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A B S T R A C T   

To improve the identification and subsequent intervention of COVID-19 patients at risk for ICU admission, we 
constructed COVID-19 severity prediction models using logistic regression and artificial neural network (ANN) 
analysis and compared them with the four existing scoring systems (PSI, CURB-65, SMARTCOP, and MuLBSTA). 
In this prospective multi-center study, 296 patients with COVID-19 pneumonia were enrolled and split into the 
General-Ward-Care group (N = 238) and the ICU-Admission group (N = 58). The PSI model (AUC = 0.861) had 
the best results among the existing four scoring systems, followed by SMARTCOP (AUC = 0.770), motified- 
MuLBSTA (AUC = 0.761), and CURB-65 (AUC = 0.712). Data from 197 patients (training set) were analyzed 
for modeling. The beta coefficients from logistic regression were used to develop a severity prediction model and 
risk score calculator. The final model (NLHA2) included five covariates (consumes alcohol, neutrophil count, 
lymphocyte count, hemoglobin, and AKP). The NLHA2 model (training: AUC = 0.959; testing: AUC = 0.857) had 
similar results to the PSI model, but with fewer variable items. ANN analysis was used to build another complex 
model, which had higher accuracy (training: AUC = 1.000; testing: AUC = 0.907). Discrimination and calibration 
were further verified through bootstrapping (2000 replicates), Hosmer-Lemeshow goodness of fit testing, and 
Brier score calculation. In conclusion, the PSI model is the best existing system for predicting ICU admission 
among COVID-19 patients, while two newly-designed models (NLHA2 and ANN) performed better than PSI, and 
will provide a new approach for the development of prognostic evaluation system in a novel respiratory viral 
epidemic.   

1. Introduction 

Since December 8th, 2019, several cases of pneumonia in combina-
tion with severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 

2) have been reported in Wuhan, Hubei Province, China [1,2]. The early 
clinical symptoms of Coronavirus Disease 2019 (COVID-19) include 
fever, cough, and fatigue, which is similar to the manifestation of 
community-acquired pneumonia (CAP) [1,3]. Moreover, COVID-19 is a 
highly infectious respiratory tract disease that lacks effective therapy 
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[3]. In the absence of timely intervention, some patients will rapidly 
develop severe pneumonia, acute respiratory distress syndrome (ARDS), 

and may even die [3]. Furthermore, inappropriate intervention as well 
as delayed diagnosis or admission to the ICU may escalate the risk of 
severe pneumonia and worsen prognosis [4]. Therefore, an effective 
severity scoring model would benefit the treatment of patients with 
COVID-19. 

The pneumonia severity index (PSI) and CURB-65 are prediction 
models for the prognosis of CAP patients, and thus assist in directing 
treatment strategy [5,6]. However, the utilization of these models for 

COVID-19 is limited since their safety has yet to be confirmed [7]. 
Recent studies have evaluated the application of certain scoring systems 

(PSI, CURB-65, HNC-LL, A-DROP, SMARTCOP, MuLBSTA, NEWS2 and 
qSOFA) to COVID-19 [7–10]. However, the conclusions of these studies 
contradict one another. The purpose of this study was to identify a 
suitable scoring system to assist with the management and treatment of 
patients with COVID-19 while ensuring safety. 

Previous studies have found that the existing pneumonia prediction 
models may not be ideal for screening severe COVID-19 [7–10]. In 
addition to traditional biological methods, advances in computer 

Abbreviations 

NLHA2 A prediction model designed by our team with five 
covariates: neutrophil count, lymphocyte count, 
hemoglobin, alkaline phosphatase, and alcohol 
consumption 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
COVID-19 Coronavirus Disease 2019 
ARDS Acute respiratory distress syndrome 
CAP Community-acquired pneumonia 
ROC Receiver operating characteristic 
AUC Area under curve 
LR Likelihood ratio 
KNN K-nearest neighbor 
ANN Artificial neural network 

EPV Event per variable 
HR Heart rate 
RR Respiratory rate 
RBC Red blood cell 
Hb Hemoglobin 
HCT Hematocrit 
PLT Blood platelets 
ESR Erythrocyte sedimentation rate 
CRP C-reactive protein 
PCT Procalcitonin 
SAA Serum amyloid A 
ALT Alanine amino transferase 
AST Aspartate amino transferase 
GGT Gamma-glutamyl transpeptidase 
AKP Alkaline phosphatase  

Fig. 1. Flowchart of the COVID-19 patients-screening process.  
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science have made it easier to carry out disease research through protein 
structure prediction, target-based drug prediction, system biology, and 
classifier construction with machine learning [11–15]. In this study, we 
attempted to establish a prediction model specific to COVID-19 using 
machine learning algorithms. Some studies provide evidence in favor of 
the excellent classifier effect of machine learning [16,17]. As a tradi-
tional machine learning algorithm, logistic regression is often applied to 
predict outcomes based on patient characteristics [18]. Artificial neural 
network (ANN) models can precisely predict complex relationships be-
tween high-dimensional datasets and outcomes, which is beyond the 
reach of traditional methods [19]. 

In this study, we used both our models and existing models to 
investigate patients with confirmed COVID-19 diagnoses. We compared 
the efficiency and predictive accuracy of four established scoring sys-
tems (PSI, CURB-65, SMARTCOP and Modified-MuLBSTA) in differen-
tiating severity [20–22]. Based on patient data, we constructed our own 
prediction models using logistic regression or ANN. These models may 
help to improve the management and treatment of patients with severe 
COVID-19. 

2. Materials and methods 

2.1. Study design and setting 

This multi-center prospective observational study was a collabora-
tive effort between Wuhan Leishenshan Hospital (the designated hos-
pital for COVID-19 in Wuhan), Fudan University Affiliated Shanghai 
Fifth People’s Hospital, and Hubei Jingzhou Jiangling People’s Hospital. 
Patients who participated in the study were required to meet the 
following criteria: (1) age≥18 years; and (2) definitive diagnosis of 
SARS-CoV-2 infection. All patients enrolled in this research were diag-
nosed with COVID-19 from February 21, 2020 to October 1, 2020, as 
according to the guidelines published by the World Health Organization 
(WHO) and National Health Commission of the People’s Republic of 
China. Local health authorities performed laboratory confirmation of 
SARS-CoV-2 infection as previously described [23,24]. Once the diag-
nosis was confirmed, each patient was assessed using the four estab-
lished scoring systems. Each patient was classified into one of the 
following two groups based on outcomes: the ICU-Admission group, 
which included patients who were treated in the ICU or who died; and 
the General-Ward-Care group, which included all other patients. 

The ethics commissions of Fudan University Affiliated Shanghai Fifth 
People’s Hospital and Hubei Jingzhou Jiangling People’s Hospital 
approved this study. All patients provided informed consent before 
participating in the study. The patient screening process is outlined in 
Fig. 1. 

2.2. Data collection 

Infections were confirmed using nucleic acid amplification testing 
(NAAT), such as reverse transcription polymerase chain reaction (RT- 
PCR). Data on demographic characteristics, pre-existing comorbidities, 
initial vital signs, routine laboratory test results, admission diagnoses, 
and variables necessary to determine the PSI, CURB-65, SMARTCOP and 
modified-MuLBSTA scores were prospectively collected for all eligible 
patents [21,22,25–27]. 

2.3. Missing data imputation 

Missing data is common in clinical studies. Deleting missing data is a 
simple way to deal with it, but can cause information loss and sample 
size reduction. In this study, we imputed missing data with probable 
values predicted from available data to preserve all cases [28]. Impu-
tation was performed using the KNN (K-Nearest Neighbor) algorithm 
with k = 10. The ‘DmWR2’ R package was used to conduct this work. 

2.4. Splitting data into training and testing sets 

To conduct self-validation of the constructed prediction models, we 
randomly split the dataset into two subgroups: the training and testing 
sets. The training dataset was used for model building, while the testing 
set was used for model effect validation. Patients were divided between 
the groups at a 2:1 ratio, respectively. Supplementary Table 2 summa-
rizes the basic distribution of demographic data. 

2.5. Logistic regression model 

To ensure practical operability of the scoring system, we selected 
easily accessible data as target variables, including demographic infor-
mation, past medical history, smoking and drinking history, and blood 
indexes. First, we converted these variables into categorical variables. 
We performed univariate logistic regression for each variable to identify 
factors that predict overall outcome. Variables with P < 0.1 were further 
investigated using multivariate modeling. Multivariate regression 
analysis was carried out using a stepwise procedure, and the number of 
variables in the final model was determined by referring to event-per- 

Table 1 
Baseline characteristics, complications, and scores for patients with COVID-19 
pneumonia.   

General Ward Care 
(N = 238) 

ICU Admission (N 
= 58) 

P Value 

Median Age (IQR) – yrs 49.0 (37.3–59.0) 66.0 (56.0–76.0) <0.0001 
Gender – count (%) 

Male 117 (49.2) 36 (62.1) 0.078 
Female 121 (50.8) 22 (37.9)  

Smoker – count (%) 5 (2.1) 7 (12.1) <0.01 
Consumes Alcohol – 

count (%) 
20 (8.4) 20 (34.5) <0.0001 

Tumor – count (%) 8 (3.4) 6 (10.3) 0.057 
Chronic Liver Disease – 

count (%) 
8 (3.4) 10 (17.2) <0.001 

Congestive Heart Failure 
– count (%) 

15 (6.3) 10 (17.2) <0.05 

Cerebrovascular Disease 
– count (%) 

17 (7.1) 18 (31.0) <0.0001 

Chronic Renal Disease – 
count (%) 

11 (4.6) 16 (27.6) <0.0001 

Hypertension – count (%) 71 (29.8) 25 (43.1) 0.053 
Diabetes – count (%) 30 (12.6) 22 (37.9) <0.0001 
Nursing Home Resident – 

count (%) 
1 (0.4) 4 (6.9) <0.01 

PSI Score (IQR) – points 72 (0.0–91.0) 119.5 
(102.5–136.8) 

<0.0001 

PSI Grade – count (%)   <0.0001 
1 112 (47.1) 3 (5.2)  
2 61 (25.6) 0 (0.0)  
3 48 (20.2) 3 (5.2)  
4 13 (5.5) 30 (51.7)  
5 4 (1.7) 22 (37.9)  

CURB-65 – count (%)   <0.0001 
0-1 191 (80.3) 22 (37.9)  
2 37 (15.5) 29 (50.0)  
3 9 (3.8) 6 (10.3)  
4-5 1 (0.4) 1 (1.7)  

SMARTCOP – count (%)   <0.0001 
0 37 (15.5) 0 (0.0)  
1 151 (63.4) 17 (29.3)  
2 37 (15.5) 31 (53.4)  
3 10 (4.2) 7 (12.1)  
4-6 3 (1.3) 3 (5.2)  

Modified MuLBSTA (IQR) 
– points 

3.0 (3.0–8.0) 8.0 (6.3–9.0) <0.0001 

IQR: interquartile range. 
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Fig. 2. The PSI scoring system had the best prediction effect. (A) Violin plots illustrating the four scores of each patient in both groups. Differences between 
groups were assessed using the Wilcoxon Rank Sum Test. P < 0.05 was considered statistically significant. (B) Distribution of risk scores in the General-Ward and ICU 
cohorts. Dotted lines represent dividing boundaries for scoring groups. Patients were sorted on the horizontal axis according to their scores. (C) ROC curves verifying 
the predictive performance of the four risk scoring systems in the COVID-19 cohort. 
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variables (EPV). The range of EPV was limited to 5–10 to reduce the risk 
of over-fitting [29,30]. Each significant variable was assigned a 
weighted point based on its β coefficient value. 

2.6. Artificial neural network model 

Significant variables from univariate regression were selected for 
artificial neural network modeling. The ‘RSNNS’ R package was used to 
build a multilayer perceptron (MLP) model. Modeling parameters were 
confirmed empirically. The importance of each variable was calculated 
using the connection weighted algorithm published by Olden et al. [31]. 
The Olden calculation was performed with the ‘NeuralNetTools’ R 
package. 

2.7. Statistical analysis 

For categorical variables in our study, the Chi-Square Test (with or 
without Yate’s correction) or Fisher’s Exact Test was used for univariate 
comparison. To describe the distribution of numerical variables, we 
applied either the mean ± SD (standard deviation) or median ± IQR 
(interquartile range) depending on the results of normality testing. We 
compared the differences among numerical variables using the ANOVA 
test, Welch’s Test, or Wilcoxon Rank-Sum Test depending on the results 
of normality and homogeneity of variance testing. 

The predictive values of PSI, CURB-65, SMARTCOP and MuLBSTA 
were assessed in two dimensions of discrimination. Discrimination was 
determined using the area under the curve (AUC) with a 95% CI. The 
best cut-off value in each scoring system was confirmed by the Youden 
index. The cut-off value was used to divide cases into the low-risk and 
high-risk groups. To further assess the discrimination of a scoring model 
deemed to be effective, the bootstrap method (2000 replicates) is rec-
ommended to obtain a better estimate of AUC. Brier score calculation 
and Hosmer-Lemeshow goodness of fit testing were performed for cali-
bration assessment. 

All tests were two-tailed. P < 0.05 was considered statistically sig-
nificant. Computations were carried out with R version 4.0.2. 

3. Results 

3.1. Patient population 

A total of 329 patients with COVID-19 met the inclusion criteria for 
our cohort study. The enrolled cases consisted of 258 patients from 
Wuhan Leishenshan Hospital, 37 patients from Shanghai Fifth People’s 
Hospital, and 34 patiets from Hubei Jingzhou Jiangling People’s Hos-
pital. Of the total 329 patients, 33 patients withdrew from this study 
because they didn’t meet our inclusion criteria. Additionally, 58 patients 
were transferred to the ICU because of worsening situation (Fig. 1). 

3.2. Patient characteristics 

The characteristics of the 296 consecutive admissions are summa-
rized in Table 1. The percentage of male subjects was 49.2% in the 
General-Ward-Care group and 62.1% in the ICU group (P = 0.078). The 
median age of patients in the ICU-Admission group (66 years) was 
significantly higher than that of the General-Ward group (49 years) (P <

0.0001). Rates of cigarette smoking (P < 0.01) and drinking (P <
0.0001) were higher in the ICU-Admission group, and patients who 
originally lived in nursing homes were more likely to develop severe 
COVID-19 (P < 0.01). These three characteristics suggest that patients 
with severe COVID-19 may have had poor health before the onset of the 
pandemic. Furthermore, patients in the severe group had higher rates of 
liver diseases (17.2% versus 3.4%, P < 0.001), congestive heart failure 
(17.2% versus 6.3%, P < 0.05), diabetes (37.9% versus 12.6%, P <
0.0001), chronic renal diseases (27.6% versus 4.6%, P < 0.0001), and 
cerebrovascular diseases (31.0% versus 7.1%, P < 0.0001). No other 
characteristics significantly differed between the two groups. 

3.3. Statistical evaluation of the PSI, CURB-65, SMARTCOP, and 
MuLBSTA scoring systems 

Table 1 briefly describes the overall distribution of the scores and 
differences between groups. Patients in the ICU group had higher PSI 
scores (119.5 versus 72, P < 0.0001) and higher PSI grades (P < 0.0001). 
The CURB-65, SMARTCOP, and modified MuLBSTA scoring systems 
shared the same conclusion (P < 0.0001). Violin plots were used to 
visualize the scores of the two groups (Fig. 2A). 

The predictive accuracies of the PSI, CURB-65, SMARTCOP, and 
MuLBSTA scoring systems are shown in Fig. 2B. We noticed that all four 
systems were able to identify patients admitted to the ICU to some de-
gree, but none were able to accurately distinguish between the two 
groups of patients. 

We performed ROC analysis and calculated AUC values to assess the 
discriminative power of the four systems (Fig. 2C, Table 2, Supple-
mentary Table 1). The AUC was highest for the PSI scoring system (AUC 
= 0.861; 95% CI: 0.816–0.898), followed by the MuLBSTA system (AUC 
= 0.761, 95% CI: 0.708–0.808), SMARTCOP system (AUC = 0.770, 95% 
CI: 0.718–0.817), and CURB-65 system (AUC = 0.712, 95% CI: 
0.657–0.763). Ultimately, the PSI scoring system was considered the 
best choice for discriminating the severity of outcomes among patients 
according to our ROC analysis (Fig. 2C). The sensitivity and specificity 
values corresponding to each cut-off value are shown in Supplementary 
Table 1. The PSI scoring system with a cut-off value of 97 points yielded 
the best sensitivity (82.35%) and specificity (89.67%). The corre-
sponding highest positive likelihood ratio of 4.37 and lowest negative 
likelihood ratio of 0.19 further validated the sensitivity and specificity of 
this system. Detailed data on the four scoring systems are included in 
Supplementary Table 1. 

3.4. Logistic regression model: NLHA2 scoring 

We split the original dataset into the training set (N = 197) and the 
testing set (N = 99). Then, we compared baseline data between the two 
groups. Median age, gender ratio, smoker count, and other variables did 
not significantly differ between the two groups, suggesting that 
grouping was objective and random (Supplementary Table 2). Univari-
ate regression analysis was performed for every variable, which resulted 
in 35 pre-selected variables with P < 0.1 (Fig. 3, Table 3). We used 
stepwise multivariate regression to reanalyze the above variables and 
build a prediction model. The number of events was defined as the 
number of ICU admissions in the training set (N = 32), which limited the 
number of selected variables to less than six (EPV: 5–10). The final 

Table 2 
ROC comparisons between PSI, CURB-65, SMARTCOP, and MuLBSTA.   

AUC 95% CI -LR +LR P Value Sensitivity (%) Specificity (%) 

PSI 0.861 0.816–0.898 0.19 4.37 <0.0001 84.48 80.67 
CURB-65 0.712 0.657–0.763 0.47 3.14 <0.0001 62.07 80.25 
SMARTCOP 0.770 0.718–0.817 0.37 3.36 <0.0001 70.69 78.99 
MuLBSTA 0.761 0.708–0.808 0.13 2.56 <0.0001 91.38 64.29 

ROC: receiver operating characteristic curve; AUC: area under curve; 95% CI: 95% confidence interval; LR: likelihood ratio. 
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Fig. 3. Results of univariate logistic regression. Risk factors are colored red whereas protection factors are colored blue. The green box represents nonsignificant 
differences. 
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model included five variables: Consumes alcohol, neutrophil count (>7 
x109/L), lymphocyte count (<0.8 × 109/L), hemoglobin (≤110 g/L), 
and AKP (>125 U/L) (Fig. 4A, Table 4). The model was named ‘NLHA2’ 
based on the variable names. The risk score was calculated as follows: 
Risk Score = 3*[Drink]+4*[Neutrophil Count]+2.5*[Lymphocyte 
Count]+2.5*[Hb]+2.5*[AKP] (Table 4). All patients were assigned 
scores and accordingly stratified into the high-risk or low-risk group 
depending on the cut-off value. The NLHA2 scores of ICU-Admission 
patients were significantly higher than those for General-Ward-Care 
patients in both datasets (Fig. 4B). The predictive performance of the 
risk score for COVID-19 severity was evaluated through ROC curve 
analysis, where the AUC reached 0.959 in the training set and 0.857 in 
the testing set) (Fig. 4D, Table 5). The NLHA2 model had ideal values for 
sensitivity (training: 96.87%; testing: 73.08%) and specificity (training: 
83.03%; testing: 91.78%). It is worth noting that greater sensitivity was 
taken into account in the determination of the cut-off value (Table 5, 
Supplementary Table 1). Our scatter plot also supports the model’s 
excellent distinguishing ability (Fig. 4C). Furthermore, the discrimina-
tion and calibration of the model verify its effectiveness. The results of 
Hosmer-Lemeshow goodness of fit testing suggested a better fitting 

effect (training: P = 0.991; testing: P = 0.152). Additionally, Brier score 
analysis revealed a screening effect (training: 0.048; testing: 0.136) 
(Table 6). 

3.5. Artificial neural network prediction model 

A total of 42 variables were included in the input layer of the 
network. We set the number of hidden layers to two and the number of 
nodes to 10 and eight, according to the results of several previous 
training trials (Fig. 5A). The importance of each variable was calculated 
using Olden’s method (Fig. 5B, Supplementary Table 3). Excitingly, our 
model demonstrated fantastic prediction effects (Fig. 5C and D). The 
AUC values for the training and testing sets were 1.000 and 0.907, 
respectively. The specificity of the model was 100% for the training set 
and 88.46% for the testing set (Fig. 5D, Table 5). The AUC values 
(training: 1.000; testing: 0.907) and bootstrap AUC values (training: 
1.000; testing: 0.957) were significantly higher than those for the 
NLHA2 scoring system. Furthermore, the model also performed better in 
terms of both Hosmer-Lemeshow goodness of fit testing and Brier score 
analysis (training: P = 1.000; testing: P = 1.000) (Table 6). 

4. Discussion 

This study enrolled a total of 296 patients who were diagnosed with 
COVID-19 from Feb. 21, 2020 to Dec. 28, 2021. The primary COVID-19 
outbreak involving so many patients occurred in December of 2019 and 
spread globally to many different countries [32,33]. Compared to CAP, 
COVID-19 shows rapid progression, high infectivity, and significant 
mortality in the advanced stage of the disease [34,35]. Since no 
specialized medication has been discovered to treat SARS-CoV-2 infec-
tion, our healthcare system is in great need of a valid scoring metric for 
doctors to determine whether to provide aggressive medical interven-
tion. This study aimed to develop an efficient, safe, and dependable 
model to discriminate the severity and predict the outcomes of patients 
with COVID-19. 

In this study, we restricted enrollment to patients aged 18 years or 
older because the WHO provides different recommendations on COVID- 
19 severity classification and management for adults versus children. In 
addition, the application of several scoring systems (e.g. PSI or CURB- 
65) in adult patients with community-acquired pneumonia is widely 
recognized. However, factors such as advanced age, tumor, hyperten-
sion and other chronic diseases hardly exist in pediatric pneumonia 
patients, which engendered controversy when those scoring systems 
applied to children. Considering the above reasons, we only included 
adult patients for analysis. We first summarized baseline data and found 
that the General-Ward-Care and ICU-Admission groups were signifi-
cantly different in terms of many variables: Age, Smoking, Consumes 
Alcohol, Nursing home residence, and several comorbidities. This 
finding would suggest that the underlying health status of patients may 
influence the inflammation intensity and severity of COVID-19 after 
infection. Previous studies have also found that patients with underlying 
diseases are more susceptible to SARS-CoV-2 infection, which can result 
in severe and even fatal respiratory diseases [36]. The immune status of 
the patient may also influence the development of disease after infec-
tion. However, we did not consider the impact of immunodeficiency on 
the clinical manifestations of COVID-19 in this study since all partici-
pants were free of AIDS and had no long-term history of immunosup-
pressive drug use. 

In our study, we identified PSI as the best existing system to deter-
mine a patient’s risk. The PSI model had excellent discrimination and 
calibration. Patients with a PSI grade >2 are considered to have a 
stronger probability of admission to the ICU and higher mortality. The 
PSI scale, derived from the PORT (Pneumonia Patient Outcomes 
Research Team) Project, is a prediction system based on data from more 
than 10,000 adults with CAP and categorizes patients into five classes in 
terms of death risk [37]. Recently, some articles have described the 

Table 3 
Univariate logistic regression analysis.  

Variable Odds 
Ratio 

95% CI P Value 

Gender – Male vs Female 0.5909 0.3282–1.0640 0.0796# 

Age 1.0800 1.0546–1.1060 <0.0001**** 
HR > 115/min 3.6478 1.0729–12.4025 0.0382* 
RR ≥ 25/min 2.7306 1.1299–6.5989 0.0257* 
SaO2 ≤ 90% 3.6478 1.0729–12.4025 0.0382* 
Disturbance of Consciousness 2.7123 0.8532–8.6225 0.0909# 

Nursing-Home Resident 17.5556 1.9236–160.2215 0.0111* 
Hypertension 1.7819 0.9885–3.2120 0.0547# 

Tumor 3.3173 1.1037–9.9705 0.0327* 
Chronic Liver Disease 5.9896 2.2472–15.9644 <0.001*** 
Congestive Heart Failure 3.0972 1.3122–7.3104 0.0099** 
Cerebrovascular Disease 5.8500 2.7813–12.3043 <0.0001**** 
Chronic Renal Disease 7.8615 3.4100–18.1239 <0.0001**** 
Diabetes 4.2370 2.2029–8.1496 <0.0001**** 
Smoker 6.3961 1.9517–20.9611 0.0022** 
Consumes Alcohol 5.7368 2.8229–11.6586 <0.0001**** 
Neutrophil Count > 7 × 109/L 14.9829 6.5773–34.1304 <0.0001**** 
Lymphocyte Count <0.8 ×

109/L 
13.0000 6.3726–26.5199 <0.0001**** 

Monocyte Count >0.8 × 109/L 4.7303 2.1321–10.4948 0.0001*** 
RBC <3.5 × 1012/L 6.2121 3.3002–11.6934 <0.0001**** 
Hb ≤ 110 g/L 9.4597 4.9651–18.0229 <0.0001**** 
HCT <36% or >55% 6.8463 3.6274–12.9215 <0.0001**** 
PLT >300 × 109/L 1.1245 0.5378–2.3515 0.7551 
ESR >20 mm/h 5.2900 2.6653–10.4993 <0.0001**** 
CRP >10 mg/L 7.9900 4.2593–14.9885 <0.0001**** 
PCT >0.1 ng/mL 10.5341 5.5100–20.1394 <0.0001**** 
SAA >10 mg/L 4.0079 2.2001–7.3012 <0.0001**** 
ALT >40U/L 1.1077 0.5732–2.1407 0.7609 
AST >40U/L 2.9882 1.5049–5.9336 0.0018** 
GGT >50U/L 2.9677 1.6311–5.3996 0.0004*** 
AKP >125U/L 10.6892 4.8519–23.5494 <0.0001**** 
Total Bile Acid >20 μmol/L 5.9896 2.2472–15.9644 0.0003*** 
Albumin <35 g/L 9.0502 4.7788–17.1395 <0.0001**** 
Amylase >90U/L 1.4941 0.8086–2.7607 0.1999 
Uric Acid >420 μmol/L 2.9743 1.4200–6.2298 0.0039** 
Total Cholesterol >5.98 mmol/ 

L 
0.8143 0.1735–3.8215 0.7945 

Triglycerides >1.21 mmol/L 0.6490 0.3629–1.1604 0.1448 
Blood Glucose ≥ 7 mmol/L 7.5000 3.9216–14.3437 <0.0001**** 
Pleural Effusion 11.6786 5.8626–23.2643 <0.0001**** 
Multi-Lobe Involvement 6.3505 1.493–27.0115 0.0123 

HR: heart rate; RR: respiratory rate; RBC: red blood cell; Hb: hemoglobin; HCT: 
haematocrit; PLT: blood platelets; ESR: erythrocyte sedimentation rate; CRP: C- 
reactive protein; PCT: procalcitonin; SAA: serum amyloid A; ALT: alanine 
aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl 
transpeptidase; AKP: alkaline phosphatase. 
****: <0.0001, ***: <0.001, **: <0.01, *: <0.05, #: <0.1. 
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value of PSI scoring in predicting COVID-19 severity. For example, 
García Clemente et al. determined that PSI is the best predictor for 
mortality (AUC = 0.874) among the four scoring systems, but not for risk 
of ICU admission (AUC = 0.620) [9]. In Fan’s research, PSI and CURB-65 
were found to share an AUC of 0.85 during clinical comparison, which 
was greater than the AUC values of the other scoring systems [8]. By 
British Thoracic Society (BTS) guidelines, patients with CURB-65 scores 
of 0 are recommended to receive outpatient treatment [38]. According 

to a comparison of two systems (PSI and CURB-65) performed by 
Aujesky et al., CURB-65 is becoming a potential alternative to PSI due to 
its ease of use. However, the effectiveness and safety of CURB-65 are 
ambiguous, which makes its utilization less valuable [5]. Both our 
research and the article published by Nguyen et al. support this 
conclusion under the conditions of either CAP or COVID-19 [7]. In our 
study, there were no deaths in the low-risk group – this supports the 
safety of the PSI classification system, especially considering that the 

Fig. 4. The NLHA2 model built using multivariate regression effectively predicts who is likely to be admitted to the ICU. (A) Forest plot for multivariate 
regression. (B) Violin plots showing the NLHA2 scores of the patients (training or testing dataset) in both groups. Differences between groups were assessed using the 
Wilcoxon Rank Sum Test. P < 0.05 was considered statistically significant. (C) Distribution of the NLHA2 scores in the General-Ward and ICU cohorts. The dotted line 
represents the cut-off value of 2.5 points. (D) ROC curve analysis verifying the prediction performance of the NLHA2 scoring system in the COVID-19 cohort. ROC 
analysis was also performed for each individual variable. 

Y. Dong et al.                                                                                                                                                                                                                                    



Microbial Pathogenesis 171 (2022) 105735

9

CURB-65 system was accompanied by 21.1% mortality in the low-risk 
class (CURB-65 = 0 or 1) in the research from Nguyen et al. [7]. In 
our study, 213 patients had a CURB-65 score equal to 0 or 1, of whom 21 
were admitted to the ICU or transferred to superior hospitals. The safety 
of the CURB-65 system was not satisfactory, and the results of ROC 
analysis (AUC = 0.712, Youden Index = 0.42) indicated weaker 
discrimination. 

In this study, we also analyzed the two other scoring systems: 
SMARTCOP and MuLBSTA. The SMARTCOP method is useful for pre-
dicting the risk of intensive respiratory or vasopressor support (IRVS) 
among patients with CAP, where IRVS is one of the criteria for ICU 
admission. However, our research concluded that SMARTCOP is not 
applicable to COVID-19 severity (AUC = 0.770, Youden Index = 0.50), 
which is similar to the findings of García Clemente et al. (AUC = 0.749). 
The MuLBSTA system was designed as a mortality prediction tool for 
patients with viral pneumonia, and researchers have recently considered 
its value of application to COVID-19 [39]. The study from Ma et al. 
indicated that MuLBSTA has a good early warning effect for patients 
with severe COVID-19 (AUC = 0.927) [40], while Iijima et al. obtained 
an AUC value of 0.87 in their work [27]. Additionally, the study from Xu 
et al. found that the MuLBSTA scoring system was extremely effective in 
predicting mortality (AUC = 0.956) and ICU admission (AUC = 0.875) 
[10]. However, similar to our results, the AUC values were only 0.773 
for morality and 0.777 for ICU admission in the paper from García 
Clemente et al. [9]. In our research, the modified-MuLBSTA scoring 
system also did not perform well (AUC = 0.761). The traditional version 
of MuLBSTA includes an item on bacterial infection testing, which is 
rarely used in patients with COVID-19. As a result, Iijima et al. created 
the modified version of the model, which substitutes CRP level for 
bacterial infection status. Further studies or meta-analyses are required 
to better understand the value of applying MuLBSTA to the prediction of 
severe outcomes among patients with COVID-19. 

Given the unsatisfactory status of the existing scoring systems, we 
attempted to construct new models for predicting COVID-19 severity 
through logistic regression and ANN. Our logistic regression model has 
simple and feasible application to clinical practice, considering it only 
contains five variables. Furthermore, the internal validation of this 
dataset showed excellent prediction results (AUC = 0.857, Youden 
Index = 0.65). The five items in the NLHA2 model are easy to acquire, 
which is conductive to the model’s clinical application and external 
validation. 

In contrast to the NLHA2 model, the ANN model more accurately 
predicted ICU admission. It correctly classified every patient in the 

training set and more than 90% of patients in the testing set (testing set: 
AUC = 0.907; Youden Index = 0.84). However, it was difficult to apply 
the ANN model because of the black box portion of the network (a 
complicated relationship network that cannot be completely under-
stood). With this in mind, we may need to assess each patient’s status 
using the R environment until we develop a visualized version of the 
scoring system. Despite the model’s high predictive accuracy, its 
complexity limits its clinical application value. 

To validate the models, we carried out Hosmer-Lemeshow goodness 
of fit testing and Brier score analysis, which are important tests but 
generally neglected in other studies. In summary, our results indicate 
that the NLHA2 and ANN models both have the potential to predict 
COVID-19 severity, but more research is required to confirm our 
conclusions. 

This study has several limitations that future studies should address. 
First, we hope to dynamically monitor the scores of hospitalized patients 
to explore the characteristics of their scores regarding the course of 
disease progression. Second, we plan to compare our prediction results 
with physician judgment to investigate the stability and utility of the 
models. Finally, and most importantly, the current virus strain is 
significantly different from the former versions. However, the emer-
gence of mutant strains does not render past models completely 
worthless. Since the data we used to build our scoring models were 
based on clinical manifestations of the patient rather than the charac-
teristics of the virus variants, it should be widely applicable to different 
strains. This is especially likely considering that we found the MuLBSTA 
system performed well in predicting COVID-19 (Fig. 2A–C) even though 
it was originally designed to predict mortality among patients with 
unspecific viral pneumonia [39,40]. Furthermore, the SARS-CoV tran-
scriptome shows high similarity to the transcriptome of SARS-CoV-2, 
and the same is true for different strains of SARS-CoV-2 [12,41]. 
Therefore, although our results were mainly based on the analysis of 
wild-type strains, they may also be of value to the Omicron variant. 
Given these points, future studies are required for the external validation 
of our models. 

5. Conclusion 

In conclusion, we identified the PSI scoring system as the best 
existing system for predicting ICU admission among patients with wild- 
type SARS-COV-2 infection with COVID-19, while the two newly- 

Table 4 
Multivariate logistic regression analysis.  

Variable Odds 
Ratio 

95% CI P Value 

Consumes Alcohol 18.3858 2.9637–114.0589 0.0018** 
Neutrophil Count > 7 × 109/L 56.5353 8.8100–362.7963 <0.0001**** 
Lymphocyte Count <0.8 ×

109/L 
13.8600 3.4904–55.0364 0.0002*** 

Hb ≤ 110 g/L 13.8036 2.9011–65.6786 0.001** 
AKP >125U/L 14.8870 3.3092–66.9708 0.0004*** 

Risk Score = 3*[Drink]+4*[Neutrophil Count]+2.5*[Lymphocyte Count]+2.5* 
[Hb]+2.5*[AKP]. 

Table 5 
ROC comparison between the NLHA2 and ANN models.   

AUC 95% CI -LR +LR P Value Sensitivity (%) Specificity (%) Cut-off 

NLHA2 – Training Set 0.959 0.920–0.982 0.04 5.71 <0.0001 96.87 83.03 >2.5 
NLHA2 – Testing Set 0.857 0.772–0.919 0.29 8.89 <0.0001 73.08 91.78  

ANN – Training Set 1.000 0.981–1.000 – – <0.0001 100.00 100.00 - 
ANN – Testing Set 0.907 0.832–0.956 0.05 8.31 <0.0001 95.89 88.46 - 

NLHA2: the logistic regression model with five variables mentioned in Table 4; ANN: artificial neural network. 

Table 6 
Discrimination and calibration analysis of the two predction models.   

NLHA2 Model ANN Model 

Training 
Set 

Testing 
Set 

Training 
Set 

Testing 
Set 

AUC 0.959 0.857 1.000 0.907 
AUC (2000 boostrap 

replicates) 
0.967 0.911 1.000 0.957 

Hosmer-Lemeshow 
goodness of fit test  
X-squared 1.595 11.98 0.000 0.053 
P Value 0.991 0.152 1.000 1.000 

Brier Score 0.048 0.136 0.000 0.071  
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Fig. 5. The ANN model can predict the severity of COVID-19 patients with great accuracy. (A) Network for the ANN model. The colors of circles (variables) 
were determined by importance. The red line represents a positive correlation whereas the blue line represents a negative correlation. The thickness of the line 
represents the correlation index. (B) The importance of each variable was calculated using Olden’s connection-weighted algorithm. (C) Distribution of the predicted 
ICU admissions in the General-Ward and ICU cohorts. (D) ROC curve analysis verifying the prediction performance of the ANN Model in the COVID-19 cohort. 
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designed models (NLHA2 and ANN) performed better and could be 
valuable for predicting the severity of COVID-19. This study will provide 
a new approach for the development of prognostic evaluation system in 
a novel respiratory viral epidemic. 
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