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SUMMARY

Head-on (HO) collisions between the DNA replication machinery and RNA poly-
merase over R-loop forming sequences (RLFS) are genotoxic, leading to replica-
tion fork blockage and DNA breaks. Current models suggest that HO collisions
are avoided through replication initiation site (RIS) positioning upstreamof active
genes, ensuring co-orientation of replication fork movement and genic transcrip-
tion. However, this model does not account for pervasive transcription, or intra-
genic RIS. Moreover, pervasive transcription initiation and CG-rich DNA is a
feature of RIS, suggesting that HO transcription units (HO TUs) capable of form-
ing R-loops might occur. Through mining phased GRO-seq data, and developing
an informatics strategy to stringently identify RIS, we demonstrate that HO
TUs containing RLFS occur at RIS in MCF-7 cells, and are downregulated at the
G1/S phase boundary. Our analysis reveals a novel spatiotemporal relationship
between transcription and replication, and supports the idea that HO collisions
are avoided through transcriptional regulatory mechanisms.

INTRODUCTION

DNA replication and transcription are both polymerase-driven reactions that occur on the same DNA tem-

plate with the potential to spatially and temporally interfere with one another. Prior in vitro and in vivo

studies have shown that head-on collisions between the DNA and RNA polymerases over R-loop forming

sequences (RLFS) stably block replication forks through R-loop stabilization on the lagging strand, and G4

quadruplex stabilization on the leading strand.1–7 In contrast, head-on collisions over non-RLFS, as well as

co-directional collisions regardless of sequence environment, are bypassed by the replication fork and do

not typically result in DNA breaks.1,3–5,7 Such findings highlight the need for cells to preserve genome sta-

bility by employing mechanisms to avoid head-on collisions over RLFS. However, it is unclear if, where, and

at what frequency head-on transcription units (HO TUs) containing RLFS in the template strand occur on the

genome.

It is generally assumed that head-on collisions are avoided passively through genome organization. OK-

seq, whichmaps replication fork movement, revealed that replication initiation typically occurs in zones up-

stream of the transcription start site (TSS) of active genes, and terminates downstream of gene bodies.8,9

Likewise, optical replication mapping, which maps replication initiation via a single molecule approach,

found that most initiation zones (IZs) co-localized with zones identified by OK-seq.10 The organization

suggested by these studies would in principle ensure that leading strand synthesis primarily occurs in a

co-directional manner with transcription units. Indeed, recent work evaluating gene transcription and repli-

cation fork movement during S-phase found that RNA polymerase at gene transcription start sites (TSS) is

bypassed by a co-directional replication fork11 demonstrating that co-directional collisions are tolerated at

these sites.

Although a genome-wide co-directional relationship between replication and transcription would

adequately explain how genotoxic collisions are avoided, there are limitations to this model. Although

about 2% of the genome is occupied by protein-coding genes, 75–90% of the genome is transcribed.12,13

Non-coding, or pervasive transcription, occurs both outside gene bodies, as in the form of promoter up-

stream transcripts (PROMPTs) and enhancer RNAs (eRNAs),14–17 or inside genes including antisense and

sense transcription start site associated transcripts (asTSSa and sTSSa).16,18,19 Moreover, a subset of RIS

localize intragenically across mapping assays.9,20,21 In tumor cells with activated oncogenes, these intra-

genic RIS increase in frequency.22 It is possible that pervasive transcription units, or even genes themselves,
iScience 26, 105791, January 20, 2023 ª 2022 The Authors.
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form HO TUs. Of interest, Spt6 depletion was shown to upregulate PROMPTs and eRNAs in HeLa cells,

leading to R-loop formation, replication stress and DNA damage.17 Integrative analysis with a small subset

of intergenic replication initiation sites (RIS) showed that PROMPT/eRNA upregulation increased transcrip-

tion through these sites.17 Collectively, these data suggest that unscheduled pervasive transcription gen-

erates genotoxic head-on collisions.

Several lines of evidence suggest pervasive transcription occurs immediately adjacent to RIS in human

cells,23,24 and indeed might be a functional feature, acting to recruit the replication machinery or distribute

the MCM helicase.23,25,26 However, these studies never assessed transcriptional activity at high resolution

relative to RIS locations. If RIS-adjacent transcription converged into the RIS, it would present a source of

head-on transcription-replication collisions. Furthermore, work assessing the chromatin and sequence

environment at RIS has demonstrated that RIS can contain an adjacent NDR with GC-rich DNA.27,28

Head-on transcription through this region would presumably potentiate genotoxic collisions.

Collectively, it appears that RIS-adjacent pervasive transcription could generate genotoxic collisions.

However, the directionality of transcription at these sites relative to the RIS is currently unclear. Further-

more, the sequence environment of these transcription units is unknown. A key question is how do cells

avoid head-on collisions at these locations if RIS-adjacent pervasive transcription occurred at a high fre-

quency over RLFS? In this study, we sought to systematically analyze transcriptional activity near RIS with

positional and strand resolution utilizing publicly available datasets generated in the MCF-7 breast can-

cer cell line. By focusing on transcription within 1 kilobase of a subset of stringently identified RIS, we

infer replication fork direction and thus determine the positional relationship between transcription

and replication. Surprisingly, we find that pervasive HO TUs rich in RLFS occur frequently at both inter-

genic and intragenic RIS in asynchronous breast cancer cells. Furthermore, we find that HO TUs are

significantly downregulated in cells synchronized at the G1/S phase boundary relative to G0/G1-phase

cells, especially at TUs dense in template strand RLFS. Collectively, our study identifies RIS-adjacent

pervasive transcription as a source of genotoxic head-on collisions, and implicates the existence of a

transcriptional regulatory mechanism that functions to silence this transcription before replisome pas-

sage to preserve genome stability.
RESULTS

Identifying high-confidence replication initiation sites in the MCF-7 genome

Does RIS-adjacent pervasive transcription potentiate genotoxic head-on transcription-replication colli-

sions? To investigate this, we decided to leverage publicly available datasets in the MCF-7 breast cancer

cell line to map RIS, local transcriptional activity, and the overlapping sequence environment at high res-

olution. The lack of concordance across RIS mapping technologies29 and the positional sensitivity needed

for downstream analysis led us to first prioritize identifying true RIS loci. A multi-layered approach was em-

ployed to identify high confidence RIS (hcRIS) in MCF-7 cells (Figure 1A). We first considered a ‘core origin’

dataset containing�65,000 regions with a median size of 700 base pairs, which captured a majority (�80%)

of small nascent strand sequencing (SNS-seq) reads across 20 human cell types, and significantly overlap-

ped with pre-RC components and IZs identified by OK-seq.9,27,28 Approximately �40% of core origin loci

are active in any given cell type.27 To enrich for RIS in the MCF-7 cell line, we used BEDTools software to

intersect core origins with MCF-7 SNS-seq peaks yielding 23,110 loci.21 To further filter out false positives,

we intersected the remaining core origins with an epigenetic signature that predicts binding locations of

the origin of replication complex (ORC) with remarkable accuracy.24 This approach yielded 4,572 hcRIS with

a median size of 730 bp.

We validated the identified hcRIS set by assessing their positioning relative to MCF-7 repli-seq replication

timing (RT) profiles.12,23 RT profiles contain an inverted V-apex at sites of replication initiation, and typically

apex locations contain one or more bonafide RIS.23 We reasoned that if hcRIS loci were true positives, then

a high percentage should localize within apex regions. Viewing the hcRIS on a browser track with RT data

clearly showed positioning at apex locations in the earliest S-phase fraction (G1b) (Figure 1B). To assess

whether the hcRIS localized to apexes genome-wide, we assigned an s50 score to each hcRIS. An s50 score

was assigned if at least 50% of total RT readsmap to a region in a single S-phase fraction. This region is then

assigned a label for that fraction, indicating that the region is localizing within an inverted-V apex peaking

in the indicated temporal window.23 68% of total hcRIS loci were assigned a G1b s50 score as compared to

32% of core origins, 33% of epigenetic signature loci, 26% of SNS-seq peaks, and 8% of randomly selected
2 iScience 26, 105791, January 20, 2023
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Figure 1. Identifying high confidence replication initiation sites in the MCF-7 genome

(A) Schematic of the strategy used to identify MCF-7 hcRIS.

(B) (Left) Browser track showing hcRIS (top track, blue markers) and RT profiles (Bottom 5 tracks). Tracks are ordered from

top to bottom by the earliest S-phase fraction (G1b) to the latest S-phase fraction (S4). Red lines demarcate inverted-V

structures. (Right) Distribution of s50 labels across hcRIS, benchmark, and control datasets.

(C) Average profile and heatmap of MCF-7 SNS-seq Poisson enrichment at distance normalized hcRIS loci.

(D) Bar graph showing RIS frequency by position relative to gene bodies.

(E) Bar graphs showing hcRIS frequency by absolute distance relative to the nearest protein-coding TSS.
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Dnase-seq peaks, demonstrating that our strategy enriched for true and early replicating RIS (Figure 1B). To

further analyze this subset, hcRIS were normalized to the median size of 730 bp and centered on a heatmap

encompassing 3 kb upstream and downstream of the left and right boundaries (LB and RB), respectively,

based on the Watson strand (Figure 1C). MCF-7 SNS-seq signal within this context reveals a clear
iScience 26, 105791, January 20, 2023 3
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Figure 2. Head-on transcription occurs at intergenic and intragenic hcRIS

(A) Average profiles and heatmaps of MCF-7 Mnase-seq, Dnase-seq, RNAP2 ChIP-seq, and TBP ChIP-exo Poisson enrichment, and HO NET-CAGE and HO

GRO-seq counts per million at distance normalized hcRIS loci. Black lines align with the left and right boundaries (LB and RB) of the hcRIS region.

(B) Browser track examples of HO transcription at intragenic and intergenic hcRIS.

(C) Violin plot showing the distribution of RPKM values for HO GRO-seq reads over subset hcRIS regions, and genic GRO-seq reads over genes split into

quartiles by transcription levels.

(D) Violin plot showing the distribution of RPKM values for genic GRO-seq reads over gene bodies containing hcRIS, and genes split into quartiles by

transcription levels.

(E) Cartoon model showing positional relationship between HO transcription and replication initiation at hcRIS.
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enrichment within the demarcated hcRIS regions (Figure 1C). Among the hcRIS identified, 1,166 localized in

intergenic space, 3,030 localized within gene bodies, and 376 spanned gene body termini and adjacent

intergenic regions, i.e., both intra and intergenic (Figure 1D), in agreement with the distribution of SNS-

seq peaks seen in the MCF-7 cell line.21 For the intergenic cohort, 40% were within 5 kb of a TSS, 31%

were between 5 and 50 kb from a TSS, and 29% were more than 50 kb from a TSS (Figure 1E). For the intra-

genic cohort, we found that 50%, 34%, and 16% localized in this manner (Figure 1E). With an understanding

of the positioning of hcRIS relative to gene units, we next sought to evaluate local transcription at these

sites.
Head-on transcription occurs at intergenic and intragenic hcRIS

To assess whether head-on transcription occurs at or near hcRIS and if so, whether it was linked to hcRIS

genomic location, we separately evaluated transcription at intergenic and intragenic subsets of hcRIS.

We first measured transcription initiation observed within 3 kb of the hcRIS. To positionally map tran-

scription initiation at these sites, we utilized published data from Mnase-seq,30 Dnase-seq,12 RNAPII

ChIP-seq,31 and TBP ChIP-exo.32 In agreement with past findings,28,33 we find that a strong nucleosome

depleted region (NDR) occurs adjacent to hcRIS loci, as indicated by an asymmetric Dnase-seq and

Mnase-seq enrichment pattern at hcRIS viewable on a heatmap (Figure 2A, left 2 panels). Of interest,

we find that RNAPII ChIP-seq and TBP ChIP-exo signal is enriched within this NDR region across both

hcRIS subsets (Figure 2A, middle 2 panels), demonstrating that TBP-containing Pol II preinitiation com-

plexes (PICs) form adjacent to hcRIS. Thus, proximal transcription initiation is a feature of the local hcRIS

environment.

To determine if the PICs observed at these sites were initiating transcription ‘head-on’ into hcRIS, we uti-

lized MCF-7 NET-CAGE data, which maps the 50 ends of nascent RNAs with directional information.34 We

assessed NET-CAGE signal originating at the PIC sites within the downstream NDR and traveling into the

upstream hcRIS. We called this head-on (HO) initiation because it marks the start of transcription that con-

verges into an emerging replication fork. Remarkably, we find strong HO initiation signal within the PIC-

bound NDR on a global scale (Figure 2A, fifth panel from left), demonstrating that head-on transcripts

initiate adjacent to hcRIS.

GRO-seq is a highly sensitive nuclear run-on assay capable of mapping genic and pervasive transcription

with strand specificity,35 including unstable and lowly expressed transcripts. To evaluate transcriptional ac-

tivity at hcRIS, we utilized asynchronous GRO-seq data generated in the MCF-7 cell line.36 To assess head-

on (HO) transcription, we used the same positional strategy as the NET-CAGE analysis. On a global scale,

we found a strong peak of transcription initiating near the border of the hcRIS adjacent to the NDR and

peaking within the center of the hcRIS (Figure 2A, rightmost panel). On a local scale, we find clear examples

of both HO initiation and transcription at hcRIS loci (Figure 2B). These data reveal that HO transcription is a

feature of the local hcRIS environment. HO transcription was evident at both intergenic and intragenic

hcRIS (Figures 2A and 2B), demonstrating that it is an intrinsic feature of this hcRIS subset and not due toas-

sociation with gene bodies. Analysis of HO GRO-seq read density at the two subsets of hcRIS relative to

gene template strand GRO-seq read density showed that HO transcription occurs at a similar frequency

as highly expressed gene transcription (Figure 2C).

Genic transcription could also cause head-on collisions with intragenic RIS. GRO-seq RPKM values for

hcRIS-containing genes were similar to that of high to moderately transcribed genes (Figure 2D), suggest-

ing that coding transcription within hcRIS-containing genes occurs at a fairly high frequency across asyn-

chronous cells. Collectively, these data demonstrate that appreciable amounts of transcription occur in

the HO orientation in asynchronous MCF-7 cells (Figure 2E).
iScience 26, 105791, January 20, 2023 5
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Pervasive HO TUs containing RLFS are a feature of hcRIS

We next sought to annotate HO TUs at hcRIS to quantify HO transcription frequency, evaluate the template

strand sequence at HO transcripts, and assess whether HO transcription was pervasive.We defined HOTUs

as regions bookended on one end by anHONETCAGE-seq peak within 1 kb of an hcRIS border, and on the

other the hcRIS summit (Figure 3A). We found that 3,357 (73%) of the 4,572 hcRIS contained at least one HO

TU (Figure 3B). In total, we identified 4,567 HO TUs, as multiple units formed at some hcRIS. Viewing NET

CAGE-seq and GRO-seq signals at HO TUs on a heatmap clearly demonstrates that HO transcription is

initiating at and elongating within the TUs, observably peaking at the hcRIS summit (Figure 3C, left and

middle). Thus, in agreement with the analysis in Figure 2, HO transcription is a feature of a majority of hcRIS,

and occurs within distinct, identifiable units.

A key question was whether RLFS occur within the template strand of HOTUs, as head-on transcription over

RLFS is highly genotoxic when colliding with the replisome.1 To address this question, we first identified

directional RLFS annotated by R-loopDB37 within the template strand of HO TUs. We found that 76%

(3,456/4,567) of HO TUs contain at least one RLFS in their template strand. Mapping RLFS density across

HO TUs revealed that template strand RLFS are confined to HO TU bodies, and peak in the HO TU center

(Figure 3C, right). A browser track of an individual locus shows clear enrichment of RLFS within the template

strand of transcribed HO TUs (Figure 3D). Thus, a majority of HO TUs are transcribed over RLFS, indicating

they are likely sources of genotoxic collisions.

Finally, to evaluate whether HOTUs are pervasive in nature, we first evaluated HOTU RPKM values between

GRO-seq and RNA-seq datasets from the same study.36 Pervasive transcripts are typically unstable.16 RNA-

seq, which quantifies steady-state levels of transcription, is not adequate to capture pervasive transcripts

because of high levels of turnover. Alternatively, GRO-seq, which captures transcriptional activity via nu-

clear run-on, is able to effectively quantify pervasive transcripts.35 If HO TUs are pervasive, they should

be underrepresented in RNA-seq relative to GRO-seq data. Indeed, we found that HO TU RPKMs are

significantly higher in GRO-seq relative to RNA-seq (Figure 3E). Importantly, active gene RPKMs are under-

represented in GRO-seq relative to RNA-seq, validating our approach (Figure 3E).

We next evaluated whether HO TUs associate with different pervasive transcript species, and if so, at

what frequency. We first identified all transcripts belonging to four different pervasive species: promoter

upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), antisense TSS-associated RNAs (asTSSa), and

sense TSS-associated RNAs (sTSSa) utilizing GRO-seq data16,38 (Figure S1A). We then categorized HO

TUs by whether they overlapped with any of these pervasive transcript classes. We find that 11% of

HO TU associations are with PROMPTs, 16% with eRNAs, 18% with asTSSa, 34% with sTSSa, and 21%

with transcripts outside these classes (Figure S1B). Finally, we observed GRO-seq and RNA-seq values

across HO TUs categorized by transcript class association. We found that HO TUs had higher GRO-

seq RPKMs across associations, reinforcing that HO TUs are indeed pervasive in nature (Figure S1C).

In aggregate, these analyses support the occurrence of RLFS-rich, pervasive HO TUs at a majority of

hcRIS loci (Figure 3F).
Head-on transcription is downregulated at intergenic and intragenic hcRIS at the G1/S

boundary

The results from asynchronous MCF-7 cells described above raise the question of how could head-on tran-

scription over RLFS occur at hcRIS without negative effects on cellular fitness? We hypothesized that

although head-on transcription occurs at hcRIS during the cell cycle, it might be mitigated before replica-

tion initiation. As a majority of the hcRIS in our dataset replicated very early in S-phase (Figures 1C and 1D),

we reasoned that head-on transcription at these sites might be downregulated during S-phase entry, at the

G1/S boundary. To test this idea, we evaluated HO GRO-seq signal and RPKM distributions at intergenic

and intragenic hcRIS betweenMCF-7 cells synchronized in either G0/G1 phase by hormone starvation, or at

the G1/S phase boundary by double thymidine block (Liu et al., 2017). The results show there is a marked

decrease in GRO-seq signal in G1/S-phase cells relative to G0/G1-phase cells across both hcRIS subsets

(Figures 4A–4C). Importantly, although we observed a small overall decrease in gene transcription between

G1/S-phase and G0/G1-phase cells, the magnitude of the HO transcriptional changes at hcRIS are signif-

icantly greater, demonstrating that downregulation at the G1/S-phase boundary is biased toward hcRIS

(Figure 4D). Moreover, the transcription of genes with proximal upstream hcRIS is not downregulated in

S-phase, demonstrating that the effects seen at hcRIS are independent of transcriptional buffering that
6 iScience 26, 105791, January 20, 2023
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Figure 3. Pervasive HO TUs containing RLFS are a feature of hcRIS

(A) Schematic of strategy to identify HO TUs at hcRIS.

(B) Diagram of total hcRIS demarcated by the presence or absence of at least one HO TU.

(C) Average profiles and heatmaps of HO CAGE-seq/HO GRO-seq (asynchronous) and RLFS density in counts per million

and total annotated sequences respectively within 50-bp bins centered on distance normalized HO TUs demarcated by

the TSS and RIS summit.

(D) Browser track example of an HO TU.

(E) Violin plot showing the distribution of HO TU or active gene RPKMs from either the GRO-seq or RNA-seq assay

(p <0.0001).

(F) Cartoon model of HO TUs with identified features.
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Figure 4. Head-on transcription is downregulated at intergenic and intragenic hcRIS at the G1/S boundary

(A) Average profiles and heatmaps of head-on (HO) GRO-seq signal in counts per million at distance-normalized hcRIS

loci (Left and Middle panels). GRO-seq from G0/G1-phase cells (Left). GRO-seq from G1/S-phase cells (Middle). Average

profiles and heatmaps of the log2 fold change between G1/S-phase and G0/G1-phase CPM values (Right panel). Black

lines align with the left and right boundaries of the hcRIS region.

(B) Browser track examples of changes in HO transcription at intragenic and intergenic RIS.

(C) Violin plot comparing the distribution of RPKM values for GRO-seq reads in the HO orientation across intergenic and

intragenic hcRIS regions from G0/G1-phase and G1/S-phase cells (p <0.0001).

(D) Violin plot comparing the distributions of the fold changes in either HO GRO-seq reads or genic GRO-seq reads

between G1/S-phase and G0/G1-phase cells across intergenic hcRIS, intragenic hcRIS, and all protein coding genes

(p <0.0001).

(E) Bar graph showing the median fold change (95% confidence interval) in protein-coding gene transcription across

genes with and without internal hcRIS (p < 0.0001).
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Figure 5. HO TUs are downregulated at the G1/S boundary as a function of RLFS density

(A) Average profiles and heatmaps of head-on (HO) GRO-seq signal in counts per million within 50-bp bins at distance

normalized HO TUs (Left and Middle panels). GRO-seq from G0/G1-phase cells (Left). GRO-seq from G1/S-phase cells

(Middle). Average profiles and heatmaps of the log2 fold change between G1/S-phase and G0/G1-phase CPM values

(Right panel).

(B) Violin plots of HO TU RPKM distributions in G0/G1 and G1/S-phase synchronized cells (p <0.0001).

(C) Volcano plot showing the differential expression of HO TUs between G1/S-phase and G0/G1-phase cells.

(D) Bar graph showing the median log2 fold change (95% confidence interval) between G1/S and G0/G1 HO TU RPKMs

across HO TU deciles ordered by increasing RLFS density.
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might occur on replicated DNA39,40 (Figure S2). These analyses indicate that HO pervasive transcription at

hcRIS is selectively downregulated during S-phase entry, suggesting that temporally tuned transcriptional

regulation at hcRIS might play a role in genome stability.

We also sought to determine if genic transcription through genes containing RISs was downregulated dur-

ing S-phase entry. Indeed, hcRIS-containing genes are downregulated to a greater degree than genes lack-

ing hcRIS, suggesting that head-on genic transcription is preferentially downregulated during genome

replication (Figure 4E). Collectively, the data in Figure 2 through 4 suggest a model in which head-on perva-

sive and coding transcription occurs during the cell cycle, but is reduced during S-phase entry, potentially

to avoid genotoxic collisions with the replisome.
HO TUs are downregulated at the G1/S boundary as a function of RLFS density

We next assessed transcriptional dynamics at HO TUs. In agreement with the previous analysis, we found

that HO TU transcription was significantly downregulated in G1/S-phase relative to G0/G1-phase cells

(Figures 5A and 5B). Differential expression analysis revealed that 1,827 HO TUs are significantly down-

regulated in S-phase, whereas only 28 HO TUs are significantly upregulated (Figure 5C). Moreover,
iScience 26, 105791, January 20, 2023 9
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significant reductions in HO TU transcription levels at the G1/S boundary are apparent across transcript

class associations, demonstrating that suppression upon S-phase entry is a feature of HO TUs indepen-

dent of pervasive transcript species (Figure S3). Importantly, we found that randomly selected size and

transcriptional activity matched TUs within gene bodies did not show G1/S-phase specific downregula-

tion (Figure S4A). Of interest, pervasive transcription units, protein-coding genes, and lincRNAs showed

a slight bias toward G1/S-phase downregulation (Figures S4B–S4D). However, comparison of the log2

fold-change distribution across HO TUs and these transcript classes demonstrates that HO TUs experi-

ence a significantly greater magnitude of downregulation (Figure S4E). Thus, HO TUs are selectively

silenced at the G1/S boundary, and are regulated independently of genic and pervasive transcription

broadly speaking.

The decreases we observed in GRO-seq signal in cells enriched at the G1/S boundary relative to G0/G1

synchronized cells could be indicative of transcriptional silencing upon S-phase entry, or alternatively,

loss of transcriptionally competent complexes post-collision with an emerging replication fork. For

example, collisions could lead to RNAPII stalling, backtracking, or removal. To distinguish between these

possibilities, we leveraged phased H3K27ac ChIP-seq data from the same study.36 H3K27ac is a histone

mark that has been shown to stimulate both transcription initiation and elongation, but not form as a conse-

quence of transcription itself.41,42 Moreover, H3K27ac has been shown to be unaffected by increased

RNAP2 stalling at the IgG locus.43 Thus, downregulation of this mark at the G1/S boundary might indicate

loss of a transcriptionally competent environment at HO TUs, independent of post-collision processing.

We find that H3K27ac is significantly decreased at HO TUs at the G1/S boundary relative to G0/G1-phase

(FiguresS5A and S5B), and that this observed decrease is specific to HO TUs (FiguresS5C), supporting our

view that the observed changes in GRO-seq signal are indicative of loss of transcription in a pre-collision

setting.

If HO TU silencing is indeed a DNA damage prevention mechanism, we reasoned that the magnitude of

silencing would increase with RLFS density, as denser regions would potentiate more genotoxic collisions.7

Therefore, we analyzed temporal transcriptional changes at HO TUs subset into deciles by increasing RLFS

density levels. We observed a clear relationship between increasing RLFS density and G1/S boundary

downregulation, suggesting that temporal suppression of HO TUs is likely a mechanism to prevent geno-

toxic transcription-replication collisions (Figure 5D). In aggregate, we propose that HO TUs potentiate

damaging collisions with the replisome, and are actively silenced at the G1/S boundary by still unknown

factors before replisome passage to prevent DNA damage.
DISCUSSION

Head-on transcription-replication collisions over RLFS are potent genotoxic events. The co-directional

alignment of replication fork movement and gene transcription across the genome is thought to help avoid

this type of collision.9 Our analysis, utilizing multiple published datasets from the MCF-7 breast cancer

model, reveals that pervasive HO TUs rich in RLFS form frequently at a subset of RIS in asynchronous

cells.12,21,24,27,32,36 Furthermore, our analysis demonstrates that HO TUs are downregulated at the G1/S

boundary, suggesting that collisions are minimized through a temporally tuned transcriptional regulatory

mechanism. In support of the idea that head-on transcription is regulated to maintain genome stability, we

find that HO TU downregulation correlates with RLFS density. Collectively, our results reveal a surprising

spatial relationship between pervasive transcription and replication initiation, and support the presence

of a temporally regulated transcriptional axis that functions to prevent DNA damage at a subset of RIS dur-

ing S-phase.

Recent work assessing transcription and replication across S-phase in immortalized human fibroblasts

demonstrated that gene transcription persists during S-phase, and that co-directional replication forks

bypass highly transcribed TSS, leaving a gap that is filled by replicative helicases in mitosis.11 However,

given that this study utilized nascent RNA-seq and replication timing profiles to assess transcription and

replication activity respectively, it was not adequately powered to evaluate pervasive transcription dy-

namics at RIS with high resolution. Thus, our work adds to an increasingly complex model of transcrip-

tion-replication coordination. We propose that co-directional transcription-replication collisions at gene

TSS result in replication fork bypass, enabling ‘passive’ avoidance of DNA damage at these sites. However,

at RIS themselves, head-on pervasive transcripts over RLFS must be regulated, necessitating ‘active’ aver-

sion of intra-S phase DNA damage at these loci.
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Limitations of the study

There are certain limitations to our study. First, our observations weremade at a stringently selected subset

of RIS that represents about 10% of total RIS on the genome. These RIS show replication timing profiles

indicative of replication initiation early in S-phase (Figure 1B). Thus, our observations might not extend

to less efficient RIS loci. Indeed, increased transcription has been shown to correlate with replication

timing,23 suggesting that the HO TUs we observe at hcRIS might be specific to loci harboring highly effi-

cient RIS. Second, it is possible that the double thymidine block used to synchronize cells at the G1/S-phase

boundary led to the collapse of stalled forks into DNA breaks. It is possible that breaks at hcRIS induced

chromatin remodeling events leading to loss of transcription at these sites. However, we see a clear loss

of GRO-seq signal starting at the TSS of HO TUs, which localize across a range of distances from the hcRIS

summit (Figure 5A). This implies that transcription is being downregulated independent of events at the

emerging fork. Furthermore, we find no evidence of a p53-activated transcriptional response (data not

shown), suggesting that fork breakage is not occurring in the p53 wild-type MCF-7 cells. However, exper-

imental strategies measuring GRO-seq in cycling cells at optimized timepoints during S-phase entry would

be necessary to confirm our assumption.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Core origin coordinate file Akerman et al27 NCBI Gene Expression Omnibus (GEO): GSE128477

MCF-7 SNS-seq Martin et al21 NCBI Gene Expression Omnibus (GEO): GSE28911

MCF-7 Dnase-seq John Stamatoyannopoulos, UW ENCODE: https://doi.org/10.17989/ENCSR000EPH

MCF-7 H3K4me2 ChIP-seq Bradley Bernstein, Broad ENCODE: https://doi.org/10.17989/ENCSR875KOJ

MCF-7 H3K27ac ChIP-seq Bradley Bernstein, Broad ENCODE: https://doi.org/10.17989/ENCSR752UOD

MCF-7 Repli-seq S1 John Stamatoyannopoulos, UW ENCODE: https://doi.org/10.17989/ENCSR727ZRP

MCF-7 Repli-seq S2 John Stamatoyannopoulos, UW ENCODE: https://doi.org/10.17989/ENCSR170QBY

MCF-7 Repli-seq S3 John Stamatoyannopoulos, UW ENCODE: https://doi.org/10.17989/ENCSR404GFT

MCF-7 Repli-seq S4 John Stamatoyannopoulos, UW ENCODE: https://doi.org/10.17989/ENCSR831UBH

EJ3 Ini-seq Langley et al.20 European Nucleotide Archive (ENA): PRJEB12207

K562 ORC1 ChIP-seq Miotto et al.24 NCBI Gene Expression Omnibus (GEO): GSE70165

MCF-7 H2A.Z ChIP-seq Bradley Bernstein, Broad ENCODE: https://doi.org/10.17989/ENCSR057MWG

MCF-7 RNAP2 ChIP-seq Vishwanath Iyer, UTA ENCODE: https://doi.org/10.17989/ENCSR000DMT

MCF-7 TBP ChIP-exo Venters et al.32 NCI read archive: SRA067908

MCF-7 GRO-seq Liu et al.36 NCBI Gene Expression Omnibus (GEO): GSE94479

MCF-7 RNA-seq Liu et al.36 NCBI Gene Expression Omnibus (GEO): GSE94479

MCF-7 H3K27ac ChIP-seq Liu et al.36 NCBI Gene Expression Omnibus (GEO): GSE94479

MCF-7 NET CAGE-seq Hirabayashi et al.34 NCBI Gene Expression Omnibus (GEO): GSE118075

R-loop forming sequences Jenjaroenpun et al.37 http://rloop.bii.a-star.edu.sg/

Experimental models: Cell lines

MCF-7 ATCC HTB-22

Software and algorithms

Bedtools Quinlan and Hall44 https://bedtools.readthedocs.io/en/latest/

Samtools Li et al., 200945 http://samtools.sourceforge.net/

Tophat2 Kim et al.46 https://ccb.jhu.edu/software/tophat/index.shtml

MACS2 Zhang et al.47 https://pypi.org/project/MACS2/

Bowtie2 Langmead et al.44 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Deeptools Ramirez et al.48 https://deeptools.readthedocs.io/en/develop/

HOMER Heinz et al.49 http://homer.ucsd.edu/homer/

ROSE Whyte et al.50 http://younglab.wi.mit.edu/super_enhancer_code.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Mike Carey (mcarey@mednet.ucla.edu).
Materials availability

This study did not generate new unique reagents

Data and code availability

d This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in

the key resources table.
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d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

Data generated from theMCF-7 cell line (ATCC identifier HTB-22) was used in this study. Culture conditions

are described in Liu et al. 2017.36
METHOD DETAILS

Processing of sequencing data

All publicly available sequencing datasets used for analysis were downloaded in fastq file format from pub-

lic repositories, including input files for normalization. All datasets were mapped to the hg19 genome with

bowtie244 to generate bam alignment files. All bam files were then processed with samtools45 so that du-

plicates were removed, and low-quality reads were filtered out. MACS2 peakcall47 was then used to

generate read normalized treatment and background bedgraph files from IP and input controls respec-

tively. MACS2 bdgcmp47 was then used on normalized IP and input bedgraph files to generate bedgraph

files containing genome-wide IP/input Poisson enrichment scores. These bedgraph files were then con-

verted to bigwig files using the bedGraphtoBigWig script from ENCODE12,51 for downstream analysis us-

ing the python deeptools software suite.48
hcRIS identification

Core origin summits,27 MCF-7 SNS-seq peaks,21 and Dnase-seq peaks12 localizing within 1 kb of both an

MCF-7 H3K27ac ChIP-seq andMCF-7 H3K4me2 ChIP-seq peak were extended 1 kb in each direction using

bedtools slop.52 These extended peaks were then intersected using bedtools intersect.52 Intersected core

origin coordinates were used to represent hcRIS.
hcRIS validation

Samtools bedcov45 was used to map reads from MCF-7 replication timing datasets (Repli-seq)12 to hcRIS

regions and comparator dataset loci (SNS-seq peaks, ENCODE Dnase-seq peaks, Core origins, and

randomly selected Dnase-seq peaks). For SNS-seq peaks, ENCODE Dnase HS peaks, and random

Dnase-seq peaks, the center of each peak was extended 1 kb in each direction for mapping using bedtools

slop.52 For hcRIS and core origins, the center of all coordinate locations were taken and extended 1 kb in

each direction for mapping using bedtools slop. 4,572 random Dnase-seq peaks were selected through

using bedtools shuffle52 on the Dnase-seq peak dataset and the Linux shell head function. To quantify

enrichment at inverted-V apexes of replication timing profiles, normalized repli-seq reads were mapped

from all fractions to test regions. If a region contains at least 50% of the total reads from one fraction,

then it was marked with an s50 label for that fraction as was done previously.23
hcRIS global visualization

For heatmap and average profile generation of hcRIS on a global scale, hcRIS loci were normalized to the

same bin number representing the median region size of �750 bp and centered within a matrix that also

displayed regions 3 kb upstream and downstream of the normalized region (demarcated by a left and right

boundary, ‘LB’ and ‘RB’), divided into 50 bp bins using the python deeptools computeMatrix function.48

The matrix was then sorted by largest to smallest RIS region length using the python deeptools

plotHeatmap function.48 An SNS-seq Poisson enrichment bigwig file was then overlaid onto the matrix

via the computeMatrix and plotHeatmap functions.
hcRIS sub-setting by intragenic or intergenic status

Intragenic hcRIS were identified by using bedtools intersect to find hcRIS entirely confined within protein-

coding gene body termini as annotated from the GENCODE database.31 Intergenic hcRIS were identified

by using bedtools subtract52 to identify the remaining hcRIS. If hcRIS both overlapped gene body regions

and adjacent intergenic regions, they were categorized as ‘both’ and removed from further analysis.
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hcRIS sub-setting by TSS distance

The HOMER annotatePeaks function49 was used to determine the distance from the nearest protein-cod-

ing TSS for each hcRIS location based on the hcRIS center coordinate. hcRIS were then binned by the calcu-

lated absolute distance.

Determination of genes with upstream hcRIS

Bedtools intersect was used to find genes with 3 kilobase upstream regions that co-localize with an inter-

genic RIS. Bedtools intersect was used to filter out all genes that contained internal RIS to generate the final

gene set.

Orienting hcRIS to proximal transcription initiation events

hcRIS were uniformly aligned to their proximal NDR region using the python deeptools computeMatrix

function48 and the processed Dnase-seq bigwig file (ENCODE), with the NDR being oriented downstream

of the hcRIS region on the matrix. Poisson enrichment scores from the generated TBP ChIP-exo bigwig file

and RNAP2 ChIP-seq bigwig file, and counts per million values from stranded NET-CAGE bigwig files ori-

ented convergently relative to the hcRIS were then overlaid onto this alignedmatrix using the python deep-

tools computeMatrix and plotHeatmap functions.48 All analyses of GRO-seq signal utilize this aligned

matrix.

Head-on transcription unit (HO TU) identification

Directional NET CAGE-seq peaks34 were intersected with regions delimited by a hcRIS center and 1 kb

downstream of the hcRIS border proximal to the NDR using bedtools intersect. Minus strand NET

CAGE-seq peaks were intersected with hcRIS that formed a downstream NDR, and plus strand NET

CAGE-seq peaks were intersected with hcRIS that formed an upstream NDR. Intersected peaks were

labeled HO TU TSS, and the cognate hcRIS center point represented the HO TU terminus. Some hcRIS con-

tained multiple HO TUs due to multiple NET CAGE-seq peaks intersecting with the demarcated hcRIS

region.

GRO-seq raw data processing

Raw fastq files from36 were mapped to the hg19 genome with tophat246 to produce bam alignment files.

Duplicates and low quality reads were removed from bam files via samtools.45 Replicate bam files were

merged for downstream analysis using samtools merge.45 Merged and QC’d bam files were then con-

verted to stranded bigwig files describing mapped reads in counts per million in python deeptools using

the bamCoverage function with the filterRNAstrand option.48 To generate GRO-seq bigwig files that

described asynchronous cell populations, bam files fromG1-phase, S-phase, andM-phaseMCF-7 cell pop-

ulations were merged using samtools merge,45 and converted as previously described. To generate GRO-

seq bigwig files for G1-phase and S-phase cell populations, bam files fromG1-phase cells and S-phase cells

were processed separately.

Pervasive transcript identification

MCF-7 asynchronous GRO-seq datasets were used to perform de novo transcript discovery via HOMER

software, yielding 82,636 transcripts. Transcripts were labeled as PROMPTs if they were intergenic, within

5 kb upstream of a TSS, and were antisense to the proximal gene. This yielded 5,680 total PROMPTs. Tran-

scripts were labeled as eRNAs if their TSS overlapped with enhancer regions called by the ROSE software

with gene TSS exclusion.50 This yielded 11,564 total eRNAs. Transcripts were labeled as asTSSa if they over-

lapped with TSS plus 500 bp downstream and were divergent to gene direction. This yielded 6,269 asTSSa.

For sTSSa identification, we re-called transcripts from asynchronous GRO-seq data that was filtered to only

contain reads 20-90 bp in order to enrich for short pervasive transcripts, yielding 51,492 transcripts. Tran-

scripts were labeled as sTSSa if they overlapped with TSS plus 500 bp downstream and were in the same

direction as gene transcription. This yielded 12,276 sTSSa.

Head-on transcription unit (HO TU) pervasive transcript class association

Bedtools intersect was used to find overlap between identified HO TUs and pervasive transcripts by class.

Some HO TUs were associated with multiple classes. In these cases, the HO TU was partitioned into both

classes for downstream analysis.
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GRO-seq directional heatmap and average profile generation

To generate head-on GRO-seq heatmaps and average profiles at hcRIS, GRO-seq stranded bigwig files

were directionally mapped to hcRIS loci subset by having either an upstream accessible region or a down-

stream accessible region based on the plus strand of the genome. Stranded GRO-seq bigwig files were

mapped onto the hcRIS matrix as was previously described, using a 150 bp smoothing length.48 After map-

ping stranded bigwig files to the directionally subset hcRIS, the matrices were combined via the deeptools

computeMatrix Rbind function for visualization of directional GRO-seq signal across all hcRIS.48

To observe differences between directional GRO-seq signal at hcRIS between G1 and S-phase cell popu-

lations, G1 and S-phase GRO-seq bigwig files were generated from bam files as described above, but a

scale factor was applied based on mapped reads from an S2 Drosophila spike-in. Normalized bigwig files

could then be mapped as previously described to observe relative signal in counts per million at hcRIS. To

assess log2 fold change signal at hcRIS, deeptools bamCompare function was used with the application of

a scale factor to produce a bigwig file containing stranded log2 fold change values within 50 bp bins.48 Bins

with values of 0 were replaced with 0.1 for this analysis. These bigwig files could then be directionally map-

ped onto hcRIS matrices as previously described. The same pipeline was used for heatmap and average

profile generation at HO TUs.

Browser track visualization

Bigwig files generated as previously described were directly visualized in the web-based WashU genome

browser.53

RPKM calculations

Merged and QC’d bam files generated from fastq files from (Liu et al. 2017)36 as previously described were

converted to sam files, separated by strand, reconverted to bam files, and indexed using samtools.45 To

find HO RPKMs, samtools bedcov was used to map reads from stranded bam files directionally onto hcRIS

regions subset by location of the accessible region on the plus strand. Subsequent files containing head-on

mapped read information for each hcRIS subset were then concatenated. Mapped reads within hcRIS re-

gions were then normalized per kilobase as well as per million mapped reads to give an RPKM value. All

RPKM values were log2 transformed for distribution analysis and statistical tests. A similar workflow was

used to calculate gene RPKMs, using gene body regions separated by strand to map reads to the template

strand via samtools bedcov. For gene quartile separation, genes were filtered out if RPKM <1. Remaining

genes were then separated into quartiles based on RPKM values (Q1>Q2>Q3>Q4) for analysis. All violin

plot RPKM visualizations were generated via PRISM 9 statistical software.

RLFS identification and association with HO TUs

R-loopDB (http://rloop.bii.a-star.edu.sg/) is an online database containing coordinate files for bio-

informatically predicted R-loop forming sequences across model genomes.37 The merged RLFS coordi-

nate file for the hg19 genome was downloaded and separated by strand. To identify HO TUs that contained

RLFS in the head-on transcription template strand, bedtools intersect was used to find HO TUs that over-

lapped with the directionally appropriate stranded RLFS coordinates.

To generate an RLFS heatmap and average profile at HO TUs, a bedgraph file describing RLFS frequency

per 50 bp bin across the hg19 genome was generated via IGB. This file was converted to a bigwig file as

previously described and used as an input for python deeptools analysis.

To rank-order hcRIS by RLFS density, a bedgraph file describing RLFS frequency per 50 bp bin across the

hg19 genome was generated via IGB and converted to a bigwig file as previously described. This file was

used as an input along with hcRIS coordinates for python deeptools analysis. Output files describing RLFS

density within individual hcRIS units were rank-ordered and separated into deciles.

Differential expression analysis

Tag directories from G1 and S-phase GRO-seq replicate bam files were generated via HOMER software. A

raw read count table was then generated using the HOMER analyzeRepeats script describing the reads

mapping from these files to a designated gtf file describing genomic locations of interest. This table

was then used as an input for the HOMER getDiffExpression script, which utilizes DESeq2 to generate a
iScience 26, 105791, January 20, 2023 17
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file describing Log2 fold change and P-value between conditions at each location of interest. The resulting

file was then used as input to be processed by the bioinfokit python program to produce a volcano plot.

Predetermined thresholds for significance were less than or equal to a p value of 0.05 and a log2 fold

change of 1 or -1.
Control TU identification

Bedtools random was used to generate a bed file of random genomic locations at the median size of HO

TUs (760 bp). Genes were then filtered so that only ‘active’ genes, denoted as the 10,000 most highly ex-

pressed genes, were considered. The random loci bed file was then intersected with active gene bodies

to produce a bed file describing random HO TU sized regions within actively transcribed genes. 4,567

TUs were then randomly selected to be a representative dataset for downstream analysis.
Graphics generation

All visual graphics in manuscript were created with BioRender.com.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests

P-values generated from either RPKM, Log2 fold change, or total read distribution comparisons were calcu-

lated using the unpaired parametric T-test in Prism GraphPad. Statistical details of the experiments can be

found in the figure legends.
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