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Effects of food-borne
nanomaterials on gastrointestinal
tissues and microbiota
Hans Bouwmeester,1,2* Meike van der Zande2 and Mark A. Jepson3

Ingestion of engineered nanomaterials is inevitable due to their addition to food
and prevalence in food packaging and domestic products such as toothpaste and
sun cream. In the absence of robust dosimetry and particokinetic data, it is cur-
rently challenging to accurately assess the potential toxicity of food-borne nano-
materials. Herein, we review current understanding of gastrointestinal uptake
mechanisms, consider some data on the potential for toxicity of the most com-
monly encountered classes of food-borne nanomaterials (including TiO2, SiO2,

ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal
environment on nanoparticle properties and toxicity. Much of our current under-
standing of gastrointestinal nanotoxicology is derived from increasingly sophisti-
cated epithelial models that augment in vivo studies. In addition to considering
the direct effects of food-borne nanomaterials on gastrointestinal tissues, includ-
ing the potential role of chronic nanoparticle exposure in development of inflam-
matory diseases, we also discuss the potential for food-borne nanomaterials to
disturb the normal balance of microbiota within the gastrointestinal tract. The
latter possibility warrants close attention given the increasing awareness of the
critical role of microbiota in human health and the known impact of some food-
borne nanomaterials on bacterial viability. © 2017 The Authors. WIREs Nanomedicine and
Nanobiotechnology published by Wiley Periodicals, Inc.
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INTRODUCTION

As nanotechnology expands there is an increasing
need to assess the potential consequences of

exposure to nanomaterials. The oral route of expo-
sure to nanomaterials is an important consideration
because of their deliberate addition to food, their
widespread use in food packaging and other

domestic products, and potential for inadvertent
ingestion from environmental contamination.1 Many
(nano)materials, including silicon dioxide (SiO2), tita-
nium dioxide (TiO2), silver (Ag), and zinc oxide
(ZnO) nanoparticles (NPs) are currently added to
food,2–4 which, together with those nanomaterials in
products such as toothpaste, cosmetics, and sun
cream, have a clear potential for ingestion by a large
proportion of the population. Consideration of oral
exposure to nanomaterials also overlaps with the
inhalation route because a considerable proportion
of inhaled material reaches the gastrointestinal tract
(GIT) following clearance from the respiratory tract.
In recent years there has been much progress in our
mechanistic understanding of nanotoxicology and
increased awareness of the behavior and interaction
of nanomaterials in the GIT. Nevertheless, there is no
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clear consensus regarding the potential impact of
these materials within the GIT or the extent to which
they may be translocated to the circulation because
the exposure to nanomaterials is still poorly quanti-
fied and few studies have estimated the daily expo-
sure to nanomaterials via food.4–6

Here, we will review the routes for GIT uptake
and transport of nanomaterials. In vivo assessment
of gastrointestinal uptake and distribution of nano-
materials, including food-related studies, has con-
firmed uptake and tissue distribution,7–10 but has not
conclusively demonstrated significant risk due to low
uptake rates and uncertainties over exposure levels.

We will summarize current knowledge of the
mechanisms of toxicity of nanomaterials in the gut,
and highlight areas where information is lacking.
Clearly, a thorough assessment of specific nanomater-
ials is beyond our scope and the reader is kindly
referred to excellent recent reviews. We will include a
consideration of in vitro models and their application
for mechanistic nanotoxicology studies. The more ele-
gant studies exploit sophisticated models that seek to
mimic the complex morphology, environment, and
cellular interactions that characterize the gastrointesti-
nal epithelium. Although acute toxicity of nanomater-
ials to epithelial cells has been suggested from both
in vitro and in vivo studies there is little evidence that
this is a realistic risk due to low doses likely to be
ingested. Similarly there are few reports of causal links
between nanomaterial ingestion and gut pathology,
with the notable exception of the potential role of
TiO2 nanomaterials in development of colitis and
cancer.11–14 Concerns remain over potential chronic
effects of nanomaterials on gut mucosa or the micro-
biota resident in the gut lumen, especially because the
delicate balance between microorganisms and their
host is increasingly identified as a critical factor in gas-
trointestinal and metabolic diseases.

CONDITIONS IN
THE GASTROINTESTINAL TRACT

After nanomaterials enter the organism via the oral
route they are subjected to conditions that are very
different from those encountered via other exposure
routes.15 Perhaps most significantly, the extremely
low pH of the stomach and the high ionic strength in
the stomach and intestine will critically affect nano-
material properties,2,16–19 potentially yielding pro-
ducts with differing toxicity profiles. Further, pH
changes in the small intestine, mucus, and resident
microbiota in the GIT lumen add to the complexity

of the environment encountered by nanomaterials
within the GIT and affect their potential toxicity.

Nanomaterial Interactions With
the Gastrointestinal Environment
Physicochemical properties and aggregation of nano-
material will be affected by extreme pH and ionic shifts
encountered during gut transit, by co-ingested material
such as food matrices, and by the proteins, mucus, and
bile acids secreted within the gut.20 Attempts to model
the influence of the gut environment on nanomaterials
include the use of an in vitro digestion model to assess
the fate of 60-nm silver nanomaterials, and nanometer-
sized silica in the gut.2,16 These studies showed that the
GIT environment as well as the presence and composi-
tion of a food matrix affect the nanomaterial properties
during transit before it is available for uptake in the
small intestine.21,22

Nanomaterial Interactions
With the Intestinal Microbiome
One underexplored area of relevance is the potential
effect of nanomaterials on the normal bacterial micro-
flora, which is now known to play key roles in GIT
development and regulation of inflammation.23,24 As
reviewed by Fröhlich and Fröhlich,25 it is important to
realize the cellular differences between eukaryotic and
prokaryotic cells. Bacteria lack protective membranes
around their DNA (as they do not have a nucleus) and
lack specific active uptake mechanisms, such as endo-
cytosis as present in mammalian cells. In addition, they
possess a cell wall that might pose a barrier for nano-
materials. Thus, for nanomaterials to cause an effect to
bacteria, the cell wall needs to be destroyed. Many of
the antimicrobial effects of nanomaterials therefore
have been attributed to ions dissociated from nanoma-
terials.25 A limited number of studies on the interaction
of nanomaterials with the microbiome is available,
most of them in rodents. Some case studies will be
highlighted here, concluded by observed trends and
some experimental considerations. In vitro studies
employing single bacterial strains were not included.

In mice, orally exposed to 55-nm Ag nanoma-
terials (0, 46, 460, or 4600 ppb) for 28 days,26 no
overall toxicity was recorded. However, the exposure
disturbed bacterial evenness in the colon, a condition
that has often been related to pathological conditions.
Ag NPs increased the ratio between Firmicutes and
Bacteroidetes phyla. Strikingly no effects were
observed upon exposure to aged sulfated Ag nanoma-
terials. The authors speculated that the changes in
corona, rapid gastric dissolution, and subsequent
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precipitation as AgCl and Ag2S
16,27 might affect the

antimicrobial effect. Comparable effects were found in
ileal samples following 13-week exposure to Ag NPs
(20 and 110 nm with Polyvinylpyrrolidone (PVP) and
citrate coatings at 10 mg/kg body weight/day).28 How-
ever, in an earlier study using the same materials and dos-
ing for 28 days,29 no effects of Ag NPs on the intestinal
cecal microbiota were reported. This disparity may reflect
differences in microbiota within the GIT and highlight
the importance of fecal sampling area in such studies.
Chitosan nanomaterials loaded with copper sulfate orally
exposed to rats for 21 days affected the cecal microbiota
composition and increased butyrate production. Butyrate
serves as a key energy source30 and as a critical mediator
in inflammatory responses in intestinal cells.31,32 A 35-
day study in mice, orally exposed to particulate matter
(PM10) at 10–13 mg/g/day per mouse,33 showed an
altered microbial composition in the colon, an increased
proinflammatory cytokine expression, and decreased
butyrate concentrations.33 Lastly, human microxbial
donor extracts were incubated with CeO2, TiO2, and
ZnO nanomaterials for five subsequent days in a model
colon reactor.34 While this study did not monitor the
changes in the ecosystem of microbiota, the authors
reported significant phenotypic changes including in the
production of extracellular polymeric substance and
short-chain fatty acids upon incubation with the nano-
materials (most prominently for TiO2) and a decreased
butyrate production upon exposure to CeO2 NPs.34

In summary, nanomaterials can affect the
microbial composition and its butyrate homeostasis,
but the underlying mechanisms and the toxicological
implications are still unclear. It is important to note
that there are differences between the human and
rodent microbiome although detailed comparison is
not yet possible in the absence of full annotation of
microbiome species in gene databases. Furthermore,
nanomaterial–microbiome interactions appear to be
sampling area dependent. Generally, there is a bias to
examine the microbial composition in the large intes-
tine, whereas the composition can be very different
in another area. For instance, the microbial composi-
tion in the human small intestine was reported to be
far less complex than that of the large intestine.35

Finally, a crucial aspect for in vitro studies is to take
care to incorporate the changing physiochemical
properties of nanomaterials (i.e., aging of nanomater-
ials) during transit of the GIT in the study design.

NANOMATERIAL UPTAKE IN
THE GASTROINTESTINAL TRACT

Mechanistic information regarding nanomaterial
uptake routes in the GIT has been almost exclusively

derived from cell culture models that are both ame-
nable to experimental manipulation and more readily
interpretable. A variety of in vitro GIT models have
been developed and used for nanomaterial uptake
studies.10,36

The cellular composition of the GIT epithelium
is a key determinant of nanomaterial interactions.
The small intestine is mostly lined by enterocytes,
columnar epithelial cells with a dense microvillus
brush border, and sealed by tight junctions (TJs) that
prevent passage of most materials. Interspersed
between enterocytes are goblet cells that secrete
mucus into the gut lumen and thereby provide an
additional barrier to diffusion of particulates toward
the epithelium.37 The extent to which mucus blocks
particle diffusion depends on particle size and surface
properties, with smaller particles penetrating more
and positively charged particles being mucoadhe-
sive.37 The apical membrane of enterocytes is also
covered with a complex glycocalyx, composed of gly-
cosylated proteins within the membrane, which
forms a size-selective barrier to the interaction of par-
ticulate material with surface molecules.38,39 The
ability of the glycocalyx to block nanoparticle trans-
location is determined by its thickness, density, nega-
tive charge, and renewal characteristics.40–42 Peyer’s
patches and other gut-associated lymphoid tissues
accumulate particulate material due to the presence
of antigen-sampling M cells at these sites, which
exhibit a remarkable capacity to transport material,
including proteins, inert particles, viruses, and bacte-
ria, and deliver them to the underlying lymphoid
cells.43,44

As an in vitro epithelial barrier model, fully dif-
ferentiated Caco-2 cells (human epithelial colorectal
adenocarcinoma cells) are commonly used. It has
been reported that diverse nanomaterials, including
TiO2, SiO2, CeO2, and Ag NPs, are transported
across this epithelium,20,45–50 albeit sometimes negli-
gible for TiO2.

51 Interestingly, the in vitro uptake in
differentiated Caco-2 cells of 5-nm nano Fe(III) (iron
hydroxide adipate tartrate) nanomaterials correlated
well with human absorption.52

There is no clear consensus as to which uptake
route—transcellular or paracellular—is more impor-
tant and this almost certainly depends on the specific
properties of individual nanomaterials. As epithelial
cells form a tight dense monolayer, it is often
assumed that transcellular routes predominate.
Experiments with cultured GIT epithelial cells47,53

and in vivo mouse studies54 have demonstrated the
capacity of enterocytes to internalize nanomaterials.
It is likely that particles in the nanosize range are
internalized through clathrin- and/or caveoli-
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dependent endocytosis, which operates in polarized
epithelia,54,55 while uptake of larger particles
(>100 nm) occurs mainly by phagocytosis and micro-
pinocytosis, which do not take place to a significant
extent in fully differentiated GIT epithelia (with the
exception of M cells).

The best characterized route for transcellular
particle translocation is that through specialized
antigen-transporting M cells in Peyer’s patches and
other lymphoid tissues in the GIT. M cells are known
to transport a broad range of particulate materials
including inert particles43,56,57 and pathogens.44,58

Recent work shows that the presence of M cells,
induced by Raji cells, in a Caco-2 cell model
increased the translocation of solid lipid nanoparti-
cles (ranging in size from 50 to 70 nm with different
surface modifications).59 However, transport through
M cells does not necessarily mean that the nanoma-
terials reach the bloodstream as M cells are closely
associated with immune cells. A study describes that
orally administered glucan and poly(lactic-co-glycolic
acid) NPs in mice were transported through M cells
and subsequently endocytosed by dendritic cells
(DCs) in the Peyer’s patches, thereby not reaching
the bloodstream.60 The close connection to the
immune system also indicates that the intestinal
immune homeostasis may be influenced by nanoma-
terials. One study describes spontaneous formation
of amorphous magnesium-substituted calcium phos-
phate nanoparticles from calcium and phosphate ions
that are naturally secreted into the lumen of the distal
small intestine. These particles trap soluble macro-
molecules, such as bacterial peptidoglycan and orally
fed protein antigens, and enter the Peyer’s patches
via M cells.61

Despite their well-established transcytotic
capacity, M cells are scarce and so the less efficient
routes across the bulk of the GIT epithelium may be
quantitatively more important for nanomaterial
uptake. Indeed, significant uptake of particulate
material has been reported in rat GIT, with no pref-
erence for Peyer’s patches compared with villi.37,62

Earlier studies reported that while larger particles are
preferentially taken up by rat Peyer’s patches, uptake
by normal villi was significant and became more so
as particle sizes decreased to 100 nm.63,64 These data
suggest that nanosized particles may access addi-
tional uptake routes to those available for larger par-
ticles and support the concept that lower efficiency of
nanomaterial uptake in villus epithelium might be
offset by its vastly greater surface area compared
with the specialized M cells.

TJs between GIT epithelial cells limit paracellu-
lar transport and are essential for normal barrier and

transport functions. Nevertheless, some studies have
reported that nanomaterials of 1–2 nm might pene-
trate TJs to access the paracellular route across the
epithelial barrier.9 Furthermore, polycationic mole-
cules, which can trigger reversible opening of TJs,65

are being investigated for their potential to increase
absorption of particulate delivery vehicles.66 Other
studies have documented transient opening of TJs of
polarized Caco-2 cell layers by polymer-coated gold
nanoparticles of 5–20 nm diameter with varying sur-
face charge67 and by nano-sized insulin carriers
formed from amine-modified polyesters.68 Dendri-
mers, which are <10-nm nanomaterials with poten-
tial as drug carriers,69 are transported across Caco-2
cell layers with concomitant loss of transepithelial
electrical resistance, suggesting that paracellular
transport predominates.70

Therefore, except when nanomaterials are small
enough or have surface properties that increase TJ
permeability, paracellular transport is probably not a
major route for nanomaterial penetration of the
healthy GIT. However, there will not be such a strict
limitation on paracellular transport in areas where the
epithelium is damaged, during normal cell turnover at
villus tips and in pathological states where GIT trans-
location may be enhanced. For example, it is well
known that bacterial translocation is enhanced by
conditions such as trauma, inflammation, stroke, and
chronic alcohol use.71,72 This translocation is likely to
be mirrored by increased uptake of inert material, a
concept supported by in vitro studies demonstrating
enhanced penetration of 2-μm polystyrene particles
across cultured Caco-2 cells following alcohol treat-
ment or irradiation, which enhance TJ leakage.73,74

In addition to the now well-established use of
polarized, co-culture, and three-dimensional
(3D) epithelial models, recent advances in miniaturi-
zation and microfluidics have resulted in develop-
ment of organ-on-a-chip models.75–78 Such devices
enable precise control of the cell microenvironment
(e.g., physical and chemical parameters) and dynamic
culture conditions.79 For example, Caco-2 cells
grown in a gut-on-a-chip model integrating peristaltic
motion with dual flow to mimic both lumen and
plasma exhibit features more closely resembling
in vivo GIT, including mucus production and devel-
opment of microvilli.80

NANOMATERIAL UPTAKE
FOLLOWING INGESTION BY HUMANS

Human volunteers (n = 9) were orally exposed to
5 mg/kg body weight (315–620 mg per person) TiO2
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particles (10, 70, and 1800 nm) in a single dose.
There were no indications of system uptake as indi-
cated by urine measurements 72 h postexposure. In
addition, no values outside clinical ranges (whole
blood erythrocytes) were observed.81 However, in a
comparable study where seven human volunteers
ingested 100 mg food-grade TiO2 NPs (mean size
260 nm), TiO2 was observed in blood 2 h after
administration, which peaked at 6 h following inges-
tion.82 This study supported earlier findings where
blood samples contained increased levels of TiO2 after
ingestion of 160- and 380-nm TiO2 NPs.83 The pres-
ence of reflective particles in blood was interpreted as
evidence of the presence of TiO2 particles, but this
was not confirmed by direct analysis of particle com-
position, for example, by single particle Inductively
coupled plasma mass spectrometry (ICPMS).

EFFECTS OF NANOMATERIALS ON
GASTROINTESTINAL EPITHELIUM

It has frequently been noted that there is a relative
paucity of data on the potential toxicity of food-
borne nanomaterials, which is at least in part due to
shortcomings of in vitro models, limited information
about exposure levels, and the complexity of the GIT
environment.84,85 There is accumulating evidence of
(systemic) toxicity of metal (oxide) nanomaterials
(e.g., copper, silver, silica, and titanium) in rodents
following oral administration.86–89 It is likely that
ion release triggered by low gastric pH contributes to
the toxicity of Cu and Ag NPs.87–90 As discussed
above, pH changes encountered during gastrointesti-
nal digestion not only affect both stability and disper-
sal of nanomaterials, but also influence local
toxicity.91,92 This possibility has been investigated by
mimicking the effects of gastric fluid in vitro which
has, for example, revealed that acid-mediated release
of cadmium ions from CdSe quantum dots exacer-
bates their toxicity in GIT cells.93

In addition to the effects on nanomaterials of
intrinsic gastrointestinal environment it is also impor-
tant to consider the influence of food matrix on the
physicochemical properties of nanomaterials and
their potential toxicity. While most in vitro and
in vivo GIT exposure studies are simplified using
standardized cell culture media or animal feeds, in
reality the exposure is complex, with the intestinal
epithelium being exposed to combinations of food
ingredients and nanomaterials. Some studies are
emerging that explore these potential interactions.
Co-exposure of Ag nanomaterial (and Ag ions) with
quercetin (a flavonol with antioxidant properties)

suggested a reduced cytotoxicity and oxidative stress
when compared with Ag NP exposure only.93

The well-documented inflammatory responses
induced by nanomaterials in airways raise concern
that nanomaterials are potential risk factors in
inflammatory bowel disease (IBD). It is known that
human Peyer’s patches accumulate pigmented mate-
rial, including TiO2, from the gut lumen and that
similar material is present in inflammatory aggregates
of Crohn’s disease patients.94 The hypothesis that
particulates, such as TiO2, that are regularly ingested
from toothpaste, etc. might play a role in the patho-
genesis of IBD and related disorders95,96 has recently
been supported by experimental evidence. Adminis-
tration of TiO2 NPs to rodents has been shown to
induce inflammation in the small intestine,11 exacer-
bate colitis,12 promote colitis-associated tumors,13

and induce colonic inflammation and preneoplastic
lesions.14 These animal studies used high doses of
TiO2 NPs (10–100 mg/kg/day) which are far in
excess of the recently published estimates of average
intake levels in the Dutch population of 0.55 μg/kg/
day (adult) and 2.16 μg/kg/day (infant) and also
greater than estimates of total TiO2 intake <1 mg/kg/
day.6 Thus, further work is needed to reevaluate
potential toxicity using realistic and chronic doses. It
is also important to consider that both IBD and can-
cer are multifactorial, with some individuals being
genetically predisposed to development of disease
and/or exposed to varying levels of additional risk
factors. This, together with the variable and chronic
nature of intake of particulates adds to the challenge
of risk assessment of nanoparticle ingestion.97

Nanomaterial toxicity is commonly investigated
in vitro in undifferentiated Caco-2 cells and less often
in fully differentiated Caco-2 cells. The latter better
reflect the native GIT and are generally less sensitive
in showing cytotoxicity51 or in producing cytokines
in response to exogenous materials.98 Nevertheless,
recent studies have reported adverse responses to Ag
NPs21,99–101 and ZnO NPs98 in differentiated Caco-2
cells although others have attributed the effects of Ag
NPs in differentiated Caco-2 cells, including the
Caco-2/M cell co-culture model, to Ag ions.102

Clearly there is a need to study the effects of
prolonged nanomaterial exposure in vitro. Recently,
some reports have been published claiming to have
studied this. However, a study design where multiple
generations of Caco-2 cells are exposed to nanoma-
terials cannot be used sensibly for this, as this does
not reflect the cell renewal at the intestinal epithelium
in vivo. For this, novel models need to be developed,
intestinal organoids, containing stem cells, might be
one of the most promising in vitro models. Also the
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effects of nanomaterial exposure on models that
reflect inflammatory intestinal epithelial disorders are
interesting to explore. For this, human macrophages
(THP-1) and human DCs (MUTZ-3) were embedded
in a collagen scaffold and seeded on the apical side
of transwell inserts. Caco-2 cells were seeded and dif-
ferentiated on top of this layer, forming a 3D model
of the intestinal mucosa. Toxicity of nanomaterials
(NM101 TiO2, NM300 Ag, Au) was evaluated in
noninflamed and inflamed co-cultures, and also com-
pared to noninflamed Caco-2 monocultures. The
inflamed co-cultures released higher amounts of IL-8
compared with Caco-2 monocultures. However, the
cytotoxicity of Ag NPs was higher in Caco-2 mono-
cultures than in 3D co-cultures. Ag NPs were found
to be more toxic than TiO2 or Au NPs.103 Further-
more, intestinal organoids also seem very promising
for the development of diseased gut models, but such
models are not established yet.104

DOSIMETRY, SEDIMENTATION,
AND KINETICS

Extrapolation of in vitro studies to the in vivo GIT
must be approached with caution because the true
GIT is likely less responsive, but on the other hand
prone to specific damage mechanisms that cannot be
modeled in vitro. Meaningful interpretation and com-
parison of the results obtained using different in vitro
experiments and extrapolation to in vivo data require
reliable characterization of the nanomaterials and
their aggregates, as well as matrix-based influences on
nanomaterials. This information is required to derive
the nanomaterial dose in the testing system. For solu-
ble chemicals it is reasonable to assume that the admi-
nistered dose (or nominal media concentration) is
proportional to the cellular dose, and thus is a good
measure of the dose at the target site.105 However, the
definition of a nanomaterial dose in an in vitro system
is far more complicated. Nanomaterials can settle, dif-
fuse, and aggregate differentially, which is determined
by the properties of the nanomaterial itself (e.g., size,
density, and surface chemistry) as well as by the solu-
tion (e.g., viscosity, density, and presence of proteins).
Likewise, nanomaterial dosimetry is affected not only
by the amount and time but also by the nanomaterial
characteristics and the environment.105

In their 2007 review, Teeguarden et al.105 intro-
duced the term particokinetics to incorporate pro-
cesses that affect the nanomaterial target dose:
processes that affect diffusion, gravitational settling,
and agglomeration. Diffusional transport is less
important for particulates with sizes above ~100 nm,

while gravitational settling increases with particle
density and the square of particle diameter. Based on
experimental work with polystyrene, iron oxide, and
silica nanomaterials, a computational in vitro sedi-
mentation, diffusion, and dosimetry model was
developed and refined.106–108 In these models the
accurate determination of the effective density is cru-
cial.109 They convincingly show that nanotoxicologi-
cal studies that only rely on nominal media
concentrations can result in erroneous conclusions
on potency of nanomaterials, as differences in the
extent and rate of transport of nanomaterials are
unaccounted for.105 This possibility has been evalu-
ated in subsequent experimental studies. However,
Liu et al. compared 24 metal (oxide) nanomaterials,
ranging in hydrodynamic sizes from 150 to 465 nm
and effective densities from 1.3 to 3.2 g/mL, and con-
cluded that the toxicity ranking for these metal
(oxide) nanomaterials was similar using either the
nominal media concentration or the calculated deliv-
ered dose.110 Likely, only for nanomaterials with
smaller effective densities (i.e., closer to the cell cul-
ture medium) sedimentation is a crucial aspect to be
considered. In contrast, Pal et al. studied seven low
aspect ratio nanomaterials (effective densities from
1.0 to 2.3 g/mL; hydrodynamic sizes ranging from
145 to 464 nm) and showed that the in vitro cell
death slopes expressed as deposited dose correlated
better to in vivo lung inflammation than the same
data expressed as administered dose.111

CONCLUSIONS

Widespread exposure to nanomaterials via ingestion
is an inevitable consequence of the expanding use of
nanomaterials in food and other consumer products
and is a cause for concern. However, the extent of
ingestion and the potential risks this exposure
imposes remains poorly defined. It is now well estab-
lished that the physicochemical characteristics of
nanomaterials are heavily influenced by their local
microenvironment. Especially for the oral exposure
route the influence of gastrointestinal conditions on
nanomaterials needs to be considered.

Several in vitro models of the gastrointestinal
epithelium have been developed, ranging from mono-
layers of a single cell type (often Caco-2 cells) to
more complex co-cultures that, for example, incorpo-
rate M cells and mucus-secreting cells. While these
models aim to reproduce the complex biology of the
intestinal epithelium, the design and composition of
the nanomaterial exposure conditions also needs
refinement to better reflect the real-life human oral
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exposure. In some of the more recent studies cells
have not only been exposed to pristine nanomaterials
but also to so-called aged nanomaterials. These aged
nanomaterials have been either incubated in the gas-
trointestinal lumen or undergone artificial aging pro-
cedures. This often results in multielemental
composition of the nanomaterials (i.e., AgS) that
might have a different toxic potency compared with
the pristine nanomaterial.

Currently, reported in vitro data suggest limited
cellular uptake and epithelial translocation. How-
ever, most studies do not take adequate consideration
of the dosimetry (and sedimentation) in their model
system. Computational models (supported by experi-
mental data) indicate that nanomaterial size and
effective density strongly determine the nanomaterial
availability for cellular uptake in static conditions. If
the observed effects or uptake (rates) are only com-
pared to the administered dose, erroneous conclu-
sions might be reached. It is thus highly
recommended to take the dosimetry, that is, the dose
at the target site into consideration when interpreting
the results. The recent innovations toward microflui-
dic experimental models might also improve the rele-
vance of the exposure conditions. These experimental
innovations need to be embedded in particokinetic
and dynamic modeling of nanomaterials to extrapo-
late data from in vitro to in vivo.

Only recently have the potential effects of nano-
materials on the intestinal microbiota been studied.

The limited data suggest effects of the nanomaterial
(or dissociated ions) on the microbial ecosystem itself
and also on the release of short-chain fatty acids that
are known to be important in the interactions with
the intestinal epithelium. Clearly the nanomaterial–
intestinal microbiota–intestinal epithelium interac-
tions require further studies. Interestingly, some stud-
ies are appearing where the combination effects of
nanomaterials and food ingredients are being
explored, not only on the fate and physicochemical
properties of the nanomaterials but also in terms of
synergistic effects on the intestinal epithelium. There
are indications that nanomaterials can induce, or
interfere with, immune responses, but presently lim-
ited data are available. This topic closely correlates
to the influence of nanomaterials on diseased states
(e.g., inflamed intestine). In order to further investi-
gate this there is a clear need for sophisticated (dis-
ease) models.

Together, the studies carried out to date on
nanomaterials suggest that GIT epithelia may be
prone to damage that is not always readily modeled
in vitro, at least without the relatively laborious and
expensive use of fully differentiated GIT cell models.
However, the relative paucity of data regarding tox-
icity mechanisms and considerable uncertainty
regarding realistic exposure levels and behavior of
nanomaterials in the complex GIT environment make
it challenging so far to predict the likely health effects
of food-borne nanomaterials.
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