysis of these categories, GeneTrail offers eleven
enrichment algorithms that can be categorized into two classes.
For a set of preselected genes, e.g., the most differentially
expressed genes, an ORA can be applied to detect putatively
deregulated biological processes. For complete gene lists with
scores, such as fold-changes or t-scores, our web server also
offers various FCS methods. These include non-parametric

approaches that operate on the order of genes, like GSEA
(Subramanian et al., 2007) or Wilcoxon rank-sum test.
Additionally, we offer parametric tests that compare the
scores of category members against genes that are not members
of the category, such as the two-sample t-test or averagingmethods
that calculate summary statistics of categorymembers (Ackermann
and Strimmer, 2009). An overview of the different processing steps
and available output visualizations is shown in Figure 2. We have
implemented all enrichment methods in C++ (GeneTrail C++
library).

2.2 Analysis of Biological Networks
In contrast to enrichment-based methods that do not consider
interactions between genes, network-based approaches utilize the
topology of the corresponding interaction networks, e.g.,
provided by the KEGG database (Kanehisa et al., 2021), to
identify potentially deregulated subnetworks or signaling
cascades.

In addition to the given topology, network-based algorithms
usually require a list of scores that for example mirror gene

FIGURE 1 | Overview of the GeneTrail tool suite. Yellow boxes represent the functionality of the tool suite and gray boxes represent the respective output. At the
top, graphical representations of different input types are depicted. (A) Time-series expression data. (B) Single-cell expression data (UMAP representations of the cells).
(C) Epigenetic data: Histone modifications (shown as green and yellow marks), open chromatin regions, and cytosine methylation (shown as red marks).
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expression differences. These methods often use the given scores
as weights for the vertices or the edges of the graph and usually try
to identify subgraphs, paths, or signaling cascades that might be
deregulated.

For this purpose, our toolbox provides two methods for the
identification of the most highly altered subgraphs in biological

networks: FiDePa (Keller et al., 2009) and an ILP approach
(Backes et al., 2012). FiDePa uses a GSEA-like statistic to
determine all paths in a given network enriched with
differentially expressed genes. In addition to linear paths, the
ILP approach is able to detect branched subgraphs with the
highest degree of deregulation. Both approaches allow users to

FIGURE 2 | Schematic workflow of the enrichment and network analysis. (A) In this simplified flowchart, white boxes represent input types and gray boxes
represent processing steps. Below the flowchart, examples of available visualizations are shown: (B) Overview representation of the top ten enriched and depleted
categories. (C) Deregulated subnetwork with upregulated (red) and downregulated (green) nodes. (D) Volcano plot with two highlighted categories. (E) The GSEA result
plot for an example category (“cell devision”) shows (i) the running-sum statistic in red, (ii) positions of member genes in the sorted gene list in black, and (iii) the
corresponding gene scores in blue.
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identify not only highly altered parts of networks, but also key
molecules that might induce the detected deregulations within
those subgraphs, e.g., the roots of the respective subnetworks. We
have implemented both algorithms in C++.

2.3 Identification of the Most Influential
Transcriptional Regulators
Driving elements in many biological processes are transcriptional
regulators, like transcription factors, chromatin modifiers, or
cofactors. Changes in the activity of these proteins can
severely alter the expression of their target genes and, hence,
deregulations of transcription factors are associated with certain
diseases, e.g., cancer (Lee and Young, 2013). Therefore, an
important goal in the analysis of deregulated biological
processes is the identification of regulators that play key roles
in these processes.

GeneTrail offers two classes of methods for the identification
and prioritization of influential regulators (Kehl et al., 2017). The
first class represents approaches, like REGGAE (Kehl et al., 2018),
RIF1, and RIF2 (Reverter et al., 2010), that are based on
experimentally validated regulator-target interactions (RTIs).
In addition to RTIs, these algorithms require a gene
expression matrix to find influential regulators that might
contribute to gene expression differences between two sample
groups.

Instead of experimentally validated binding sites, the second
class uses predicted binding motifs of transcription factors in
form of position weight matrices (PWMs) to study the binding
patterns of these regulators. One of these methods is TEPIC,
which combines open-chromatin regions, PWMs, and gene
expression values in an integrative analysis to identify key
regulators (Schmidt et al., 2019).

With the exception of the TEPIC framework that has been
developed by Schmidt et al. (Schmidt et al., 2019), we
implemented all other approaches in C++ as part of the
GeneTrail C++ library.

2.4 Analysis of Time-Series Data
The structure and function of cells are controlled by complex
networks of dynamic molecular mechanisms. Time-resolved
expression profiles render it possible to study the dynamics of
biological processes.

For the analysis of such time-resolved gene expression
data, our framework offers methods to detect gene clusters
with similar expression time courses and to identify molecular
functions influenced by these clusters (Gerstner et al., 2020).
To this end, GeneTrail conducts the following processing
steps: First, the loaded expression data is filtered to select
the genes with the highest expression change in the analyzed
time frame. To this end, our framework provides different
measures that assess the amount of change within the
analyzed time frame, e.g., the aggregated expression
difference between all consecutive time-points. The user
can then define a threshold that is used to identify the
genes with the strongest expression changes. The remaining

genes are clustered with respect to their expression profiles.
To this end, our framework provides a variety of similarity
measures and clustering algorithms that are specifically
tailored to the comparison of expression time curves. For
the member genes of the resulting clusters, our web service
conducts ORAs to detect molecular functions that are
controlled by these clusters.

We implemented all processing steps either as R scripts or
C++ programs that are part of the GeneTrail library.

2.5 Integrative Analysis of Epigenetic
Modifications
The chromatin structure induced by epigenetic modifications,
like cytosine methylations or histone marks, constitutes an
essential regulatory layer of gene expression, and the
investigation of chromatin states provides crucial information
about the activity of cellular processes. To this end, GeneTrail
offers functionality for the integrative analysis of histone
modifications, open-chromatin regions, and DNA methylation
patterns in different sample groups, e.g., disease versus control.

To start an analysis, users can upload epigenetic
modifications for the samples in “bed,” “vcf,” or “idat”
format. For each sample group, the tool suite first
investigates the epigenetic modifications in the regulatory
regions of all genes. Based on these modifications, each gene
is assigned to one of four chromatin states: “active,” “poised,”
“repressed,” or “no signal.” For this purpose, we use a rule-
based approach, in which specific combinations of epigenetic
marks define the chromatin state of a gene. The rules were
manually curated from literature and the HIstome (Khare et al.,
2012) and HHMD (Zhang et al., 2010) databases. A detailed
description of this approach can be found in our online
documentation.

Given the chromatin state of each gene, our toolbox clusters
genes into transition groups. Here, a transition group is a group of
genes that transition from a particular chromatin state in one
sample group to another chromatin state in the second group,
e.g., from a poised state in the disease group to an active state in
the control group. For each transition group, ORAs are
conducted to uncover changes of biological processes that are
induced by this group.

For the initial processing of the uploaded files, we use
BEDTools (Quinlan, 2014), biscuit (Zhou, 2016) and RnBeads
(Müller et al., 2019). For all remaining steps, we use the
functionality of GeneTrail’s C++ library.

2.6 Analysis of Single-Cell Data
Advances in high-throughput techniques enable the generation of
molecular profiles for thousands or even hundreds of thousands
of cells simultaneously. GeneTrail can analyze the resulting data
sets to identify active biological processes for each cell and to
detect functional changes between different cells, cell types, or
groups of cells.

To start an analysis, the user has to provide a single-cell
expression matrix and an associated metadata file that
contains further information about each cell. This information
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may include sample identifiers, cell types, precomputed clusters,
or assignments to certain classes of diseases. In a first step,
GeneTrail removes cells that do not fulfill adjustable quality
controls, e.g., damaged cells or duplets. The gene expression
values of the remaining cells are then normalized and for each
cell the genes with largest normalized expression are
selected, e.g., the 500 most highly expressed genes. Based
on the selected genes, active biological processes are
identified for each individual cell via an enrichment
analysis. Depending on the provided metadata, cells can
be assigned to groups and differences in the activity of
biological processes between the groups can be identified
by GeneTrail. Additionally, our toolbox offers the Louvain
algorithm (Que et al., 2015) for calculating clusters of the
given cells. The identified clusters can also be used as group
assignments.

Furthermore, our framework provides interactive UMAP
(McInnes et al., 2018) and t-SNE (Van der Maaten and
Hinton, 2008) visualizations of the calculated results.

For filtering, clustering and dimensionality reduction, we
apply Seurat4 (Yuhan et al., 2021) and Monocle3 (Qiu et al.,
2017). For all remaining analysis steps, we use the functionality of
the GeneTrail C++ library.

3 RESULTS AND DISCUSSION

The coronavirus disease 2019 (COVID-19) is a highly
infectious respiratory illness caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Oran
and Eric, 2020; Yuki et al., 2020). According to a study by
Wu et al. (Wu and McGoogan, 2020), most affected
individuals in the analyzed chinese cohort exhibit only
mild-to-moderate symptoms, however, around 20% are
categorized as severe or even critical cases. In these
instances, the patients often show considerable alterations
in the activity of the immune system, which includes highly
elevated levels of pro-inflammatory cytokines. In current

FIGURE 3 |Overview of the single-cell result visualization. The table shows categories that are associated with “defense response to virus” and their p-values. The
color indicates if a category is significantly more active (red) or inactive (green) in the corresponding group. The plots on the top show UMAP visualizations of the data set,
where each point represents a single cell. The cells in the left image are colored according to their group membership and the cells in the right image are colored with
respect to the p-values of the selected category (“defense response to virus.”)
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research, several factors are discussed that might cause these
changes including pathogenic T-cells or inflammatory
monocytes (Guo et al., 2020; Zhou et al., 2020).

Here, we demonstrate the capabilities of GeneTrail by
investigating molecular processes that distinguish COVID-19
patients with acute respiratory distress syndrome (ARDS)
from hospitalized patients that required no ventilation
(NoVent), and healthy controls (Healthy). To this end, we
analyze single-cell RNA-seq data of 10,339 CD14 monocytes
that are part of a peripheral blood mononuclear cells (PBMCs)
data set of Wilk et al. (Wilk et al., 2020). In total, the data set
contains gene expression profiles of eight samples from seven
hospitalized patients, of which four required mechanical
ventilation, and six samples from healthy controls.

In particular, we applied GeneTrail to identify deregulated
biological processes and corresponding key molecules that may
contribute to the severity of COVID-19 cases with ARDS.

3.1 Identification of Deregulated Biological
Processes in Single-Cell Expression Data
In the following, we discuss biological processes that show altered
activities between the three investigated groups (ARDS,
NonVent, Healthy). To this end, we use the single-cell
functionality of our web service that first determines
significantly enriched biological processes for each cell. We
then tested for each category if it is significantly more active
in one of the three groups (cf. Section 2.6). All processing steps
and parameters are described in Supplementary Material S1 and
the full results are shown in Supplementary Material S2.

We find the most significant differences in categories that are
directly associated with the “defense response to virus” (cf.
Figure 3). While these processes are inactive in healthy
controls, they are highly active in the NonVent group, but
show only a reduced activity in the ARDS group. The
decreased activities of these processes in the ARDS group
indicate that the adaptive immune response of ARDS patients
could be impeded. A phenomenon that has been repeatedly
reported in patients with severe courses of COVID-19
(Arunachalam et al., 2020; Janssen et al., 2021). We observe a
similar behavior for biological categories involved in the response
to type I, II, and III interferons and interferon signaling pathways,
which are significantly more active in patients that required no
ventilation. In particular, type I interferons (IFNs) and
interferon-stimulated genes are crucial factors in antiviral
processes. A deficiency of type I IFNs in patients with severe
courses of COVID-19 has already been observed in several other
studies (Acharya et al., 2020; Hadjadj et al., 2020; Lee and Shin,
2020) and is often accompanied by higher activities of tumor
necrosis factor (TNF) production and NF-kappaB signaling. Our
enrichment results confirm these observations. Furthermore, the
decreased viral defense results in higher virus loads in the blood of
ARDS patients (Hadjadj et al., 2020).

Additionally, we identified an increased endocytosis and
phagocytosis activity in the ARDS group. These observations
are also confirmed by enriched categories that are involved in
macrophage activation. Increased activity of this process has even

been described as a marker for the mortality in COVID-19 (Banu
et al., 2020).

We also observe various enriched processes that indicate a
highly increased motility, migration, and chemotaxis activity in
the cells of the ARDS group. This might be linked to the increased
TNF production in these cells, which is known to promote
chemotaxis in monocytes (Ming et al., 1987).

A further factor that distinguishes the different groups is the
activity of categories involved in antigen processing and
presentation via MHC class II. The activity of these processes
is significantly decreased in the ARDS group. This has also been
described as a marker for the severity of COVID-19 (de Sousa
et al., 2020; Liang et al., 2021). We also observe a significant
decrease in expression of several MHC II components in the
ARDS group, including HLA-DRA, which has been highly
associated with severe respiratory failure in COVID-19
patients (Giamarellos-Bourboulis et al., 2020).

Moreover, many enriched categories indicate that the
proliferation of cells in the ARDS group is significantly lower
than in the NonVent group and in healthy controls.

In summary, our enrichment results suggest that central
processes involved in the adaptive immune response to viruses
might be impeded in the ARDS group, while the innate immune
system seems to be overactive. These observations have also been
made by several studies that compared mild and severe courses of
disease (Arunachalam et al., 2020; Janssen et al., 2021).

We also analyzed the gene expression profiles of lymphocytes,
i.e., B cells, T cells, and NK cells, and obtained similar results (cf.
Supplementary Material S2).

3.2 REGGAE Analysis of Pseudo-bulk
Expression Data
Based on the single-cell data set, we also created pseudo bulk
expression data for each sample using the muscat R-package
(Crowell et al., 2020). The resulting data was used to identify
influential transcriptional regulators. For all genes, we first
calculated expression differences between samples from the
ARDS group and all other samples. In a second step, we
selected the 250 most upregulated genes in the ARDS group
and conducted a REGGAE analysis to find key regulators that
have a strong influence on these 250 genes. The used parameters
and the full results can be found in Supplementary Materials S1,
S2 respectively.

The REGGAE analysis identified 171 regulators with significant
influence, of which 56 are potential activators and 115 repressors.
The ten most significant activators and repressors are shown in
Figure 4. In general, many of the identified genes are key regulators
of the immune system, e.g., members of the STAT family
(Matsuyama et al., 2020) and the AP-1 complex (Zhu et al., 2021).

Additionally, among the top ten activators and repressors,
some regulators are known to directly interact with proteins of
SARS-CoV-1: RB1 (Bhardwaj et al., 2012), TRIM25 (Hu et al.,
2017a), and PHB2 (Cornillez-Ty et al., 2009). Due to the sequence
similarities of both corona viruses [79% (Suryawanshi et al.,
2020)], these interactions may be conserved, but this requires
further investigations.
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Other regulators have already been discussed in the context of
COVID-19. One of them is the transcription factor RUNX1 that
plays a key role in many biological processes, in particular
hematopoiesis (Okuda et al., 2001). RUNX1 has also been
described as an important regulator in several diseases,
including pulmonary diseases (Tang et al., 2018). It is
investigated as a potential target molecule for therapy of
pulmonary fibrosis (PF) in COVID-19 (O’Hare et al., 2021).
Inmousemodels, it has been shown that the inhibition of RUNX1
successfully mitigates PF and reduces the expression of the host
proteins ACE2 and FURIN, which mediate the SARS-CoV-2
infection (O’Hare et al., 2021).

Another regulator that has already been discussed as a
potential marker for severe cases of COVID-19 and a putative
therapy target is the transcription factor SREBF2. In general,
SREBF2 regulates the lipid metabolism. This process is known to
be vital for virus replications and members of the SREB family,
including SREBF2, have been discussed as potential targets for
aniviral strategies (Yuan et al., 2019). Lee et al. showed that
SREBF2 is activated in PBMC samples of COVID-19 patients.
Additionally, based on an infectious disease mouse model, Lee
et al. demonstrated that an inhibition of SREBF2 suppressed
cytokine storms and prevented pulmonary damages (Lee et al.,
2020).

While many of the regulators have already been discussed in
the context of SARS-CoV-1 and SARS-CoV-2, some of them
might be interesting new candidates for further research.

3.3 Further Analyses
The results described in the last two sections clearly demonstrate
that GeneTrail is well equipped for the identification of potentially
deregulated biological processes and driving factors in humans.

However, our web service is not restricted to the analysis of
human samples. In the past, it has been used in broad range of
application scenarios from research groups around the world.
Amongst others, it has been applied to study 1) differences in
methylation patters in human and chimpanzee brains (Jia et al.,
2012), 2) the molecular basis of heterosis in thale cress hybrids
(Andorf et al., 2010), or 3) evolutionary differences between giant
and red pandas (Hu et al., 2017b).

Moreover, in Supplementary Material S1, we provide an
additional analysis of a thale cress (Arabidopsis thaliana) data
set fromHerranz et al. (2019). Here, we analyzed which biological
processes in plant seedlings are affected by different light and
gravity conditions on the International Space Station (ISS).

In order to present additional features of our web service, we
also compiled several example analyses on our web sites, which
contain step-by-step instructions, technical background
information, and interpretation of the results.

4 CONCLUSION

Since the initial release of GeneTrail in 2007, we have
continuously extended the functionality of our web service. In

FIGURE 4 |Overview of the most significant transcriptional regulators detected by the REGGAE algorithm. Depicted are the top ten potential (A) activators and (B)
repressors. The first column in both tables contains the HGNC gene symbols of the regulators, the second column specifies the adjusted p-value, and the last column
depicts the mean correlation of the regulator and all target genes in the analyzed gene list. The color indicates if the mean correlation is positive (potential activator) or
negative (potential repressor).
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its current form, our tool suite provides various methods for the
integrative analysis of multi-omics profiles. Our framework can
be applied to study deregulated biological processes and their
molecular driving factors in bulk, time-series, and single-cell data
sets. For this purpose, it offers a variety of approaches for 1)
enrichment analysis, 2) network analysis, and 3) the identification
of key regulators.

Compared to other approaches, GeneTrails excels by
providing rich functionality with highly efficient C++
implementations for a broad range of application scenarios.
The provided approaches can be used to analyze a
comprehensive collection of biological categories and pathways
that stem from 40 different biological databases and 15
organisms. Additionally, the rich functionality of our web
service is complemented with an intuitive web interface that
offers many interactive visualizations ranging from a broad
overview of the results to detailed in-depth representations.

We demonstrated GeneTrail’s capabilities by analyzing single-
cell expression profiles of CD14 monocytes from COVID-19
patients and healthy controls. Our tools identified many
processes that show different activities between the three
considered groups (ARDS, NonVent, and Healthy). In
particular, our results indicated that the activity of the
adaptive immune response in the ARDS group might be
reduced, while processes of the innate immune response seem
to be overactive. Here, many of our observations have already
been discussed in literature.

Moreover, we analyzed key transcriptional regulators that
have a strong influence on the most upregulated genes in the
ARDS group. Amongst them, we not only identified several
regulators that are already known as markers for the severity
of COVID-19 but also potential candidates that require further
research.

In the future, we will continue to extend our framework with
new analysis functionality for the identification of regulatory
interactions and support for single-cell multimodal omics data
(Teichmann and Efremova, 2019), which may provide a deeper
understanding of the biological processes under investigation.
Still, the current rich functionality of our web server combined
with the intuitive web interface and interactive visualizations
already make GeneTrail one of the most comprehensive tool

suites for the analysis of molecular high-throughput profiles and
set it apart from other approaches.
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