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Cancer is a life-threatening concern worldwide. Sensitive and early-stage diagnostics of
different cancer types can make it possible for patients to get through the best available
treatment options to combat this menace. Among several new detection methods,
aptamer-based biosensors (aptasensors) have recently shown promising results in
terms of sensitivity, identification, or detection of either cancerous cells or the
associated biomarkers. In this mini-review, we have summarized the most recent
(2016–2020) developments in different approaches belonging to optical aptasensor
technologies being widely employed for their simple operation, sensitivity, and early
cancer diagnostics. Finally, we shed some light on limitations, advantages, and current
challenges of aptasensors in clinical diagnostics, and we elaborated on some
future perspectives.
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BACKGROUND AND INTRODUCTION

Cancer is one of the main life-threatening concerns both in developed and developing countries
around the world. Stomach, breast, liver, colorectal, and lung cancer are the most common cancer
types causing a high mortality rate every year (1). Abnormal, uncontrolled cell division, apoptotic
resistance, and accumulation of increasing genetic mutations are the leading causes of tumor
development. Specific proteins are expressed on the surface of cancerous cells, which are not
expressed by healthy normal cells or sometimes expressed in smaller amounts. These surface
proteins are known as cancer biomarkers and are used to detect cancer (2). Since cancer is a deadly
disease, sensitive and early-stage diagnostics can make it possible for the patients to get through the
best available treatment options to combat this menace for longer survival (3). Currently, different
cancer diagnostic tests are available including mammography, colonoscopy, cervical cytology,
prostate-specific antigen, immunohistochemistry, molecular detection, cancer imaging (IHC), and
many more, and all have some associated limitations that may produce unauthentic results (4, 5).
Bing et al. screened a novel BG2 (G-rich) aptamer by systematic evolution of ligands by exponential
enrichment (cell-SELEX). Their ssDNA aptamer as molecular probe could isolate alkaline
phosphatase heterodimers (from cell lysate) present on the surface of various cancer cells
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(both in vivo and in vitro) (6). In another report, Bing et al.
introduced a wy-5a aptamer that specifically binds prion proteins
(reference markers) on tumor cells and tissues. They
demonstrated that it could serve well as a probe in diagnostics
and therapy of breast and prostate cancers (7). Consequently,
there was an increasing demand to develop a precise, cost-
effective, sensitive, and early-stage cancer detection method for
various cancer types to prevent malignancies.

Oligonucleotide aptamers are single-stranded, short, nucleic
acid (DNA or RNA) sequences with an ability to rearrange into a
three-dimensional unique structure for highly specific binding to
their particular targets ranging from proteins (8, 9) to even whole
cells (10). A variety of aptamers in the last two decades have been
screened against different cancer biomarker proteins overexpressed
on the tumor surface. Some high-affinity aptamers specific for
certain cancer biomarkers are used in early cancer diagnostic
sensing platforms (11). The targets are purified for further
detection by aptamers, which are used as ligands making targets
a potential new biomarker. The binding of aptamers to unknown
molecular signatures of a particular cell leads to the discovery of
potential biomarkers (12). Aptamers as biorecognition elements in
biosensors have shaped a new kind of sensing technology known as
aptasensors (13) and exhibit an exceptional recognition ability
against their particular target types (14). They can be used in a
variety of applications such as the detection of chemicals, disease
markers, and foodborne pathogens (15). Aptasensors are classified
based on their signal transduction modalities including electrical,
micromechanical, mass-sensitive, and optical aptasensors (16).
Numerous optical aptasensor types have been developed to bind
and identify different cancer biomarkers or cells. In this mini-
review, we have focused on recent advances in different types of
optical aptasensors being used for early detection of cancer.
OPTICAL APTASENSORS IN EARLY
CANCER DETECTION

Optical methods are advantageous because they show a quick
response, simple operation, and high sensitivity. Optical
aptasensors involve aptamers as a biorecognition element along
with various optical approaches as signal transduction element (17).
Optical aptasensors can be classified based on their luminescence
changes and light absorption as a result of interaction with different
analytes. These aptasensors usually have minute reagent
requirements, cost-effectiveness, simple labeling, and swift
procedures (18). Optical aptasensors are categorized based on
different optical detection methods used to diagnose different
cancer types at early stages and are discussed below. Aptamer
name, their particular target cancer biomarkers/cells, and the limit
of detection/sensitivity have been summarized in Table 1 for all
(2016–2020) reports discussed in this mini-review.

Fluorescence-Based Optical Aptasensors
Fluorescence is an optical approach commonly employed to
construct aptasensors for their low costs, high sensitivity,
operation simplicity, and high efficiency (54). Lei et al.
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introduced a “nanodoctor” known as “smart split aptamer-
based activatable theranostic probe (SATP)” for in vivo cancer
imaging that not only can activate fluorescence signals as a result
of interaction with its analyte but also releases the drug (50). A
graphene oxide-based label-free aptasensor for quantitative
diagnostics of rare CCRF-CEM cells was employed by Xiao
et al. CTCESA-based (cell-triggered cyclic enzymatic signal
amplification) fluorescent aptasensors show a better selectivity
and sensitivity for clinical and preclinical cancer detection in
comparison to normal fluorescence-based aptasensors (32).
Hamd-Ghadareh et al. constructed an antibody-ssDNA aptamer-
based fluorescence sandwich-type ultrasensitive biosensor for
CA125 early detection (22). A fluorescent “turn on” aptasensor
based on fluorophore-labeled protein-aptamers and MoS2
(molybdenum disulfide) nanosheets was assembled by Zhao et al.
for a highly sensitive and rapid CEA protein detection (27). In
addition, Lai et al., Tan et al., and many others have recently
published articles based on fluorescent aptasensors (51, 52).
Another label-free, versatile “turn on” fluorescent aptasensor for
HER2 early detection was fabricated by Zhang et al. (33). Exosomes
for gastric cancer detection can be efficiently identified by a method
designed by Huang et al. (37). A multiplex, competitive aptasensor
based on fluorescent nanoparticles count was proposed by Pei et al.
to detect various cancer biomarkers (30). Li et al. designed a
platform not only efficient in exosomal protein profiling but also
filling the technological innovation gap to facilitate the exosomal
detection assays and shed light on methods for early detection of
cancer such as liquid biopsy (47). An aptamer dependent
fluorescence polarization technique was established by Zhang
et al. that allows direct quantification of exosomes in human
plasma without separation. It minimizes the operation time by
simplifying the quantification without losing exosomes from the
sample during separation (55).

Chemiluminescence Based Optical
Aptasensors
A phenomenon where emitted light from a substance is not because
of heat is called luminescence, which can be categorized based on
the energy (trigger) sources into electrochemiluminescence (ECL)
and chemiluminescence (CL). Both are widely used in the
development of aptasensors employed in cancer biomarkers
detection (56). Several CL aptasensors for early cancer detection
have already been introduced (57). It is considered the most
sensitive optical approach because of excellent results (58). Jie
and Jie described a quantum dots (QDs) nanocluster based ECL
signal probe with a great potential for early cancer diagnosis in
clinical samples (34). Wang et al. designed a ratiometric dual-
signaling electrochemiluminescence aptasensor exhibiting good
reproducibility, high selectivity, and stability against their target
cancer cells among non-target cancer cells (35). A simple, all in one,
cost-effective, easy to operate, and portable medical platform to be
used in hospitals and homes was designed by Khang et al. for early-
stage breast cancer diagnostics (31). Another competitive, novel
GO@AuNRs-GOD-SA nanoprobe based ECL aptasensor for PSA
detection was demonstrated by Cao et al. (44). It is considered to be
an excellent advancement for the detection of trace-level disease
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biomarkers. Kim et al. fabricated a fast biosensor, based on a dual
aptamer system connected by a 5 adenine linker, to be used for
rapid and accurate PSA quantification (46).

Surface Plasmon Resonance (SPR) Based
Aptasensors
Surface plasmon resonance (SPR) based biosensing is advantageous
because of label-free and kinetic studies exploring properties that
are not offered by many other systems, giving direct and real-time
detection of targets. SPR based assays are widely used to detect
several types of cancer cells and biomarkers due to their high
sensitivity (59). Li et al. proposed that MUC-1 aptamer (Mucin 1
protein) functionalized gold nanorods (AuNRs) have the ability to
specially recognize MCF-7 cells via specific interactions that can be
further processed by their unique localized surface plasmon
resonance (LSPR) spectra. Their biosensor can be employed to
detect human breast cancer at early stages (38). Electrochemical and
SPR assays were combined by Guo et al. to examine the detection
kinetics, which revealed significant outcomes for CEA detection by
Frontiers in Oncology | www.frontiersin.org 3
using their developed aptasensor based on the AgNCs@Apt@UiO-
66 nanocomposite. Their SPR aptasensor is considered to have
good performance, regenerate ability, selectivity, acceptable
reproducibility, high sensitivity, and stability (28). A bi-functional
(electrochemical-SPR) aptasensor with exceptional electrochemical
action of MoS2QDs@g-C3N4 nanosheets and good SPR enactment
of CS-AuNPs was combined by Duan et al. to make a 2D
MoS2QDs@g-C3N4@CS-AuNPs nanocomposite. The authors
expected satisfactory results of their sensor for the detection of
cancer markers in clinical applications (43). A highly effective and
sensitive SPR aptasensor for exosomal detection was invented by
Wang et al., which is based on dual AuNPs assisted signal
amplification. The approach finds promising practical
applications in clinical and biological studies (23). Loyez et al.
devised multiple narrowband resonances (near-infrared wavelength
range), an all-fiber SPR aptasensor that takes five minutes for the
detection of metastatic breast cancer cells. Supplementary addition
of functionalized AuNPs enhances the 2-fold performance of the
aptasensor (36).
TABLE 1 | Aptasensors reported for early cancer detection.

Aptamer Target/Analyte LOD/sensitivity Strategy Reference

AS1411 MCF-7 10 cells col (19)
AS1411, and MUC1 MCF-7 5 cells SERS (20)
BG2 IAP-PLAP heterodimer proteins on CTRMs 92% col (21)
CDs CA125 marker and OVCAR-3 cells 5 × 10-7 ng/mL, 400 cells/mL F (22)
CD63 MCF-7 cells 5 × 103 exo/mL SPR (23)
CD63 MCF-7 cells 13.52 × 108 part/mL col (24)
CD63 MCF-7 cells 5.2×108 part/mL col (25)
CD63, HER2, integrin avb6 CD63 cells 7.7 × 103 part/mL col (26)
CEA CEA biomarker 0.034ng/mL F (27)
CEA CEA biomarker 0.56 pM, 18.8pM ECL-SPR (28)
CEA, CD631, H2 and PSMA SKBR3, T84 and LNCaP biomarker 32×103exo/mL for SKBR3, 73 exo ×103/mL

for T84, and 203×103 exo/mL for LNCaP
SERS (29)

CEA, PSA, Thr CEA biomarker —— F (30)
CH-1, CH-2 CEA biomarker 0.58 ng/mL CL (31)
HAP CCRF-CEM cells 25 cells F (32)
HApt HER2 biomarker 0.0904 fM F (33)
H1, H2 Ramos cells 230 cells/mL ECL (34)
HL-60 cell HL-60 cancer cells 150 cells/mL ECL (35)
mamA MCF-7 cells 49 cell/mL SPR (36)
MUC-1 Gastric cancer exo 4.27 × 104/mL F (37)
MUC-1 MCF-7 cells 100 cells/mL SPR (38)
MUC1 MUC1 biomarker 0.1 U/mL SERS-col (39)
P1 (EpCAM) CTCs (on MCF-7 cells) 10 cells col (40)
PSA PSA biomarker —— PEC (41)
PSA PSA biomarker 0.002ng/mL LS (42)
PSA PSA biomarker 0.00071 ng/mL, 0.77ng/mL ECL-SPR (43)
PSA PSA biomarker 0.00017ng/mL ECL (44)
PSA, polyA PSA biomarker 0.02ng/mL col (45)
PSA, Hemin PSA biomarker 0.1 ng/mL CL (46)
PSMA, HER2 HER2 biomarker 92.31% F (47)
PSMA, HER2, and AFP LNCaP, SKBR3, and HepG2 biomarkers 26×103part/mL for (LNCaP), 72×103 part/mL

(SKBR3), 35×103part/mL (HepG2)
SERS (48)

Sgc8c PTK-7 biomarker on Hela cells —— SERS-F (49)
Sgc8c CEM cells (leukemia) 46 cells F (50)
Sgc8c CCRF-CEM cells 10 cells/mL F (51)
TLS11a HepG2 cells —— F (52)
VEGF VEGF165 biomarker 0.01 ng/mL col (53)
February 2021 |
 Volume 11 | Art
F, Fluorescence; CL, chemiluminescence; ECL, electrochemiluminescence; SPR, surface plasmon resonance; CTCs, circulating tumor cells; SERS, surface-enhanced Raman scattering;
col, colorimetric; part, particles; Exo, exosomes; CTRMs, circulating tumor-related materials; PEC, photoelectrochemical; LS, light scattering. All units in LOD/sensitivity column are
converted to make it more understandable and comparable.
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Surface-Enhanced Raman Scattering
(SERS)-Based Aptasensors
SERS spectroscopy has emerged as a promising tool for
characterization in the field of nanoscience, i.e., widely
investigated in cancer-related applications (60–62). The major
advantages of SERS imaging are the mapping of a sample with a
high spatial resolution (< 0.5 microns in the visible range) and the
capability of multiplexed analysis (63). The ultrasensitive
vibrational spectroscopic technique SERS can be used to detect
several target molecules in a single experiment (60, 64). Ning et al.
synthesized the aptamer-based SERS detection probes based on
gold–silver–silver core-shell–shell nanotrepangs (GSSNTs)
nanotags and magnetic beads for simultaneous detection of
multiple cancer-related exosomes: the biomarkers (PSMA, Her2,
and AFP proteins) for the prostate cancer cell line (LNCaP), breast
cancer cell line (SKBR3), and hepatocellular cancer cell line
(HepG2) (48). For the simultaneous detection of multiple kinds
of exosomes (SKBR3, T84, and LNCaP), three different SERS
probes types were designed to have three different types of
Raman reporters and aptamers by Weng et al. and the principle
of SERS detection (29). Liang et al. fabricated a series of aptamer-
charged SERS probes (AS1411 and MUC1) for targeting cancer
cells (MCF-7), and their results show the limit of detection (LOD)
up to five cancer cells (20). Lately, the SERS spectroscopy method
has been combined with other techniques for attaining maximum
information from a sample. Li et al. fabricated a SERS-colorimetric
dual-mode aptasensor for cancer biomarker MUC1 detection. The
SERS probes were fabricated by using modified gold-silver core-
shell nanoparticles with Raman reporters and the sequence of
MUC1. The SERS probes report both SERS and colorimetric
signals simultaneously (39). Bamrungsap et al. combined SERS
and fluorescence nanotags assembled-system using a layer-by-layer
process. The nanotags consisting of gold-silver nanorods, aptamers,
and fluorophore-labeled aptamer for SERS signal generation,
targeting ligands and fluorescence imaging, respectively. The
dual-mode sensor system was successful for highly sensitive and
specific cancer (cervical cancer) diagnostics (49).

Colorimetric Aptasensors
Colorimetric-based aptasensors have been used for the detection
of disease biomarkers, due to their simplicity, ease of use,
accessibility, and point-of-care detection (65, 66). The colorimetric
method is a promising technique due to the possibility of detection
by simply visual color change (67). Xu et al. developed a highly
sensitive colorimetric-based aptasensor for the detection of exosomes
obtained from breast and pancreatic cancer cells. In this novel
approach, the specific detection was accelerated by horseradish
peroxidase (HRP) accelerated dopamine polymerization, and
sensitivity was enhanced by in situ deposition of polydopamine
around exosomes particles (26). Shayesteh et al. developed a label-
free colorimetric aptasensor, using poly-adenine aptamer and gold
nanoparticles for sensitive detection of prostate-specific antigen
(PSA) tumor marker. The concentration of PSA (5ng/ml) was
detected by the naked eye with the color change (45). Dong et al.
proposed a novel highly selective calorimetric based aptasensor
strategy for detection of the vascular endothelial growth factor165
Frontiers in Oncology | www.frontiersin.org 4
(VEGF165) in human serum (53). Colorimetric aptasensor based on
gold nanoparticles aggregation developed by Borghei et al. was
shown to have good results for the detection of rare circulating
cancer cells. In this method, aptamer desorbed from solution due to
specific binding of AS1411 aptamer to cancer cells, which resulted in
the solution color change from purple to red (19). Xia et al. designed
a fast and label-free DNA-capped-Single-Walled Carbon Nanotubes
based aptasensor for exosomes detection through visible inspection.
The exosomes were obtained from MCF-7 and breast cancer
patient’s serum. The ability to detect exosomes in a homogenous
system in combination with excluding complicated rinsing
procedure is the key advantage of this proposed method (25).
Wang et al. demonstrated single-stranded DNA (ssDNA) with
graphitic carbon nitride nanosheets (g-C3N4 NSs) hybrid
aptasensor for the colorimetric detection of exosomes originated
by a breast cancer cell line (MCF-7) and a control cell line (MCF-
10A). The intrinsic peroxidase-like activity of g-C3N4 NSs was
enhanced by ssDNA (24). Shen et al. fabricated a colorimetric
aptasensor for the detection and isolation of circulating tumor-
related materials and is based on aptamer functionalized magnetic
nanoparticles and endogenous alkaline phosphatase signal
amplification. Their method exhibited great potential for clinical
samples and is considered to find promising applications in point-of-
care testing (21).

Other Optical Aptasensors
Terahertz radiation (THR) finds useful applications in cancer
imaging (68). To overcome THR shortcomings regarding cancer
cell and biomarkers detection, new technology has recently
emerged known as terahertz chemical microscopy (TCM).
However TCM has been reported to detect metastatic breast
cancer cells, and only limited reports has been published (69). A
photoelectrochemical (PEC) aptasensor fabricated by Zhou et al.
(2017) is based on reduced graphene oxide-functionalized iron
oxyhydroxide (FeOOH-rGO) as the photoactive material for the
detection of PSA (prostate-specific antigen). Accuracy,
specificity, and stability of the system were comparable to the
commercially used PSA ELISA (enzyme-linked immunosorbent
assay) kit (41). Liu et al. (2019) reported an ultrasensitive,
activatable light-scattering (LS) method for PSA detection in
real samples. The working mechanism of the aptasensor is based
on target stimuli-responsive aggregation of AuNPs, which are
responsible for lighting up the light-scattering signals (42).
APTASENSORS IN CLINICAL
DIAGNOSTICS

An early cancer diagnosis is particularly an active research area
because early detection can help to improve patient survival and
disease prognosis. For this purpose, very sensitive and stable
methods are needed for early cancer diagnosis (70). The main
advantages of using aptasensors for clinical diagnostics are high
selectivity and specificity, and low cost of production (71). The
stability, ability of easy modification, and capability of fast
development (animal-free) make nucleic acid aptamers detection
February 2021 | Volume 11 | Article 632165
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methods widely functional compared to traditional antibody-based
detection methods. And the nucleic acid aptamers can be used
against a wide spectrum of targets (71, 72). The smaller size of
aptamers compared to antibodies improves transport and tissue
penetration (72). However one of the main disadvantages of the
aptasensor is restricting each aptasensor to one marker or cell type
(73). The development of an increasing number of published
articles on aptamers for oncological diseases detection shows
increased interest and progress in aptamer technology. Despite all
the advantages, traditional immunoassays are still the dominant
technology in the field of clinical diagnostics (70, 71). Nevertheless,
this knowledge utilization for clinical practices has been challenging
and the process has been very slow. There are many challenges if
the aptasensor based sensing platform is to be used commercially.
For example, improved signal-to-noise ratio and a high level of
confidence in signal detection must be recognized (74). The
compatibility of aptasensor assay with current equipment of
diagnostics units is also an issue and is for the reason of the
fragility of aptasensors (75). Many published reports investigated
the sensing in buffer or diluted biological fluids; however, the goal
should be the detection of biomarkers in a raw biological fluid. The
cost of the whole sensing system should also be considered, for
example, the cost of TCM components (laser) is expensive and uses
a bulky femtosecond laser setup (11). Aptasensors after resolving all
the above-discussed obstacles can be one of the most important
early cancer detection tools (74).
CONCLUSION AND FUTURE
PERSPECTIVES

Since early cancer detection has significant roles to increase
available treatment options for the longer survival of patients,
advances in various types of optical aptasensors for the detection of
cancer cells and biomarkers or exosomes have been comprehensively
summarized in this mini-review. Fluorescence-based label-free/
labeled (e.g., FRET-based) aptasensors in combination with
different nanomaterials/dyes, etc. as fluorophores, and quenchers to
quench (change) the fluorescence properties as a result of specific
Frontiers in Oncology | www.frontiersin.org 5
interactions, have gained increasing attention. ECL and CL owing to
their wide-ranging calibration and low background signals have
recently been broadly exploited. Other types of optical aptasensors
based on SPR, TCM, and SERS, etc. are also highly recommended for
early-stage cancer diagnostics. Colorimetric methods combined with
several different latest strategies (e.g., nanoparticles, etc.) implicate the
simplest aptasensors and can be analyzed easily with the naked eye.

Several optical aptasensors reported for cancer early detection
exhibit good performance in terms of selectivity and sensitivity,
yet commercially available aptasensors just appear as the tips of
some icebergs when we compare them to the mighty academic
literature available in this area. Some new methods are still in lab
trials with the early results favoring their commercial applications
outside labs. However, some important technological issues and
challenges still need to be addressed or improved. First, only a
limited number of good specificity/sensitivity aptamers are available
against a certain type of cancer cells/biomarkers, and more
aptamers need to be screened that could target multiple cancer
biomarkers without any complexity or off-target recognition in
biological samples. Second, aptasensors need further investigations
for clinical applications with real, undiluted (raw) biological
samples with a primary focus on aptamer specificity, high
sensitivity, cost-effectiveness, and simple operation. Overall, it is
evident that the full bloom of optical aptasensor technology for
cancer diagnostics is still on the way to a bright future.
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