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Abstract: The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective
action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron
death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for
brain extracellular space has not been practically studied yet. Preincubation with nanomolar and
micromolar α-T for 18 h was found to increase the viability of cortical neurons exposed to H2O2; α-T
effect was concentration-dependent in the nanomolar range. However, preincubation with nanomolar
α-T for 30 min was not effective. Nanomolar and micromolar α-T decreased the reactive oxygen
species accumulation induced in cortical neurons by the prooxidant. Using immunoblotting it was
shown that preincubation with α-T at nanomolar and micromolar concentrations for 18 h prevented
Akt inactivation and decreased PKCδ activation induced in cortical neurons by H2O2. α-T prevented
the ERK1/2 sustained activation during 24 h caused by H2O2. α-T at nanomolar and micromolar
concentrations prevented a great increase of the proapoptotic to antiapoptotic proteins (Bax/Bcl-2)
ratio, elicited by neuron exposure to H2O2. The similar neuron protection mechanism by nanomolar
and micromolar α-T suggests that a “more is better” approach to patients’ supplementation with
vitamin E or α-T is not reasonable.

Keywords: brain cortical neurons; H2O2; α-tocopherol; nanomolar and micromolar concentrations;
viability; reactive oxygen species; ERK1/2; Akt; protein kinase Cδ; Bax/Bcl-2 ratio

1. Introduction

The development of oxidative stress is one of the main causes of brain nerve cell damage and
death in neurodegenerative and ischemic diseases, such as Parkinson’s and Alzheimer’s diseases or
brain insult. These widespread diseases result in cognitive dysfunction, disablement and death for
elderly people. For many years it was hoped that vitamin E might be used as a remedy for various
diseases concerned with pathological accumulation of reactive oxygen species (ROS) in the cells of
various organs. However, analysis of the results of clinical trials revealed the unfavorable effect of
administering high doses of vitamin E. Thus, analysis of the published results of randomized clinical
trials (more than 100,000 observations) of vitamin E administration to people with various diseases
showed that the all-cause mortality for patients and people in risk groups who received high doses of
vitamin E in their diet was higher than for those who received a placebo [1–3]. The main and most
active component of vitamin E in various organs in humans and animals is α-tocopherol (α-T). Specific
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α-T transfer and binding proteins prevent it from metabolic degradation. The above-mentioned
clinical trial results show the need for studying the mechanism of action of α-T and vitamin E other
components at their physiological concentrations, at which they exert their effects on the cells of
various organs and on various cells of the same organ in vivo, and which may differ from their effect
at high pharmacological concentrations [4]. Thus, it was shown that ischemic stroke-induced brain
injury was exacerbated in the presence of supraphysiologic brain α-T level [4].

The delivery of vitamin E components from the blood to the cerebrospinal fluid takes place across
the blood-brain barrier. α-T is the main vitamin E component. In cerebrospinal fluid its concentration
was found to be 42.1 ± 17 nM, while the concentration of other vitamin E components was much
lower—for example, the γ-tocopherol concentration was found to be 5.9 ± 2.8 nM [5]. Similar data
were obtained in other studies (see, for example, [6]).

Various vitamin E isoforms (α-, β-, γ- and δ-tocopherols and tocotrienols) not only possess a
radical scavenging activity, but also modulate the activity of a large number of signaling pathways; in
most cases the data were originally obtained using non-neural cells. Thus, α-T was shown to inhibit the
activity of the protein kinase C (PKC), the extracellular signal-regulated 1/2 protein kinase (ERK1/2)
and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway, and to activate protein phosphatases,
especially protein phosphatase 2A and lipid phosphatase, e.g., dual specificity phospatase PTEN
(phosphatase and tensin homologue), as well as to modulate the activity of cyclooxygenase 1/2,
lipoxygenases, NADPH oxidase and the function of ion channels [6–9]. In contrast to “non-neural”
cells, α-T was found to activate basal ERK1/2 and Akt in brain cortical neurons [10]. These effects
of α-T are sometimes called the “non-antioxidant functions of α-T”, though the signaling pathways
modulation may lead to a decrease in the ROS accumulation in cells. Various components of vitamin E
differ from one another much more in their modulation of signal transduction pathways than in the
level of their scavenging activity [7,8].

The majority of studies of the α-T protective effect on nerve cells is performed using micromolar
concentrations. At the same time, nanomolar α-tocotrienol was found to increase the viability of both
hippocampal neurons and cells of the HT4 hippocampal cell line exposed to glutamate; its effect was
shown to depend on the inhibition of 12-lipoxygenase and phospholipase A2 [11,12]. Data on the
protective effect of α-T at nanomolar concentrations on nerve cells and cells of neuronal cell lines
are not abundant [10,13,14]. The protective effect of 250 nM α-T against 10 mM glutamate-induced
death of immature brain cortical neurons was shown to be much less pronounced than the protective
effect of 2.5 µM α-T [13]. It was also shown [10,14] that long preincubation (18–24 h) with α-T at
nanomolar concentrations increased its protective effect in rat brain cortical neurons and PC12 cells.
The protective effect of nanomolar α-T against the H2O2-induced death of brain cortical neurons [10]
or PC12 cells [14] was comparable with the protective effect of micromolar α-T after preincubation
for 18–24 h.

According to Numakawa and co-authors, α-T at nanomolar concentrations was shown to increase
the activity of basal ERK1/2 and protein kinase B (Akt), as well as the Bcl-2 level in cortical neurons [10].
However, neither this nor other studies have shown how H2O2 modulates the activity of ERK1/2 and
Akt, and how α-T diminishes or abolishes the toxic effects of H2O2 in the nerve cells.

The aim of the present work is to study the effect of H2O2 and long (18 h) preincubation with α-T
at nanomolar and micromolar concentrations on the viability of immature rat brain cortical neurons in
culture, on the activity of protein kinases and the ratio of pro- to antiapoptotic proteins in these neurons.
It was found that long (18 h) preincubation of cortical neurons with α-T at nanomolar or micromolar
concentrations prevented the inactivation of Akt and pronounced decrease of Bcl-2 level leading to
an increase of the proapoptotic to antiapoptotic protein ratio (Bax/Bcl-2) in neurons induced by cell
exposure to H2O2. Nanomolar and micromolar α-T also diminished the activation of PKCδ induced
by H2O2 and the time of maximal activation of ERK1/2 by this prooxidant in brain cortical neurons.
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2. Results and Discussion

2.1. α-T and the Viability and Function of Nerve Cells

A vitamin E or α-T deficiency leads to an abnormal functioning of the brain. Thus, mutations
in the α-T transfer protein gene result in a disease called “ataxia with vitamin E deficiency” [15],
vitamin E supplementation to such patients’ diet gives good results [15]. However, administration of
vitamin E to patients with neurodegenerative diseases was not helpful. It was even suggested that it
might be “time to stop feeding vitamin E to dementia patients” [16]. There are data showing that the
mechanism of α-T effect on nerve cells metabolism, viability and functioning is rather complicated; and
appears not to be exclusively limited to its scavenging activity. Thus, the long-term (up to 46 weeks)
maintenance of mice on a diet with a deficit of vitamin E and the use of mice with targeted disruption
of the α-T transfer protein gene (which mutations lead to the above-mentioned hereditary ataxia with
vitamin E deficiency in humans) resulted in a large decrease of the α-T content in the brain and other
organs [17]. However, the intensity of the lipid peroxidation processes in the brain of these mice was
not increased; on the contrary, it was markedly diminished, and exposure of the brain tissue to α-T
greatly increased ROS production and accumulation [17].

The long pre-treatment of hippocampal neurons with 1–2.5 µM α-T prior to the induction of
oxidative stress provided a long-lasting protection via genomic activation, which was in contrast with
the transient effect of α-T on neuron viability based on its radical scavenging activity [18,19].

The effects of α-T and other vitamin E components at their physiological nanomolar
concentrations [5,6] characteristic for cerebrospinal fluid and brain extracellular space (at which
they act on various brain cells in vivo) may differ from their effects at much higher pharmacological
concentrations [4,7], especially in the case of long-term administration to humans or animals. Thus,
it was shown that excessive α-T in the brain exacerbated microglial activation and brain injury caused
by acute ischemic stroke in mice [4].

2.2. The Dosage and Duration of Treatment with α-T Govern Its Neuroprotective Effect

If neurons were preincubated with α-T for 18 h and then exposed to 0.2 mM H2O2, the protective
effect of α-T at 100 nM and 100 µM concentrations on neurons in complete incubation medium
containing serum was similar and significant (Figure 1B). Preincubation with 10 nM α-T for 18 h also
increased viability of brain cortical neurons, but to a lesser extent than preincubation with α-T at
100 nM and higher concentration (Figure 1B). The data obtained in the experiments were expressed as
α-T rescue rates (Table 1).

We also studied the correlation between α-T concentrations (using a logarithmic scale) and its
rescue rates at these concentrations. The most well-defined positive correlation (n = 28, r2 = 0.53,
r = 0.728, p < 0.0001) between these two variables was achieved when the effects of 10−9, 10−8 and
10−7 M α-T (1, 10 and 100 nM α-T) were compared. A less pronounced positive correlation between
these two variables (n = 53, r2 = 0.389, r = 0.62, p < 0.001) was revealed when comparing the rescue
rates characteristic for all the concentrations studied and presented in Table 1. There is no correlation
at all between α-T concentrations of 10−7 M and higher and α-T rescue rates at these concentrations
(n = 36, r2 = 0.04, r = 0.19, p = 0.26). This can clearly be seen on the logarithmic scale graphs.

The data presented in Table 1 as well as the data about correlation between α-T concentrations
and its rescue rates at these concentrations provide evidence that the protective effect of α-T on brain
cortical neurons against H2O2-induced death was concentration-dependent in the range 1–100 nM
(1 nM < 10 nM < 100 nM) if preincubation was performed for 18 h. Preincubation with 1 nM α-T did
not significantly protect brain cortical neurons against H2O2-induced toxicity; the rescue rate of 10 nM
α-T was significantly higher than that of 1 nM α-T and its protective effect was significant. The α-T
rescue rates at 100 nM, 1 µM, 10 µM and 100 µM concentrations did not significantly differ from one
another, but were higher than the rescue rate of α-T at 10 nM concentration (Table 1).
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Figure 1. Shows that preincubation of immature brain cortical neurons with α-tocopherol (α-T) at 
nanomolar concentrations for 0.5 h prior to exposure of the cells to 0.2 mM H2O2 for 24 h did not 
increase the viability of brain cortical neurons (A); while preincubation with 10 and 100 nM α-T for 
18 h prior to exposure of the neurons to 0.2 mM H2O2 for 24 h caused a pronounced increase in 
cortical neuron viability (B). H2O2 is designated as HP in the figure. Lactate dehydrogenase (LDH) 
method was used to determine neuron viability. The data bars (from the left to the right) in (A,B) 
show: (1) control values of LDH release from neurons; (2) control values of LDH release after 
incubation of the neurons with 100 µM α-T for 30 min (A) or for 18 h (B); (3) LDH release after 
neuron exposure to H2O2; (4) LDH release after preincubation of the neurons with 100 µM α-T prior 
to the cell exposure to H2O2; (5) LDH release after preincubation of the neurons with 100 nM α-T 
prior to the cell exposure to H2O2; (6) LDH release after preincubation of the neurons with 10 nM 
α-T prior to the cell exposure to H2O2. The results of one typical experiment from 9 experiments 
performed are shown as means ± SEM from 2–3 determinations in parallel samples. One way 
ANOVA followed by Tukey’s multiple comparison test was used to assess the significance of the 
differences between various groups of data. The differences were found to be significant: 
*—compared to control values, p < 0.01; x and xx—compared to the effect of H2O2 alone; x p < 0.01, xx p 
< 0.05, #—compared to the effect of α-T higher concentrations, p < 0.01. 

Table 1. Shows the protective effect of preincubation with α-T for 18 h prior to brain cortical neuron 
exposure to 0.2 mM H2O2 for 24 h expressed as rescue rates of α-T. Cell viability was assessed by the 
LDH method. The data are means ± SEM from 7–9 experiments. The difference in the LDH activity 
released from cortical neurons exposed to H2O2 in the absence and presence of α-T was determined. 
The ratio of this difference to the increase of LDH activity released from neurons to the medium in 
the presence of H2O2 alone (taken as 100%) corresponded to the rescue rates of α-T against 
H2O2-induced cell death. The formula is ([LDH release in H2O2 − LDH release in H2O2 and α-T]/[LDH 
release in H2O2 − LDH release in control]) x 100. In this table: *—the protective effect of α-T is 
significant, p < 0.01; x and #—the differences are significant according to Student’s t test as compared 
to the effect of α-T at lower concentrations, x p < 0.02, # p < 0.01. 

Previously, we have shown [14] that the protective effect of α-T against H2O2-induced PC12 
cell death was also higher the higher was the α-T concentration in the nanomolar range  

α-T Concentration 100 μM α-T 10 μM α-T 1 μM α-T 100 nM α-T 10 nM α-T 1 nM α-T 
Rescue rates (%) 64.3 ± 7.2 * 67.4 ± 11.9 * 60.0 ± 11.4 * 52.5 ± 7.4 *x 27.3 ± 5.1 *# 5.1 ± 2.9 

Figure 1. Shows that preincubation of immature brain cortical neurons with α-tocopherol (α-T) at
nanomolar concentrations for 0.5 h prior to exposure of the cells to 0.2 mM H2O2 for 24 h did not
increase the viability of brain cortical neurons (A); while preincubation with 10 and 100 nM α-T for
18 h prior to exposure of the neurons to 0.2 mM H2O2 for 24 h caused a pronounced increase in
cortical neuron viability (B). H2O2 is designated as HP in the figure. Lactate dehydrogenase (LDH)
method was used to determine neuron viability. The data bars (from the left to the right) in (A,B) show:
(1) control values of LDH release from neurons; (2) control values of LDH release after incubation of the
neurons with 100 µM α-T for 30 min (A) or for 18 h (B); (3) LDH release after neuron exposure to H2O2;
(4) LDH release after preincubation of the neurons with 100 µM α-T prior to the cell exposure to H2O2;
(5) LDH release after preincubation of the neurons with 100 nM α-T prior to the cell exposure to H2O2;
(6) LDH release after preincubation of the neurons with 10 nM α-T prior to the cell exposure to H2O2.
The results of one typical experiment from 9 experiments performed are shown as means ± SEM from
2–3 determinations in parallel samples. One way ANOVA followed by Tukey’s multiple comparison test
was used to assess the significance of the differences between various groups of data. The differences
were found to be significant: *—compared to control values, p < 0.01; x and xx—compared to the effect
of H2O2 alone; x p < 0.01, xx p < 0.05, #—compared to the effect of α-T higher concentrations, p < 0.01.

Table 1. Shows the protective effect of preincubation with α-T for 18 h prior to brain cortical neuron
exposure to 0.2 mM H2O2 for 24 h expressed as rescue rates of α-T. Cell viability was assessed by the
LDH method. The data are means ± SEM from 7–9 experiments. The difference in the LDH activity
released from cortical neurons exposed to H2O2 in the absence and presence of α-T was determined.
The ratio of this difference to the increase of LDH activity released from neurons to the medium in the
presence of H2O2 alone (taken as 100%) corresponded to the rescue rates of α-T against H2O2-induced
cell death. The formula is ([LDH release in H2O2 − LDH release in H2O2 and α-T]/[LDH release
in H2O2 − LDH release in control]) x 100. In this table: *—the protective effect of α-T is significant,
p < 0.01; x and #—the differences are significant according to Student’s t test as compared to the effect
of α-T at lower concentrations, x p < 0.02, # p < 0.01.

α-T Concentration 100 µM α-T 10 µM α-T 1 µM α-T 100 nM α-T 10 nM α-T 1 nM α-T

Rescue rates (%) 64.3 ± 7.2 * 67.4 ± 11.9 * 60.0 ± 11.4 * 52.5 ± 7.4 *x 27.3 ± 5.1 *# 5.1 ± 2.9
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Previously, we have shown [14] that the protective effect of α-T against H2O2-induced
PC12 cell death was also higher the higher was the α-T concentration in the nanomolar range
(1 nM < 10 nM < 100 nM). Numakawa and co-authors were the first to show the protective effect
of nanomolar α-T, but did not reveal its dependence on the α-T concentration [10].

Another piece of evidence of the protective role that preincubation of neuronal cells with α-T at
nanomolar concentrations plays was provided by studies of α-T ability to increase viability of PC12
cells exposed to eleostaric acid, which caused increase in ROS production and apoptotic cell death [20].

2.3. The Protective Effect of Preincubation with α-T for 18 h against H2O2-Induced Death of Brain Cortical
Neurons Is Diminished or Abolished in the Presence of Inhibitors of PI 3-Kinase, MEK1/2 and PKCδ

The data obtained are presented in Table 2.

Table 2. Shows that the rescue rates of α-T against H2O2-induced brain cortical neuron death
were significantly lower in the presence of an inhibitor of PI 3-kinase (LY294002), an inhibitor of
MEK1/2 (SL327) and an inhibitor of PKCδ (rottlerin) than in their absence in the incubation medium.
Cell viability was assessed by the LDH method. The data are means ± SEM from 5–6 experiments.
Preincubation with protein kinase inhibitors was performed for 0.5 h, then α-T was added for 18 h
before brain cortical neuron exposure to 0.2 mM H2O2 for 24 h. In this table: ** and *—the protective
effect of α-T is significant, ** p < 0.02, * p < 0.05; x and #—the differences are significant as compared to
the effect of α-T in the absence of inhibitors by paired Student’s t-test, x p < 0.02, # p < 0.05.

Sample Rescue Rates of α-T, % Sample Rescue Rates of α-T, %

100 nM α-T 52.4 ± 13.1 ** 100 µM α-T 63.35 ± 12.6 **
100 nM α-T + 10 µM SL327 31.35 ± 11.1 *,# 100 µM α-T + 10 µM SL327 36.9 ± 12.3 *

100 nM α-T + 50 µM LY294002 10.1 ± 4.6 x 100 µM α-T + 50 µM LY294002 27.6 ± 14.7 #

100 nM α-T 50.0 ± 7.5 ** 100 µM α-T 52.2 ± 6.4 **
100 nM α-T + 5 µM rottlerin 20.9 ± 4.6 **,x 100 µM α-T + 5 µM rottlerin 33.6 ± 4.8 **,x

The rescue rates were calculated either in the absence of the inhibitor in all samples or in the
presence of the same inhibitor in all samples. In most—but not in all—experiments, the LDH release
was higher in presence of both H2O2 and one of the inhibitors than in presence of H2O2 alone, but
the difference was not significant. If the effect of H2O2 alone is taken for 100%, the combined effect of
H2O2 and LY294002, SL327 or rottlerin is respectively 122.5% ± 10.1%, 115% ± 9.6% or 116% ± 7%
(p > 0.05).

In presence of the MEK1/2/ERK1/2 and the PI 3-kinase/Akt pathways inhibitors and of the
PKCδ inhibitor, the ability of 100 nM and 100 µM α-T to rescue neurons from H2O2-induced death
was markedly and significantly diminished or became insignificant (Table 2).

However, such data should be interpreted with caution. For example, rottlerin was shown not
to be a specific inhibitor of PKCδ; it inhibits or activates other metabolic processes in cells [21,22],
including the modulation of some protein kinase activity, for example, Ca2+/calmodulin-dependent
protein kinase activity.

The protective effect of α-T at nanomolar and micromolar concentrations against H2O2-induced
PC12 cell death [14] was also shown to be markedly diminished in the presence of PI 3-kinase and
MEK1/2 inhibitors if the cells were preincubated with α-T for 18 h.

2.4. α-T at Micromolar and Nanomolar Concentrations Diminishes the Accumulation of ROS Induced in Brain
Cortical Neurons by H2O2

The data showing that α-T diminishes the accumulation of ROS in brain cortical neurons are
presented in Figure 2.
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Figure 2. Shows that long preincubation with α-tocopherol (α-T) at nanomolar and micromolar 
concentrations diminished ROS accumulation in brain cortical neuron elicited by H2O2 to a great 
extent. The neurons were preincubated with α-T for 18 h. Then the fluorescent dye 
dichlorodihydrofluorescein diacetate was added to the incubation medium to a final concentration 
of 25 µM (see “Materials and Methods”). After 40 min incubation, the cells were exposed to 0.2 mM 
H2O2 for 4 h. H2O2 in the Figure is designated as HP. The data bars (from the left to the right) show: 
(1) control values; (2) control values after incubation of the neurons with 100 nM α-T; (3) control 
values after incubation of the neurons with 100 µM α-T; (4) ROS accumulation (arbitrary units) after 
neuron exposure to H2O2; (5) ROS accumulation after preincubation of the neurons with 100 µM α-T 
prior to the cell exposure to H2O2; (6) ROS accumulation after preincubation of the neurons with 100 
nM α-T prior to the cell exposure to H2O2. The results of one typical experiment are shown as means 
± SEM from 4–6 determinations in parallel samples. One-way ANOVA followed by Tukey’s test for 
multiple comparison was used to assess significance of the differences between various groups of 
data. The differences were found to be significant: *—compared to control values; x—compared to 
the effect of H2O2 alone; #—compared to the effect of 100 µM α-T (p < 0.01 in all cases). 

The data obtained provide evidence that the average inhibition of H2O2-initiated ROS 
accumulation by preincubation with 100 µM and 100 nM α-T for 18 h was 75.9% ± 3.1% and 54.8% ± 
7.1%, respectively; the antioxidative effect of micromolar and nanomolar α-T was highly significant 
(p < 0.001 and p < 0.01, respectively), the effect of 100 µM α-T being more pronounced than the effect 
of 100 nM α-T under the experimental conditions used (p < 0.05, n = 4). 

In another series of experiments we tried to study ROS accumulation in brain cortical neurons 
after their long preincubation with nanomolar and micromolar α-T prior to long (24 h) exposure to 
0.2 mM H2O2. However, under such a long exposure to H2O2 ROS accumulation was not significant 
in a large part of the experiments, so we failed to obtain reliable results. It appears that exposure to 
0.2 mM H2O2 for 24 h is the optimal time to measure the viability of neurons, but not to assess the 
initial disturbances of the metabolic processes caused by this prooxidant in the nerve cells. 

If the neurons were preincubated with α-T for 1.5 h and then exposed to H2O2 for 2 h, 100 µM 
α-T was found to reduce ROS accumulation almost to the control levels, while 100 nM α-T inhibited 
H2O2-induced ROS accumulation by 47.4% ± 1.5% (n = 5). 

Figure 2. Shows that long preincubation with α-tocopherol (α-T) at nanomolar and micromolar
concentrations diminished ROS accumulation in brain cortical neuron elicited by H2O2 to a great extent.
The neurons were preincubated with α-T for 18 h. Then the fluorescent dye dichlorodihydrofluorescein
diacetate was added to the incubation medium to a final concentration of 25 µM (see “Materials and
Methods”). After 40 min incubation, the cells were exposed to 0.2 mM H2O2 for 4 h. H2O2 in the Figure
is designated as HP. The data bars (from the left to the right) show: (1) control values; (2) control values
after incubation of the neurons with 100 nM α-T; (3) control values after incubation of the neurons
with 100 µM α-T; (4) ROS accumulation (arbitrary units) after neuron exposure to H2O2; (5) ROS
accumulation after preincubation of the neurons with 100 µM α-T prior to the cell exposure to H2O2;
(6) ROS accumulation after preincubation of the neurons with 100 nM α-T prior to the cell exposure
to H2O2. The results of one typical experiment are shown as means ± SEM from 4–6 determinations
in parallel samples. One-way ANOVA followed by Tukey’s test for multiple comparison was used to
assess significance of the differences between various groups of data. The differences were found to be
significant: *—compared to control values; x—compared to the effect of H2O2 alone; #—compared to
the effect of 100 µM α-T (p < 0.01 in all cases).

The data obtained provide evidence that the average inhibition of H2O2-initiated ROS
accumulation by preincubation with 100 µM and 100 nM α-T for 18 h was 75.9% ± 3.1% and
54.8% ± 7.1%, respectively; the antioxidative effect of micromolar and nanomolar α-T was highly
significant (p < 0.001 and p < 0.01, respectively), the effect of 100 µM α-T being more pronounced than
the effect of 100 nM α-T under the experimental conditions used (p < 0.05, n = 4).

In another series of experiments we tried to study ROS accumulation in brain cortical neurons
after their long preincubation with nanomolar and micromolar α-T prior to long (24 h) exposure to
0.2 mM H2O2. However, under such a long exposure to H2O2 ROS accumulation was not significant
in a large part of the experiments, so we failed to obtain reliable results. It appears that exposure to
0.2 mM H2O2 for 24 h is the optimal time to measure the viability of neurons, but not to assess the
initial disturbances of the metabolic processes caused by this prooxidant in the nerve cells.
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If the neurons were preincubated with α-T for 1.5 h and then exposed to H2O2 for 2 h, 100 µM
α-T was found to reduce ROS accumulation almost to the control levels, while 100 nM α-T inhibited
H2O2-induced ROS accumulation by 47.4% ± 1.5% (n = 5).

We have previously [23] shown that the ability of 10 and 100 nM α-T to decrease ROS
accumulation initiated in PC12 cells by H2O2 was diminished or became insignificant in the presence
of MEK1/2/ERK1/2 and PI 3-kinase/Akt pathways inhibitors (SL327 and LY294002, respectively).
However, these inhibitors did not change the decrease of ROS accumulation as a result of short
preincubation with 100 µM α-T, apparently due to its scavenging effect [23].

2.5. α-T Increases the Basal Level of pAkt and pERK1/2 in Brain Cortical Neurons, but Does Not Change
Total Akt and ERK1/2 Levels

The effect of α-T on basal Akt activity (pAkt level) and Akt level in cortical neurons was
studied (Figure 3).
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Figure 3. Shows the effect of incubation with 100 nM and 100 µM α-tocopherol (α-T) for 0.5, 1, 3, 7 
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level of pAkt is significant by paired Student’s t test after incubation with 100 nM α-T, p < 0.05. 

α-T (100 nM) was found to activate Akt (to increase pAkt level) in control brain cortical 
neurons 1 and 3 h after exposure of the cells to this antioxidant (Figure 3A). No change in pAkt 
level in these neurons was revealed as a result of their incubation with 100 µM α-T (Figure 3A). No 
change in total Akt level were evidenced after exposure of cortical neurons to 100 nM or 100 µM 
α-T, hence it had no influence on the expression of this protein kinase. 

Figure 3. Shows the effect of incubation with 100 nM and 100 µM α-tocopherol (α-T) for 0.5, 1, 3, 7 and
24 h on the level of pAkt and total Akt in brain cortical neurons. Immunoblots obtained in one typical
experiment from 6–7 experiments made are presented in (A). The data of 6–7 experiments made are
presented as means ± SEM in (B). Red lines with squares show the effect of 100 nM α-T, black lines
with rhombs the effect of 100 µM α-T. In this figure: *—the difference from the control level of pAkt is
significant by paired Student’s t test after incubation with 100 nM α-T, p < 0.05.

α-T (100 nM) was found to activate Akt (to increase pAkt level) in control brain cortical neurons 1
and 3 h after exposure of the cells to this antioxidant (Figure 3A). No change in pAkt level in these
neurons was revealed as a result of their incubation with 100 µM α-T (Figure 3A). No change in total
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Akt level were evidenced after exposure of cortical neurons to 100 nM or 100 µM α-T, hence it had no
influence on the expression of this protein kinase.

The effect of α-T on basal ERK1/2 activity (pERK1/2 level) and total ERK1/2 level in brain
cortical neurons was studied (Figure 4).
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increased in brain cortical neurons after their exposure to 100 µM α-T for 1, 3, 7 and 24 h and to 100 
nM α-T for 3 and 7 h. However, neither 100 nM, nor 100 µM α-T changed the total ERK1/2 level in 
brain cortical neurons, so it had no influence on the expression of this protein kinase. 

Numakawa and co-authors were the first to show that α-T (as well as γ-tocopherol) at 
nanomolar concentrations increases the basal activity of Akt and ERK1/2 in brain cortical neurons 
[10]. Our data are in agreement with their findings, but neither in this work nor in other 
publications the effect of α-T on activities of these protein kinases in neurons or cells of neuronal 
cell lines was studied under the conditions of oxidative stress. 

Figure 4. Shows that incubation of brain cortical neurons with 100 nM and 100 µM α-tocopherol (α-T)
increased the level of pERK1/2 in these neurons. Immunoblots obtained in one typical experiment are
presented in (A). The data are means ± SEM from 5–6 experiments in (B). Red lines with squares show
the effect of 100 nM α-T, black lines with rhombs - the effect of 100 µM α-T. In this figure the difference
is significant by paired Student’s t-test: *—between pERK1/2 level after exposure to 100 µM α-T and
control pERK1/2 level, p < 0.05, x—between pERK1/2 level after exposure to 100 nM α-T and control
pERK1/2 level, p < 0.05. The level of pERK1/2 significantly increased in brain cortical neurons after
their exposure to 100 µM α-T for 1, 3, 7 and 24 h and to 100 nM α-T for 3 and 7 h. However, neither
100 nM, nor 100 µM α-T changed the total ERK1/2 level in brain cortical neurons, so it had no influence
on the expression of this protein kinase.

Numakawa and co-authors were the first to show that α-T (as well as γ-tocopherol) at nanomolar
concentrations increases the basal activity of Akt and ERK1/2 in brain cortical neurons [10]. Our data
are in agreement with their findings, but neither in this work nor in other publications the effect of α-T
on activities of these protein kinases in neurons or cells of neuronal cell lines was studied under the
conditions of oxidative stress.



Int. J. Mol. Sci. 2017, 18, 216 9 of 25

2.6. While α-T Prevents Akt Inactivation Initiated by H2O2 in Brain Cortical Neurons, the Effect of 100 nM
and 100 µM α-T Is Similar

The data presented in Figure 5 provide evidence that α-T prevents Akt inactivation initiated by
H2O2 in cortical neurons.
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Figure 5. Shows the effect of preincubation of brain cortical neurons with 100 nM and 100 µM 
α-tocopherol (α-T) for 18 h prior to their exposure to 0.2 mM H2O2 for 24 h on pAkt and total Akt 
levels. Immunoblots obtained in one typical experiment are presented in (A). The results of 5–6 
experiments are presented in (B) as means ± SEM. Red lines with squares show the effect of H2O2 
alone, black lines with rhombs—effect of H2O2 after preincubation with 100 nM α-T, green lines with 
triangles—effect of H2O2 after preincubation with 100 µM α-T. In this figure: * and **—the differences 
are significant according to Student’s paired t test as compared to the level of pERK1/2 in brain cortical 
neurons exposed to H2O2 alone; *—the effect of preincubation with 100 nM α-T is significant, p < 0.05; 
**—the effect of preincubation with both 100 nM and 100 µM α-T is significant, p < 0.05. 

The data obtained provide evidence that exposure of brain cortical neurons to 0.2 mM H2O2 
results in inactivation of Akt. Thus, the activity of this protein kinase (measured as pAkt level) fell 
more than twice with respect to control values 12 h after the application of H2O2 and more than 
three times 24 h after the application of this prooxidant (Figure 5), the difference with the control 
level being significant (p < 0.01). Preincubation with 100 nM and 100 µM α-T markedly and 
significantly increased Akt activity in cortical neurons (Figure 5) 12 and 24 h after their exposure to 

Figure 5. Shows the effect of preincubation of brain cortical neurons with 100 nM and 100 µM
α-tocopherol (α-T) for 18 h prior to their exposure to 0.2 mM H2O2 for 24 h on pAkt and total Akt levels.
Immunoblots obtained in one typical experiment are presented in (A). The results of 5–6 experiments
are presented in (B) as means ± SEM. Red lines with squares show the effect of H2O2 alone, black lines
with rhombs—effect of H2O2 after preincubation with 100 nM α-T, green lines with triangles—effect
of H2O2 after preincubation with 100 µM α-T. In this figure: * and **—the differences are significant
according to Student’s paired t test as compared to the level of pERK1/2 in brain cortical neurons
exposed to H2O2 alone; *—the effect of preincubation with 100 nM α-T is significant, p < 0.05; **—the
effect of preincubation with both 100 nM and 100 µM α-T is significant, p < 0.05.

The data obtained provide evidence that exposure of brain cortical neurons to 0.2 mM H2O2

results in inactivation of Akt. Thus, the activity of this protein kinase (measured as pAkt level) fell
more than twice with respect to control values 12 h after the application of H2O2 and more than three
times 24 h after the application of this prooxidant (Figure 5), the difference with the control level being
significant (p < 0.01). Preincubation with 100 nM and 100 µM α-T markedly and significantly increased
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Akt activity in cortical neurons (Figure 5) 12 and 24 h after their exposure to prooxidant with respect to
the effect of H2O2 alone. During the early stages (first 5 min),of exposure of cortical neurons to H2O2

100 nM α-T increased the pAkt level as compared to the effect of H2O2 alone, whereas 100 µM α-T
did not. Both H2O2 and α-T had no effect on the total Akt level (Figure 5A), which means that they
did not change the expression of this enzyme. It is of interest that in contrast to brain cortical neurons,
exposure of PC12 cells to 0.2 mM H2O2 for 24 h did not result in a pronounced inactivation of Akt [14].

The abrupt drop of Akt activity (Figure 5) revealed in our experiments as a result of cell exposure
to H2O2 appears to be one of the reasons for neuron death. α-T prevents the inactivation of Akt under
conditions of oxidative stress, but in presence of the PI 3-kinase/Akt signaling pathway inhibitor
(LY294002) the protective effect of α-T was not observed (see Table 2). These data suggest that the
ability of α-T to prevent inactivation of Akt in cortical neurons plays an important role in its protective
effect against H2O2 toxicity.

It should be noted that activation of Akt by neurotrophins, flavonoids or other compounds usually
leads to an increase of cells (including neurons) viability [24,25]. Conversely, inactivation of Akt results
in cell damage and death (see, for example, [26]).

The activation of Akt may occur only after its binding to membrane phosphatidyl-inositol-3,
4, 5-phosphate formed by activated PI 3-kinase. The activation of PI 3-kinase takes place after a
stimulus triggered by G protein coupled receptor or receptor tyrosine kinase. H2O2 was shown to
activate Trk receptor tyrosine kinase [27]. The transient phosphorylation of Akt by H2O2 takes place
downstream of activation of this protein kinase. Thus, the inhibitor of Trk tyrosine kinase (K252a) was
shown to diminish Akt activity in PC12 cells exposed to H2O2 practically to the control level [14]. α-T
activates Akt in the nerve cells [10,14], but has no effect on the activity of Trk tyrosine kinase. It is
possible that α-T like glutaredoxin [28] changes the redox state of Akt preventing its oxidation and
formation of disulfide bond between two cystein residues of these enzyme elicited by H2O2. Such
changes of Akt structure induced by H2O2 facilitate association of Akt with protein phosphatase
2A, its dephosphorylation and subsequent degradation [28], but the presence of antioxidants like
glutaredoxin [28] or α-T may prevent the effect of prooxidant. In our study, ROS formation in brain
cortical neurons exposed to H2O2 was markedly diminished both by 100 µM, and by 100 nM α-T.
Quite possible that it is a result of inhibition of one of the enzymes producing ROS by α-T [7].

2.7. While α-T Decreases the Time of Long Activation of ERK1/2 in Brain Cortical Neurons Initiated by H2O2,
the Effect of 100 nM and 100 µM α-T Is Similar

The data presented in Figure 6 provide evidence that α-T decreases the time of maximal activation
of ERK1/2 initiated by H2O2 in brain cortical neurons.

The maximal level of pERK1/2 was reached within 5 min after neuron exposure to H2O2 and was
then maintained for the whole 24 h observation period (Figure 6A,B). Preincubation with nanomolar
and micromolar α-T prevented long and sustained activation of ERK1/2 initiated by H2O2 in brain
cortical neurons. pERK1/2 levels were much lower in neurons preincubated with 100 nM and 100 µM
α-T 5, 12 and 24 h after beginning to expose the cells to H2O2 (p < 0.05). In cells exposed both to α-T
and H2O2, a peak instead of a plateau is seen in the histograms (Figure 6B). Neither H2O2 nor α-T
altered the expression of ERK1/2.

The prolonged activation of ERK1/2 by H2O2 in brain cortical neurons observed in our study is in
agreement with previous data showing the activation of this enzyme by ROS [29,30]. α-T decreased the
time of maximal activation of ERK1/2 in PC12 cells as well [14], but the maximal activation of ERK1/2
by H2O2 in these cells lasted for a much shorter time than in cortical neurons. It should be noted that
carnosine has a similar effect on ERK1/2 activity; carnosine was shown to protect cerebellar granule
cells against oxidative stress and to decrease the time of ERK1/2 activation by a prooxidant [31]. α-T
similar effect may be the result of a protein phosphatase activation, especially of 2A. The mechanism of
protein phosphatase activation by α-T appears to be complicated, as it needs a long preincubation with
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it [7,8,32]. Both α-T and its derivative which does not have radical scavenging activity were shown to
be able to inhibit ERK1/2 activity [33].
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Figure 6. Shows the effect of preincubation of brain cortical neurons with 100 nM and 100 µM
α-tocopherol (α-T) for 18 h prior to the cell exposure to 0.2 mM H2O2 for 24 h on pERK1/2 and total
ERK1/2 levels. The immunoblots obtained in one typical experiment are presented in (A). The results
of 5–6 experiments are presented in (B) as means ± SEM. Red lines with squares show the effect of
H2O2 alone, black lines with rhombs—effect of H2O2 after preincubation with 100 nM α-T, green lines
with triangles—effect of H2O2 after preincubation with 100 µM α-T. It is shown that 0.2 mM H2O2

activated ERK1/2 in brain cortical neurons (increased pERK1/2 level) 5 min after its application, then
ERK1/2 remained at the same high level during 24 h of prooxidant action. However, if these neurons
were preincubated with 100 nM and 100 µM α-T for 18 h and then exposed to 0.2 mM H2O2 for 24 h,
the activity of ERK1/2 was not high, it was close to control values 12 and 24 h after exposure of the
neurons to this prooxidant, the effect of preincubation with 100 nM and 100 µM α-T was significant.
Preincubation with α-T (100 µM) caused a significant increase of the pERK1/2 level as compared to the
effect of H2O2 alone at early stages of its action—5 min after cell exposure to H2O2, but 100 nM α-T did
not exert such an effect. No change in the total ERK1/2 level was revealed as a result of the exposure
of neurons to H2O2 alone or to H2O2 after preincubation with α-T, which means that the expression of
this protein kinase was not changed. In this figure: * and **—the differences are significant according
to Student’s paired t test as compared to the level of pERK1/2 in brain cortical neurons exposed to
H2O2 alone; *—the effect of preincubation with 100 µM α-T is significant; p < 0.05, **—the effect of
preincubation with both 100 nM and 100 µM α-T is significant, p < 0.05.

It is of interest to note that a short activation of ERK1/2 by neurotrophins, flavonoids or other
compounds increases the viability of nerve cells [24,25], whereas long sustained activation of ERK1/2,
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in contrast, leads to nerve cell death. Thus, the exposure of cortical neurons to toxic zinc concentrations
was shown to result in a sustained and excessive activation of Ras/MEK1/2/ERK1/2 pathway,
mitochondrial dysfunction and neuronal death [34,35]. Glutathione depletion of cortical neurons and
cells of HT22 neuroblastoma cell line leads to oxidative stress, sustained activation of ERK1/2 and,
ultimately, the death of these cells [36]. When the effect of glutamate on the HT22 neuronal cell line
was studied it was found that early activation of ERK1/2 increases cell viability, while conversely,
a late activation leads to their death [36]. In vivo oxidative stress caused by ischemic damage is
accompanied by sustained activation of ERK1/2 in the brain [37–39]. The administration of inhibitors
of MEK1/2/ERK1/2 pathway (including SL327 used in our experiments) to animals subjected to brain
ischemia and reperfusion (accompanied by activation of free radical reactions) leads to a pronounced
decrease of neuronal death in damaged brain regions and to a marked improvement of the animal
functional state [37–39].

In our study, 100 nM and 100 µM α-T was able to activate ERK1/2 in control cells and at the
early stages of the H2O2 action, and to inhibit this protein kinase at the late stages of the H2O2 action.
The ability of 100 nM and 100 µM α-T to inhibit the ERK1/2 activity at the late stages of prooxidant
action was shown to be similar. In the presence of theMEK1/2 inhibitor (SL327), which prevents
ERK1/2 activation, the rescue rates of α-T were to a great extent and significantly diminished (Table 2).
The data obtained suggest that the ability of α-T at nanomolar and micromolar concentrations to
increase the viability of brain cortical neurons depends on its modulation of ERK1/2 activity.

2.8. α-T at 100 µM and 100 nM Concentrations Diminishes the Activation of PKCδ Initiated by H2O2 in Brain
Cortical Neurons

The activation of PKCδ may happen as a result of its phosphorylation or as a result of its proteolytic
cleavage by caspase-3. In the latter case, a catalytically active 40–41 kDa fragment is formed as a
result of the cleavage of 78–79 kDa PKCδ. Studies made using cells of the PC12 and N27 neuronal cell
lines and smooth muscle cells provide evidence that proteolytic cleavage is the main way of PKCδ

activation, leading to the apoptotic death of cells under conditions of oxidative stress initiated by H2O2

or by 6-hydroxydopamine extracellular auto-oxidation [40–42], whereas necrotic neuronal and muscle
cell death is accompanied by increased phosphorylation of PKCδ, which results in the activation of this
protein kinase [41,42]. We used long exposure to a relatively low H2O2 concentration (0.2 mM H2O2

for 24 h). In our previous work we have shown that, under conditions of oxidative stress initiated
by such treatment, the apoptotic death of PC12 cells predominates [14]. That is why we studied the
formation of the active 40 kDa fragment in order to assess the PKCδ activation in brain cortical neurons
exposed to H2O2 (Figure 7).

Our data are in agreement with the data of Ferri and co-authors [43] who have shown that α-T
inhibits PKCδ activity in the hippocampal dentate gyrus neurons in vivo. PKCδ activation was shown
to increase the death of neurons in a number of studies [44–46]. Thus, it was shown [45] that the
dopaminergic neurotoxicant 6-hydroxydopamine (6-OHDA) induced oxidative damage through the
proteolytic activation of PKCδ in mesencephalic dopaminergic neuronal N27 cells. It is of interest that
the activation of PKCδ was completely suppressed by treatment with a caspase-3-specific inhibitor.
Expression of caspase-3 cleavage resistant mutant PKCδ (D327A) and kinase dead PKCδ (K376R) or
siRNA-mediated knockdown of PKCδ protected against 6-OHDA-induced neuronal cell death [45].
In the works of Zhang and co-authors [44], it has been shown that the PKCδ isoform is an oxidative
stress-sensitive kinase and a key mediator of apoptotic cell death in Parkinson’s disease models.
Rottlerin was found to decrease PKCδ activity to a great extent in primary cultures of mesencephalic
neurons. The neuroprotective effect of rottlerin was shown in both cell culture and preclinical animal
models of Parkinson’s disease [44].
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Figure 7. Shows the effect of H2O2 and preincubation with α-tocopherol (α-T) on the level of the active
fragment of PKCδ with molecular mass 40 kDa and the level of total PKCδ in brain cortical neurons.
These neurons were preincubated with 100 nM and 100 µM α-T (or without it) for 18 h and then exposed
to 0.2 mM H2O2 for 24 h. Immunoblots obtained in one typical experiment (from 5 experiments made)
show that H2O2 increased the level of catalytically active 40 kDa fragment of PKCδ in neurons up to
12 h after the beginning of their exposure to this prooxidant. It means that H2O2 activated PKCδ in
brain cortical neurons. However, preincubation with 100 nM and 100 µM α-T diminished the increase
of the level of 40 kDa fragment of PKCδ induced by H2O2. H2O2 and α-T had no effect on total PKCδ

level (Figure 7), which means that they did not change the expression of this enzyme.

The generation of PKCδ catalytic fragment in cell nuclei by caspase-3 cleavage of PKCδ is a critical
step leading to apoptotic cell death initiated by many apoptotic stimuli [47–49]. This 40–41 kDa
fragment of PKCδ forms complexes with DNA protein kinases, phosphorylates and inactivates
them, leads to chromatin condensation and nuclear fragmentation, to phosphorylation and activation
of p73-beta (structural and functional homologue of the p53 tumor suppressor), to redistribution
and activation of proapoptotic protein Bax that can directly induce cytochrome c release from the
mitochondria, activates such enzymes as scramblases, responsible for phosphatidylserine translocation
to outer leaflet of lipid bilayer, that leads to the apoptotic cell elimination [48–50]. It is of interest that
the PKCδ catalytic fragment is not only a product of caspase-3 action on PKCδ, but is able to activate
caspase-3 itself, enhancing the level of apoptosis [47,48]. Thus, PKCδ catalytic fragment has targets
in various compartments of the cells, its numerous metabolic effects lead to cell apoptosis and death.
In the present work we showed that neuron exposure to H2O2 results in the formation of catalytically
active 40 kDa fragment of PKCδ. At the same time, preincubation of brain cortical neurons with 100 nM
or 100 µMα-T markedly diminishes such activation. In the presence of the PKCδ inhibitor rottlerin, the
protective effect of α-T against H2O2-induced death of cortical neurons was significantly lower than in
its absence (see Table 2). All the above-mentioned data suggest that modulation of PKCδ activity by
α-T makes a pronounced contribution to its protective effect against the toxic action of H2O2 on brain
cortical neurons.
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It should be noted that α-T inhibits the activity not only of PKCδ, but of other forms of this protein
kinase as well, as has been shown in numerous studies. Thus, for example, the supplementation of
pregnant rats with high doses of vitamin E or α-T was found to potentiate α-T incorporation in the
hippocampus of their offsprings and to lead to a marked decrease of brain PKC phosphorylation
throughout their postnatal maturation. Offsprings of α-T supplemented pregnant rats showed a
pronounced reduction of long-term synaptic plasticity. The impairment of brain function was observed
even in adulthood, thus, in adult rats a deficit in long-lasting spatial memory, which depends on
the function of hippocampus, was shown [51]. The data obtained indicate [52] that gestational and
neonatal exposure to supranutritional α-T intake can result in anatomical changes of the offspring
hippocampus (in particular in an aberrant glia–synapse relationship) that last through adulthood.

In order to understand the physiological meaning of the results on the modulation of protein
kinase activities by H2O2 and α-T in cultured neurons it is of importance to know if these results may
be applied to brain in pathological conditions. The toxic effects of sustained ERK1/2 activation [37–39],
of PKCδ activation by caspase-3 cleavage [44], of Akt oxidation and inactivation [28] are revealed in
brain under pathological conditions concerned with activation of ROS formation. It gives additional
interest to the data on the mechanism of nanomolar and micromolar α-T protective action in cultured
nerve cells.

We studied the possible contribution of modulation of ERK1/2, Akt and PKCδ activity to the
protective effect of α-T against H2O2-induced death of brain cortical neurons, but it is to be noted that
the protective effect of α-T may depend also on modulation of other signaling pathways.

2.9. α-T at Micro- and Nanomolar Concentrations Prevents the Abrupt Decrease of Bcl-2 Level and the Marked
Increase of the Bax/Bcl-2 Ratio Initiated by H2O in Brain Cortical Neurons

In order to elucidate the mechanism of the α-T protective effect under conditions of oxidative
stress it is of importance not only to study its effect on the cell signaling pathways, but to obtain data
on its ability to stabilize mitochondria, in particular to modulate the expression, level and activity of
the pro- and antiapoptotic mitochondrial proteins. The effect of cortical neuron exposure to α-T on
basal Bax/Bcl-2 ratio is shown in Figure 8.
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Figure 8. Shows the effect of incubation of brain cortical neurons with α-tocopherol (α-T) for 18 h on
the basal Bax/Bcl-2 ratio. This ratio was taken as 100% in control brain cortical neurons. The data
of five experiments made are presented as means ± SEM. α-T (100 nM and 100 µM) was shown to
decrease the basal Bax/Bcl-2 ratio in brain cortical neurons. The diminution of this ratio was not
pronounced, but it was significant. *—the difference is significant according to Student’s paired t test
as compared to the Bax/Bcl-2 ratio in control cortical neurons, p < 0.02.
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But more important for us was to see the effect of nanomolar and micromolar α-T on the level
of Bax and Bcl-2 under conditions of oxidative stress induced by H2O2 in brain cortical neurons.
The experimental data obtained are presented in Figure 9.
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Figure 9. Shows the effect of exposure of cortical neurons to 0.2 mM H2O2 for 24 h and of 
preincubation with 100 nM and 100 µM α-tocopherol (α-T) for 18 h on the level of Bcl-2 and Bax in 
brain cortical neurons. The results of immunoblotting obtained in one typical experiment are shown 
in (A). The results of 6–7 experiments are shown in (B,C), respectively, as means ± SEM. Red lines 
with squares show the effect of H2O2 alone, black lines with rhombs—effect of H2O2 after 
preincubation with 100 nM α-T, green lines with triangles—effect of H2O2 after preincubation with 
100 µM α-T. * and **—the differences are significant according to Student’s paired t test as 
compared to the level of Bcl-2 in brain cortical neurons exposed to H2O2 alone, * the effect of 
preincubation with 100 nM α-T is significant, * p < 0.05, ** the effect of preincubation with both 100 
nM and 100 µM α-T is significant, p < 0.02. 

Figure 9. Shows the effect of exposure of cortical neurons to 0.2 mM H2O2 for 24 h and of preincubation
with 100 nM and 100 µM α-tocopherol (α-T) for 18 h on the level of Bcl-2 and Bax in brain cortical
neurons. The results of immunoblotting obtained in one typical experiment are shown in (A).
The results of 6–7 experiments are shown in (B,C), respectively, as means ± SEM. Red lines with
squares show the effect of H2O2 alone, black lines with rhombs—effect of H2O2 after preincubation
with 100 nM α-T, green lines with triangles—effect of H2O2 after preincubation with 100 µM α-T. * and
**—the differences are significant according to Student’s paired t test as compared to the level of Bcl-2
in brain cortical neurons exposed to H2O2 alone, * the effect of preincubation with 100 nM α-T is
significant, * p < 0.05, ** the effect of preincubation with both 100 nM and 100 µM α-T is significant,
p < 0.02.
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It was found that H2O2 had practically no effect on the content of the antiapoptotic protein Bcl-2
in brain cortical neurons for the first 3 h after the application of H2O2. The small decrease in Bcl-2 level
5 h after exposure of the cells to H2O2 was found to be significant (p < 0.05). Then, an abrupt decrease
in the level of this antiapoptotic protein started (Figure 9B). Thus, the Bcl-2 level 12 and 24 h after
exposure of cortical neurons to H2O2 was much lower with respect to its initial level (0 point), this
diminution being highly significant (p < 0.001). However if brain cortical neurons were preincubated
with 100 nM or 100 µM α-T and then exposed to H2O2 the decrease in Bcl-2 content practically did
not happen 12 and 24 h after cell exposure to this prooxidant. At these time intervals of exposure of
the cells to H2O2, preincubation with 100 nM or 100 µM α-T significantly increased the Bcl-2 level in
cortical neurons compared to the effect of H2O2 alone (Figure 9B).

The proapoptotic protein Bax did not show such a pronounced alteration of its level after brain
cortical neuron exposure to H2O2 as Bcl-2. Preincubation with 100 nM or 100 µM α-T did not have any
significant effect on Bax level (Figure 9C).

The data showing the effect of H2O2 and α-T on Bax/Bcl-2 ratio in brain cortical neurons are
presented in Figure 10.

A pronounced and significant increase of the Bax/Bcl-2 ratio 12 and 24 h after exposure of cortical
neurons to H2O2 alone appears to be mainly a result of the abrupt decrease of Bcl-2 level under
conditions of oxidative stress. However, preincubation with nanomolar or micromolar α-T resulted
in a pronounced increase of Bcl-2 level 12 and 24 h after brain neuron exposure to the prooxidant, as
clearly seen in the immunoblots (Figure 10A). Our data showing that preincubation of neurons with
α-T decreases Bax/Bcl-2 ratio (or increases “survival index”—Bcl-2/Bax ratio) in the neurons are in
agreement with the data of Then and co-authors [53].

The long effect of 0.2 mM H2O2 on neurons or neuronal cell lines usually leads mainly to apoptotic
cell death; thus it was shown in our study of the effect of H2O2 on PC12 cells [14], but necrotic death of
a certain part of brain cortical neurons exposed to H2O2 cannot be excluded.

Proapoptotic mitochondrial proteins play an important role in the apoptotic death of various cells
including neurons, while the increase of expression and level of antiapoptotic proteins, in contrast,
decreases the apoptotic death rate (see, for example [54,55]). It is of interest that such proapoptotic
proteins as Bax and Bak were at first considered to have no effect on the necrotic cell death, until
data were obtained on their interaction with adenine nucleotide translocase which plays an important
role in the permeability of the mitochondrial inner membrane and in mPTP function [56–58]. It was
shown that Bax and Bak deletion decreases necrotic damage and death of cells in knockout mice with
myocardial infarction [58], while the excessive expression of the antiapoptotic protein Bcl-2 may lead
to the diminution of necrotic cell death [59]. It appears that mitochondrial pro- and antiapoptotic
proteins like Bax, Bak, Bcl-2 and others determine both apoptotic and necrotic cell death.

In the literature there are data showing that the expression, level and activity of mitochondrial
anti- and proapoptotic proteins may depend on the activity of Akt, ERK1/2 [25,60] and PKC [56,61].
The effect of activation of various forms of PKC may be opposite [61]. According to our data presented
above the inactivation of Akt and the maintenance of maximal ERK1/2 activity are induced by H2O2 at
approximately the same time or somewhat earlier than the great decrease of Bcl-2 level and the increase
of Bax/Bcl-2 ratio in brain cortical neurons. At the same time, preincubation with α-T prevents both
the alterations in the activity of ERK1/2 and Akt, and the decrease of the Bcl-2 level and increase of the
Bax/Bcl-2 ratio in brain cortical neurons. It may be suggested that the normalization of Akt, ERK1/2
and PKCδ activity by α-T in brain cortical neurons exposed to H2O2 makes a great contribution to
normalization of the Bax/Bcl-2 ratio in these cells. It is of interest that all these metabolic effects of α-T
were very similar if it was used at micromolar or nanomolar concentrations.
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Figure 10. Shows the effect of H2O2 and preincubation with α-tocopherol (α-T) on the Bax/Bcl-2 ratio 
in brain cortical neurons. The levels of Bcl-2 and Bax 3, 5, 12 and 24 h after brain cortical neuron 
exposure to 0.2 mM H2O2 after preincubation for 18 h with 100 nM α-T and 100 µM α-T (or without 
it) are shown in (A). The results of five experiments on the Bax/Bcl-2 ratio in brain cortical neurons 
are presented as means ± SEM in (B). Red lines with squares show the effect of H2O2 alone, black 
lines with rhombs—effect of H2O2 after preincubation with 100 nM α-T, green lines with 
triangles—effect of H2O2 after preincubation with 100 µM α-T. * and **—the differences are 
significant according to Student’s paired t test as compared to the initial level of Bax/Bcl-2 ratio (0 
point) and to the level of this ratio in brain cortical neurons exposed to H2O2 after preincubation 
with 100 nM and 100 µM α-T, * p < 0.05, ** p < 0.02. It means that the effect of preincubation with 
both 100 nM and 100 µM α-T is significant. 

Figure 10. Shows the effect of H2O2 and preincubation with α-tocopherol (α-T) on the Bax/Bcl-2 ratio
in brain cortical neurons. The levels of Bcl-2 and Bax 3, 5, 12 and 24 h after brain cortical neuron
exposure to 0.2 mM H2O2 after preincubation for 18 h with 100 nM α-T and 100 µM α-T (or without it)
are shown in (A). The results of five experiments on the Bax/Bcl-2 ratio in brain cortical neurons are
presented as means ± SEM in (B). Red lines with squares show the effect of H2O2 alone, black lines
with rhombs—effect of H2O2 after preincubation with 100 nM α-T, green lines with triangles—effect
of H2O2 after preincubation with 100 µM α-T. * and **—the differences are significant according to
Student’s paired t test as compared to the initial level of Bax/Bcl-2 ratio (0 point) and to the level of
this ratio in brain cortical neurons exposed to H2O2 after preincubation with 100 nM and 100 µM α-T,
* p < 0.05, ** p < 0.02. It means that the effect of preincubation with both 100 nM and 100 µM α-T
is significant.

3. Materials and Methods

3.1. Materials

α-T, H2O2, NADH, cytosine arabinoside were purchased in Sigma (Saint-Louis, MO, USA), K-252a,
SL327, LY284002 and rottlerin were obtained from Calbiochem (San Diego, CA, USA), penicillin
and streptomycin came from Serva (Heidelberg, Germany). The incubation media, Dulbecco’s
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modified Eagle Medium (DMEM) with L-glutamine, fetal calf blood serum were from Biolot Company
(Saint-Petersburg, Russia). In the Immunoblotting section the information about various antibodies
which were needed for experiments is given.

3.2. Brain Cortical Neurons in Culture

Brains of embryonic Wistar rat fetuses (day 17–18) were used to isolate cortical neurons and
prepare primary cultures of cortical neurons by modified method of Dichter [62] as previously
described [63]. Wistar rats were obtained from the Animal Facilities of I.M. Sechenov Institute
of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS,
Saint-Petersburg, Russia). All procedures using animals were in accordance with the European
Communities Council Directive of 24 November 1986, 86/609/EEC and were approved by the local
Animal Care and Use Committee of IEPhB RAS. DMEM containing 10% fetal calf serum, 10% F12
medium, 2 mM glutamine and 20 mM Hepes was used as the complete incubation medium. Cells were
seeded on poly-D-lysine coated 24-well plates at a density of 5 × 105 cells per well. After 24 h,
cytosine-arabinoside (1 µM) was added to culture for 24 h in order to minimize growth of glial cells.
Culture medium was replaced every 3 days. Treatments were performed on the 5-th day in vitro.
Preincubation of neurons with α-T was performed for 0.5 or 18 h in complete incubation medium prior
to the exposure of cells to 0.2 mM H2O2 for 24 h in complete incubation medium. In some experiments
neurons were preincubated in the presence of protein kinase inhibitors (SL327, LY294002 or rottlerin)
for 0.5 h in complete incubation medium before the exposure of the cells to α-T.

3.3. Assessment of Cell Viability Using the Lactate Dehydrogenase (LDH) Method

LDH method was used to determine viability of immature brain cortical neurons. This method is
based on evaluation of activity of LDH released to the incubation medium from the damaged cells.
Before the aliquots were taken from the incubation medium the centrifugation of the samples was
performed. In order to determine the activity of LDH in the samples the decrease of NADH level was
measured in them. This reaction took place in the incubation medium containing 80 mM tris-HCl pH
7.2, 1.6 mM pyruvate, 0.2 mM NADH and 200 mM NaCl. In order to measure the decrease of NADH
level the decrease of optical density of the samples was registered at 340 nm during approximately
5–6 min as previously described [64], M40 spectrophotometer (Karl-Zeisse, Germany) was used for
this purpose. The total LDH activity of the samples was determined after the lysis of the neurons.
It was performed in presence of 1% Triton X-100 at room temperature. The percent of LDH activity
released to the incubation medium from the damaged cells to the total LDH activity in the sample was
determined. If 100% of LDH activity is found in the incubation medium it means that all cells are dead.

In order to show the protective effect of α-T in various series of experiments its rescue rates were
calculated. For this purpose the difference in the amount (activity) of LDH released from cortical
neurons exposed to H2O2 in the absence and in the presence of of α-T was determined. Then the ratio
of this difference to the increase of LDH amount released from neurons to the incubation medium in
the presence of H2O2 alone (taken for 100%) was calculated. Such value corresponds to rescue rate
of α-T against H2O2-induced neuron death. Thus, the rescue rate may be calculated in the following
way: ([LDH release in H2O2−LDH release in H2O2 and α-T]/[LDH release in H2O2−LDH release
in control]) × 100.

3.4. Determination of ROS Accumulation

Incubation with α-T was carried out as described in previous sections. The fluorescent dye
dichlorodihydrofluorescein diacetate was added to the incubation medium to a final concentration
of 25 µM. After 40 min incubation, the cells were exposed to 0.3 mM H2O2 for 4 h [65]. In order to
remove dye excess the cells were washed with Hanks’ balanced salt solution. The fluorescence of the
reaction product of ROS with dichlorodihydrofluorescein was determined using a Fluoroscan Ascent
FL (Thermo Fisher Scientific, Vantaa, Finland) measuring the emission at λ = 523 nm after excitation at
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485 nm. The ROS content was expressed in arbitrary units representing the intensity of the fluorescence
of the reaction product.

3.5. Immunoblotting

Western-blot analysis was used to determine the expression and activity of ERK1/2, Akt and,
expression of Bcl-2, Bax and PKCδ. Brain cortical neurons were exposed to α-T, H2O2 and other
compounds like inhibitors (if needed), then they were washed twice using ice-cold PBS and scrapped
in lysis buffer, which consisted of 50 mM Tris pH 8.0, 150 mM NaCl, 1% Triton X-100, 10 mM
β-glycerophosphate Na, 10 mM NaF, 5 mM EDTA, 1 mM Na3VO4, 1 mM phenyl methyl sulfonyl
fluoride (PMSF), and protease inhibitor cocktail (Roche, Mannheim, Germany). Complete lysis of
cortical neurons was performed during 1 h on ice. To determine protein concentration in cell lysates
the Lowry method with Folin and Ciocaltteu’s Phenol reagent was used, the protein determinations
were performed in duplicate and bovine serum albumin was used as a standard. Protein-containing
lysates were put in each lane in the equivalent amount (20–25 µg). Electrophoresis was performed in
10% sodium dodecyl sulfate—polyacrilamide gel. It was followed by transfer to pure nitrocellulose
membranes (Schleicher & Schuell, Krackeler Scientific, Albany, NY, USA). The non-specific binding sites
of the membranes were blocked with 20 mM Tris-HCl buffer (pH 7,6) containing 150 mM NaCl (TBS),
5% (w/v) skimmed milk and 0.1% Tween 20. The blots were then probed overnight with antibodies for
pERK1 (pThr202/pTyr204) and pERK2 (pThr185/pTyr187) (1:2000, Sigma), pAkt (Ser473) (1:1000, Cell
Signaling, Danvers, MA, USA), Bcl-2 (1:1000, Cell Signaling), Bax (1:1000, Cell Signaling) or PKCδ

(C-17) (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA). Then they were washes three times using
0.1% Tween 20 in TBS. Anti-mouse or anti-rabbit HRP-labeled secondary antibodies (Cell Signaling)
were used. After the incubation with them for 1 h at the room temperature blots were developed,
using for this purpose Enhanced chemiluminescence detection Wester blotting reagents (Amersham,
GE Healthcare, Little Chalfont, UK). The data were normalized then. For this purpose membranes
were incubated in the buffer, containing 65 mM Tris, pH 6.8, 2% SDS (w/v), and β-mercaptoethanol
in order to strip antibodies previously used and re-probe with the antibodies for actin (1:100, Sigma),
α-tubulin (1:2000), Akt (pan) (Cell Signaling) or total ERK1/2 (Cell Signaling). The quantification of
optical densities of the positive bands of the scanned films was performed using NIH Image Analysis
software version 1.43 (Bethesda, MD, USA).

3.6. Statistical Analysis

Data are presented as the means ± SEM. The significance of the differences between two groups
of data was assessed by Student’s t-test and Student’s paired t-test. The statistical significance of
differences between three or more groups of data was estimated using one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc multiple comparison test. Values of p < 0.05 were taken to be
statistically significant.

4. Conclusions

Our work is one of the first attempts to study the mechanism of protective effect of α-T at
nanomolar concentrations, which are its physiological concentrations in cerebrospinal fluid and brain
extracellular space. The protective effect of α-T against the H2O2 toxic effect on the brain cortical
neurons was found to be concentration-dependent in the nanomolar range (1 < 10 < 100 nM) if the
preincubation with it was performed for 18 h. The maximal protection could be achieved by the
preincubation for 18 h with 100 nM α-T in serum containing medium (complete incubation medium);
a further increase of α-T concentration (1, 10 and 100 µM) did not result in a significant increase of
the protective effect, but nanomolar α-T did not protect cortical neurons if preincubation was made
for 0.5 h.

The possible contribution of modulation of ERK1/2, Akt and PKCδ activity by α-T to its protective
effect against H2O2 toxicity was studied. Preincubation for 18 h with α-T at nanomolar and micromolar
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concentrations was found to prevent the inactivation of Akt and sustained activation of ERK1/2
maintained at a high level from 5 min to 24 h after exposure of the neurons to H2O2. Long preincubation
with α-T diminished the activation of PKCδ elicited in cortical neurons by H2O2 alone. In the presence
of inhibitors of MEK1/2/ERK1/2 or PI 3-kinase/Akt signaling pathways or of PKCδ the protective
effect of α-T at nanomolar and micromolar concentrations was significantly diminished or disappeared.
One of the ways by which modulation of activities of protein kinases ERK1/2, Akt and PKC may change
the viability of neurons and other cells is their effect on the content of proapoptotic and antiapoptotic
mitochondrial proteins. H2O2 was shown to cause an abrupt decrease of the level of Bcl-2 protein
and a pronounced increase of the proapoptotic to antiapoptotic protein ratio (Bax/Bcl-2 ratio) in brain
cortical neurons 12 and 24 h after the exposure of the cells to it, while after preincubation of neurons
with α-T at nanomolar and micromolar concentrations Bcl-2 level was much higher and Bax/Bcl-2
ratio was much lower (close to control values) than in the case of neuron exposure to H2O2 alone.

α-T at concentrations of 100 nM and 100 µM was found to have an approximately similar metabolic
effects on brain cortical neurons if preincubation with it was performed for 18 h. Thus, the ability
of 100 nM and 100 µM α-T to modulate Akt, ERK1/2 and PKCδ activity and to prevent the changes
of the Bax/Bcl-2 ratio under conditions of oxidative stress was found to be very similar. However,
micromolar α-T diminished ROS formation induced by H2O2 to a higher extent than nanomolar α-T,
but much shorter time of neuron exposure to H2O2 (4 h) was used in these experiments than in the
case of determination of α-T effect on the viability of neurons (24 h).

It appears that the similar protective effect of nanomolar and micromolar α-T cannot be explained
by the fact that nanomolar α-T may accumulate in neurons in the course of long preincubation.
Thus, according to the data obtained by Saito and co-authors [13] the presence of 100 nM α-T in the
incubation medium does not lead to any increase in the α-T content of brain cortical neurons after 24 h
of incubation with this antioxidant, but the presence of 1 µM α-T in the incubation medium for 24 h
leads to accumulation of approximately 250 pmol of α-T per mg of protein in brain cortical neurons.
That is in contrast to α-tocotrienol which penetrates better to the cortical neurons and accumulates in
them even if it is present in the incubation medium in nanomolar concentrations (100–250 nM) [13].

Taking into account the data on the similar protection of brain cortical neurons exposed to H2O2 by
nanomolar and micromolar α-T obtained in the present study, a “more is better” approach to patients’
supplementation with vitamin E or α-T appears not to be reasonable. There are examples of unfavorable
effects or possible unfavorable effects of vitamin E or α-T administration in high doses to humans and
animals. They provide evidence that the mechanism of the protective action of α-T is quite complicated
and not limited to scavenging activity only. As it was already mentioned, vitamin E administration
in high doses was found to increase significantly the all-cause mortality in adult patients as well as
for people in risk groups [1–3]. The possible mechanism of negative outcomes of supplementation
of brain by α-T at high doses was shown in mice with acute ischemic brain stroke [4]. A poststroke
increase in markers of oxidative injury and neurodegeneration and activation of microglia were shown
to take place in the presence of elevated brain α-T. At supraphysiological level, α-T potentiated
neuroinflammatory responces to active ischemic stroke [4]. Another example is a recommendation
for an increased intake of the antioxidant α-T (vitamin E) by women in complicated pregnancies in
order to prevent free radical damage to mother and fetus [52]. However, recent data showed that
maternal vitamin E (α-T) supplementation to rats potentiated α-T incorporation in the brain (including
hippocampus) of offsprings and led to a marked decrease of PKC phosphorylation, marked reduction
of long-term synaptic plasticity in juvenile hippocampus and even to a deficit in long-lasting spatial
memory in adulthood of offspring [51,52]. Such results raise concerns about the potential effects of
increased α-T (vitamin E) intake by pregnant women on fetal brain development. All these data
suggest that it is of importance to perform further studies of mechanism of α-T action on neurons and
other brain cells at its physiological nanomolar concentrations present in brain extracellular space
making its comparison with the mechanism of α-T action at much higher micromolar concentrations.
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α-T belongs to the protectors that modulate signaling pathways and decrease the intensity of free
radical reactions in neurons and other cells, like flavonoids, N-acetyl-L-carnosine, gangliosides and
insulin. If the mechanism of the protective action of these natural compounds is better understood,
there is a chance to reveal the combinations in which they additively or synergistically increase the
protective effect of each other. Finally, the common use of some of these compounds may appear
effective in preclinical and clinical trials as a remedy in neurodegenerative and brain ischemic diseases.
It seems that such an approach might have an advantage compared to attempts to reveal the protective
effect of α-T or vitamin E administration over a long time and in appreciable amounts to patients with
various diseases and people in risk groups.

Acknowledgments: The work was supported by grants from the Russian Fund for Basic Research No. 13-04-00643
and No. 16-04-00408.

Author Contributions: Irina O. Zakharova, conceived and designated the experiments, performed the
experiments using immunoblotting technique, Tatiana V. Sokolova conceived and designated the experiments,
performed the experiments on isolation and cultivation of brain cortical neurons and on determination of neuron
viability, Yulia A. Vlasova performed the experiments on the reactive oxygen species production by neurons,
Liubov V. Bayunova performed the experiments using immunoblotting technique, Maria P. Rychkova performed
the experiments on the determination of neuron viability, Natalia F. Avrova wrote the manuscript, conceived
and designated the experiments, all the authors analyzed the data obtained, read and approved the final text of
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

α-T α-tocopherol
ERK1/2 extracellular signal-regulated protein kinase
PI 3-kinase phosphatidylinositol 3-kinase
Akt protein kinase B
PKC protein kinase C
ROS reactive oxygen species

References

1. Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.; Appel, L.J.; Guallar, E. Meta-analysis: High-dosage
vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46. [CrossRef]
[PubMed]

2. Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Mortality in randomized trials of
antioxidant supplements for primary and secondary prevention. Systematic review and meta-analysis. J. Am.
Med. Assoc. 2007, 297, 842–857. [CrossRef] [PubMed]

3. Bjelakovic, G.; Nikolova, D.; Gluud, C. Meta-regression analyses, meta-analyses, and trial sequential analyses
of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different
combinations on all-cause mortality: Do we have evidence for lack of harm? PLoS ONE 2013, 8, e74558.
[CrossRef] [PubMed]

4. Khanna, S.; Heigel, M.; Weist, J.; Gnyawali, S.; Teplitsky, S.; Roy, S.; Sen, C.K.; Rink, C. Excessive α-tocopherol
exacerbates microglial activation and brain injury caused by acute ischemic stroke. FASEB J. 2015, 29, 828–836.
[CrossRef] [PubMed]

5. Vatassery, G.T.; Adityanjee; Quach, H.T.; Smith, W.E.; Kuskowski, M.A.; Melnyk, D. α and γ tocopherols
in cerebrospinal fluid and serum from older, male, human subjects. J. Am. Coll. Nutr. 2004, 23, 233–238.
[CrossRef] [PubMed]

6. De Bustos, F.; Jimenez-Jimenez, F.J.; Molina, J.A.; Esteban, J.; Guerrero-Sola, A.; Zurdo, M.; Orti-Pareja, M.;
Tallon-Barranco, A.; Gomez-Escalonilla, C.; Ramirez-Ramos, C.; et al. Cerebrospinal fluid levels of
α-tocopherol in amyotrophic lateral sclerosis. J. Neural Transm. 1998, 105, 703–708. [CrossRef] [PubMed]

7. Zingg, J.M. Modulation of signal transduction by vitamin E. Mol. Aspects Med. 2007, 28, 481–506. [CrossRef]
[PubMed]

http://dx.doi.org/10.7326/0003-4819-142-1-200501040-00110
http://www.ncbi.nlm.nih.gov/pubmed/15537682
http://dx.doi.org/10.1001/jama.297.8.842
http://www.ncbi.nlm.nih.gov/pubmed/17327526
http://dx.doi.org/10.1371/journal.pone.0074558
http://www.ncbi.nlm.nih.gov/pubmed/24040282
http://dx.doi.org/10.1096/fj.14-263723
http://www.ncbi.nlm.nih.gov/pubmed/25411436
http://dx.doi.org/10.1080/07315724.2004.10719366
http://www.ncbi.nlm.nih.gov/pubmed/15190048
http://dx.doi.org/10.1007/s007020050089
http://www.ncbi.nlm.nih.gov/pubmed/9826112
http://dx.doi.org/10.1016/j.mam.2006.12.009
http://www.ncbi.nlm.nih.gov/pubmed/17320164


Int. J. Mol. Sci. 2017, 18, 216 22 of 25

8. Azzi, A. Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 2007, 43, 16–21. [CrossRef]
[PubMed]

9. Galli, F.; Azzi, A. Present trends in vitamin E research. Biofactors 2010, 36, 33–42. [CrossRef] [PubMed]
10. Numakawa, Y.; Numakawa, T.; Matsumoto, T.; Yagasaki, Y.; Kumamaru, E.; Kunugi, H.; Taguchi, T.; Niki, E.

Vitamin E protected cultured cortical neurons from oxidative stress-induced cell death through the activation
of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J. Neurochem. 2006, 97, 1191–1202.
[CrossRef] [PubMed]

11. Khanna, S.; Roy, S.; Ryu, H.; Bahaddun, P.; Swaan, P.W.; Ratian, R.R.; Sen, C.K. Molecular basis of vitamin E
action: Tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration.
J. Biol. Chem. 2003, 278, 43508–43515. [CrossRef] [PubMed]

12. Khanna, S.; Parinandi, N.L.; Kotha, S.R.; Roy, S.; Rink, C.; Bibus, D.; Sen, C.K. Nanomolar vitamin
E α-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection.
J. Neurochem. 2010, 112, 1249–1260. [CrossRef] [PubMed]

13. Saito, Y.; Saito, Y.; Nishio, K.; Akazawa, Y.O.; Yamanaka, K.; Miyama, A.; Yoshida, Y.; Noguchi, N.; Niki, E.
Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary
cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic.
Biol. Med. 2010, 49, 1542–1549. [CrossRef] [PubMed]

14. Zakharova, I.O.; Sokolova, T.V.; Bayunova, L.V.; Vlasova, Y.A.; Rychkova, M.P.; Avrova, N.F. α-Tocopherol at
nanomolar concentration protects PC12 cells from hydrogen peroxide-induced death and modulates protein
kinase activities. Int. J. Mol. Sci. 2012, 13, 11543–11568. [CrossRef] [PubMed]

15. Di Donato, I.; Bianchi, S.; Federico, A. Ataxia with vitamin E deficiency: Update of molecular diagnosis.
Neurol. Sci. 2010, 31, 511–515. [CrossRef] [PubMed]

16. Ames, D.; Ritchie, C. Antioxidants and Alzheimer’s disease: Time to stop feeding vitamin E to dementia
patients? Int. Psychogeriatr. 2007, 19, 1–8. [CrossRef] [PubMed]

17. Cuddihy, S.L.; Ali, S.S.; Musiec, E.S.; Lucero, J.; Kopp, S.J.; Morrow, J.D.; Dugan, L.L. Prolonged α-tocopherol
deficiency decreases oxidative stress and unmasks α-tocopherol-dependent regulation of mitochondrial
function in the brain. J. Biol. Chem. 2008, 283, 6915–6924. [CrossRef] [PubMed]

18. De Jesus Ferreira, M.C.; Crouzin, N.; Barbanel, G.; Cohen-Solal, C.; Recasens, M.; Vignes, M.; Guiramand, J.
A transient treatment of hippocampal neurons with α-tocopherol induces a long-lasting protection against
oxidative damage via a genomic action. Free Radic. Biol. Med. 2005, 39, 1009–1020. [CrossRef] [PubMed]

19. Crouzin, N.; Ferreira, M.C.; Cohen-Solal, C.; Barbanel, G.; Guiramand, J.; Vignes, M. Neuroprotection
induced by vitamin E against oxidative stress in hippocampal neurons: Involvement of TRPV1 channels.
Mol. Nutr. Food Res. 2010, 54, 496–505. [CrossRef] [PubMed]

20. Kondo, K.; Obitsu, S.; Ohta, S.; Matsunami, K.; Otsuka, H.; Teshima, R. Poly(ADP-ribose) polymerase
(PARP)-1-independent apoptosis-inducing factor (AIF) release and cell death are induced by eleostearic
acid and blocked by α-tocopherol and MEK inhibition. J. Biol. Chem. 2010, 285, 13079–13091. [CrossRef]
[PubMed]

21. Susarla, B.T.S.; Robinson, M.B. Rottlerin, an inhibitor of protein kinase Cδ (PKCδ), inhibits astrocytic
glutamate transport activity and reduces GLAST immunoreactivity by a mechanism that appears to be
PKCδ-independent. J. Neurochem. 2003, 86, 635–645. [CrossRef] [PubMed]

22. Wu, S.N.; Wang, Y.J.; Lin, M.W. Potent stimulation of large-conductance Ca2+-actiated K+ channels by
rottlerin, an inhibitor of protein kinase C-δ, in pituitary tumor (GH3) cells and in cortical neuronal (HCN-1A)
cells. J. Cell Physiol. 2007, 210, 655–666. [CrossRef] [PubMed]

23. Vlasova, Y.A.; Avrova, N.F. Antioxidant effects of α-tocopherol at nanomolar concentrations: The role of the
modulation of the activity of signaling systems. Neurochem. J. 2010, 4, 178–184. [CrossRef]

24. Ziegler, C.G.; Sicard, F.; Sperber, S.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Krug, A.W. DHEA reduces
NGF-mediated cell survival in serum-deprived PC12 cells. Ann. N. Y. Acad. Sci. 2006, 1073, 306–311.
[CrossRef] [PubMed]

25. Vauzour, D.; Vafeiadou, K.; Rice-Evans, C.; Williams, R.J.; Spencer, J.P. Activation of pro-survival Akt
and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons.
J. Neurochem. 2007, 103, 1355–1367. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.013
http://www.ncbi.nlm.nih.gov/pubmed/17561089
http://dx.doi.org/10.1002/biof.75
http://www.ncbi.nlm.nih.gov/pubmed/20108329
http://dx.doi.org/10.1111/j.1471-4159.2006.03827.x
http://www.ncbi.nlm.nih.gov/pubmed/16686696
http://dx.doi.org/10.1074/jbc.M307075200
http://www.ncbi.nlm.nih.gov/pubmed/12917400
http://dx.doi.org/10.1111/j.1471-4159.2009.06550.x
http://www.ncbi.nlm.nih.gov/pubmed/20028458
http://dx.doi.org/10.1016/j.freeradbiomed.2010.08.016
http://www.ncbi.nlm.nih.gov/pubmed/20736061
http://dx.doi.org/10.3390/ijms130911543
http://www.ncbi.nlm.nih.gov/pubmed/23109870
http://dx.doi.org/10.1007/s10072-010-0261-1
http://www.ncbi.nlm.nih.gov/pubmed/20464573
http://dx.doi.org/10.1017/S104161020600439X
http://www.ncbi.nlm.nih.gov/pubmed/17310512
http://dx.doi.org/10.1074/jbc.M702572200
http://www.ncbi.nlm.nih.gov/pubmed/18180306
http://dx.doi.org/10.1016/j.freeradbiomed.2005.05.021
http://www.ncbi.nlm.nih.gov/pubmed/16198228
http://dx.doi.org/10.1002/mnfr.200900188
http://www.ncbi.nlm.nih.gov/pubmed/20087852
http://dx.doi.org/10.1074/jbc.M109.044206
http://www.ncbi.nlm.nih.gov/pubmed/20177052
http://dx.doi.org/10.1046/j.1471-4159.2003.01886.x
http://www.ncbi.nlm.nih.gov/pubmed/12859677
http://dx.doi.org/10.1002/jcp.20866
http://www.ncbi.nlm.nih.gov/pubmed/17133362
http://dx.doi.org/10.1134/S1819712410030037
http://dx.doi.org/10.1196/annals.1353.035
http://www.ncbi.nlm.nih.gov/pubmed/17102100
http://dx.doi.org/10.1111/j.1471-4159.2007.04841.x
http://www.ncbi.nlm.nih.gov/pubmed/17961201


Int. J. Mol. Sci. 2017, 18, 216 23 of 25

26. Yin, X.; Ren, M.; Jiang, H.; Cui, S.; Wang, S.; Jiang, H.; Qi, Y.; Wang, J.; Wang, X.; Dong, G.; Leeds, P.;
Chuang, D.M.; Feng, H. Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated
with reduced viability of motor neurons in an ALS model. Mol. Cell Neurosci. 2015, 68, 303–313. [CrossRef]
[PubMed]

27. Zakharova, I.O.; Sokolova, T.V.; Vlasova, Y.A.; Furaev, V.V.; Rychkova, M.P.; Avrova, N.F. GM1 ganglioside
activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen
peroxide toxicity. Neurochem. Res. 2014, 39, 2262–2275. [CrossRef] [PubMed]

28. Murata, H.; Ihara, Y.; Nakamura, H.; Yodoi, J.; Sumikawa, K.; Kondo, T. Glutaredoxin exerts an antiapoptotic
effect by regulating the redox state of Akt. J. Biol. Chem. 2003, 278, 50226–50233. [CrossRef] [PubMed]

29. Daou, G.B.; Srivastava, A.K. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2,
PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic. Biol. Med.
2004, 37, 208–215. [CrossRef] [PubMed]

30. Wu, H.; Ichikawa, S.; Tani, C.; Zhu, B.; Tada, M.; Shimoishi, Y.; Murata, Y.; Nakamura, Y. Docosahexaenoic
acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in
human neuroblastoma SH-SY5Y cells. Biochim. Biophys. Acta 2009, 1791, 8–16. [CrossRef] [PubMed]

31. Kulebyakin, K.; Karpova, L.; Lakonsteva, E.; Krasavin, M.; Boldyrev, A. Carnosine protects neurons against
oxidative stress and modulates the time profile of MAPK cascade signaling. Amino Acids 2012, 43, 91–96.
[CrossRef] [PubMed]

32. Azzi, A.; Breyer, I.; Feher, M.; Ricciarelli, R.; Stocker, A.; Zimmer, S.; Zingg, J. Nonantioxidant functions of
α-tocopherol in smooth muscle cells. J. Nutr. 2001, 131, 378S–381S. [PubMed]

33. Yano, T.; Yajima, S.; Hagiwara, K.; Kumadaki, I.; Yano, Y.; Otani, S.; Uchida, M.; Ichikawa, T. Vitamin E
inhibits cell proliferation and the activation of extracellular signal-regulated kinase during the promotion
phase of lung tumorigenesis irrespective of antioxidative effect. Carcinogenesis 2000, 21, 2129–2133. [CrossRef]
[PubMed]

34. He, K.; Aizenman, E. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced
neurotoxicity. J. Neurochem. 2010, 114, 452–461. [CrossRef] [PubMed]

35. Ho, Y.; Samarasinghe, R.; Knoch, M.E.; Lewis, M.E.; Aizenman, E.; DeFranco, D.B. Selective inhibition of
mitogen-activated protein kinase phosphatases by zinc accounts for extracellar signal-regulated kinase
1/2-dependent oxidative neuronal cell death. Mol. Pharmacol. 2008, 74, 1141–1151. [CrossRef] [PubMed]

36. Luo, Y.; DeFranco, D.B. Opposing roles for ERK 1/2 in neuronal oxidative toxicity: Distinct mechanisms
of ERK 1/2 action at early versus late phases of oxidative stress. J. Biol. Chem. 2006, 281, 16436–16442.
[CrossRef] [PubMed]

37. Namura, S.; Iihara, K.; Takami, S.; Nagata, I.; Kikuchi, H.; Matsushita, K.; Moskowitz, M.A.; Bonventre, J.V.;
Alessandrini, A. Intravenous administration of MEK inhibitor UO126 affords brain protection against
forebrain ischemia and focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 2001, 98, 11569–11574. [CrossRef]
[PubMed]

38. Wang, X.; Wang, H.; Xu, L.; Rozanski, D.J.; Sugawara, T.; Chan, P.H.; Trzaskos, J.M.; Feuerstein, G.Z.
Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice:
Exploration of potential mechanism associated with apoptosis. J. Pharmacol. Exp. Therap. 2003, 304, 172–178.
[CrossRef] [PubMed]

39. Lu, K.; Liang, C.L.; Liliang, P.C.; Yang, S.-H.; Cho, C.L.; Weng, H.C.; Tsai, Y.-D.; Wang, K.W.;
Chen, H.J. Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal
cord ischemia/reperfusion injury in rats: Relationship with the nuclear factor-kB-regulated anti-apoptotic
mechanisms. J. Neurochem. 2010, 114, 237–246. [CrossRef] [PubMed]

40. Hanrott, K.; Gudmunsen, L.; O’Neill, M.J.; Wonnacott, S. 6-Hydroxydopamine-induced apoptosis is mediated
via extracellular auto-oxidation and caspase 3-dependent activation of proteinkinase Cδ. J. Biol. Chem. 2006,
281, 5373–5382. [CrossRef] [PubMed]

41. Carvour, M.; Song, C.; Kaul, S.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A. Chronic low-dose oxidative
stress induces caspase-3-dependent PKCδ proteolyticactivation and apoptosis in a cell culture model of
dopaminergic neurodegeneration. Ann. N. Y. Acad. Sci. 2008, 1139, 197–205. [CrossRef] [PubMed]

42. Kato, K.; Yamanouchi, D.; Esbona, K.; Kamiya, K.; Zhang, F.; Kent, K.C.; Liu, B. Caspase-mediated protein
kinase C-δ cleavage is necessary for apoptosis of vascular smooth muscle cells. Am. J. Physiol. Heart
Circ. Physiol. 2009, 297, 2253–2261. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.mcn.2015.08.009
http://www.ncbi.nlm.nih.gov/pubmed/26320681
http://dx.doi.org/10.1007/s11064-014-1428-6
http://www.ncbi.nlm.nih.gov/pubmed/25216715
http://dx.doi.org/10.1074/jbc.M310171200
http://www.ncbi.nlm.nih.gov/pubmed/14522978
http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.018
http://www.ncbi.nlm.nih.gov/pubmed/15203192
http://dx.doi.org/10.1016/j.bbalip.2008.10.004
http://www.ncbi.nlm.nih.gov/pubmed/18996496
http://dx.doi.org/10.1007/s00726-011-1135-4
http://www.ncbi.nlm.nih.gov/pubmed/22101981
http://www.ncbi.nlm.nih.gov/pubmed/11160565
http://dx.doi.org/10.1093/carcin/21.11.2129
http://www.ncbi.nlm.nih.gov/pubmed/11062179
http://dx.doi.org/10.1111/j.1471-4159.2010.06762.x
http://www.ncbi.nlm.nih.gov/pubmed/20412391
http://dx.doi.org/10.1124/mol.108.049064
http://www.ncbi.nlm.nih.gov/pubmed/18635668
http://dx.doi.org/10.1074/jbc.M512430200
http://www.ncbi.nlm.nih.gov/pubmed/16621802
http://dx.doi.org/10.1073/pnas.181213498
http://www.ncbi.nlm.nih.gov/pubmed/11504919
http://dx.doi.org/10.1124/jpet.102.040246
http://www.ncbi.nlm.nih.gov/pubmed/12490588
http://dx.doi.org/10.1111/j.1471-4159.2010.06747.x
http://www.ncbi.nlm.nih.gov/pubmed/20403072
http://dx.doi.org/10.1074/jbc.M511560200
http://www.ncbi.nlm.nih.gov/pubmed/16361258
http://dx.doi.org/10.1196/annals.1432.020
http://www.ncbi.nlm.nih.gov/pubmed/18991865
http://dx.doi.org/10.1152/ajpheart.00274.2009
http://www.ncbi.nlm.nih.gov/pubmed/19837952


Int. J. Mol. Sci. 2017, 18, 216 24 of 25

43. Ferri, P.; Cecchini, T.; Ambrogini, P.; Betti, M.; Cuppini, R.; del Grande, P.; Ciaroni, S. α-Tocopherol affects
neuronal plasticity in adult rat dentate gyrus: The possible role of PKCδ. J. Neurobiol. 2006, 66, 793–810.
[CrossRef] [PubMed]

44. Zhang, D.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Neuroprotective effect of protein kinase Cδ

inhibitor rottlerin in cell culture and animal models of Parkinson's disease. J. Pharmacol. Exp. Ther. 2007, 322,
913–922. [CrossRef] [PubMed]

45. Latchoumycandane, C.; Anantharam, V.; Jin, H.; Kanthasamy, A.; Kanthasamy, A. Dopaminergic
neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCδ in cell culture and
animal models of Parkinson’s disease. Toxicol. Appl. Pharmacol. 2011, 256, 314–323. [CrossRef] [PubMed]

46. Jin, H.; Kanthasamy, A.; Harischandra, D.S.; Kondru, N.; Ghosh, A.; Panicker, N.; Anantharam, V.; Rana, A.;
Kanthasamy, A.G. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons
to induce cell death: Relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease.
J. Biol. Chem. 2014, 289, 34743–34767. [CrossRef] [PubMed]

47. Sun, F.; Kanthasamy, A.; Song, C.; Yang, Y.; Anantharam, V.; Kanthasamy, A.G. Proteasome inhibitor-induced
apoptosis is mediated by positive feedback amplification of PKCδ proteolytic activation and mitochondrial
translocation. J. Cell. Mol. Med. 2008, 12, 2467–2481. [CrossRef] [PubMed]

48. Basu, A. Involvement of protein kinase C-δ in DNA-damage induced apoptosis. J. Cell. Mol. Med. 2003, 7,
341–350. [CrossRef] [PubMed]

49. DeVries-Seimon, T.A.; Ohm, A.M.; Humphries, M.J.; Reyland, M.T. Induction of apoptosis is driven by
nuclear retention of protein kinas Cδ. J. Biol. Chem. 2007, 282, 22307–22314. [CrossRef] [PubMed]

50. Sitailo, L.A.; Tibudan, S.S.; Denning, M.F. Bax activation and induction of apoptosis in human keratinocytes
by the protein kinase C-δ catalytic domain. Investig. Dermatol. 2004, 123, 434–443. [CrossRef] [PubMed]

51. Betti, M.; Ambrogini, P.; Minelli, A.; Floridi, A.; Lattanzi, D.; Ciuffoli, S.; Bucherelli, C.; Prospero, E.;
Frontini, A.; Santarelli, L.; et al. Maternal dietary load of α-tocopherol depress protein kinase C signaling
and synaptic plasticity in rat postnatal developing hippocampus and promotes permanent deficits in adult
offspring. J. Nutr. Biochem. 2011, 22, 60–70. [CrossRef] [PubMed]

52. Salucci, S.; Ambrogini, P.; Lattanzi, D.; Betti, M.; Gobbi, P.; Galati, C.; Galli, F.; Cuppini, R.; Minelli, A.
Maternal dietary loads of α-tocopherol increase synapse density and glial synaptic coverage in the
hippocampus of adult offspring. Eur. J. Histochem. 2014, 58, 2355. [CrossRef] [PubMed]

53. Then, S.M.; Mazlan, M.; Top, G.M.; Ngah, W.Z.W. Is vitamin E toxic to neuron cells? Cell Mol. Neurobiol.
2009, 29, 485–496. [CrossRef] [PubMed]

54. Wang, C.; Youle, R.J. The role of mitochondria inapoptosis. Annu. Rev. Genet. 2009, 43, 95–118. [CrossRef]
[PubMed]

55. Lu, K.W.; Chen, J.C.; Lai, T.Y.; Yang, J.S.; Weng, S.W.; Ma, Y.S.; Lin, H.Y.; Wu, R.S.; Wu, K.C.; Wood, W.G.; et al.
Gypenosides suppress growth of human oral cancer SAS cells in vitro and in a murine xenograft
model: The role of apoptosis mediated by caspase-dependent and caspase-independent pathways.
Integr. Cancer Ther. 2012, 11, 129–140. [CrossRef] [PubMed]

56. Chan, J.Y.; Chang, A.Y.; Wang, L.L.; Ou, C.C.; Chan, S.H. Protein kinase C-dependent mitochondrial
translocation of proapoptotic protein Bax on activation of inducible nitric oxide synthase in rostral
ventrolateral medulla mediates cardiovascular depression during experimental endotoxemia. Mol. Pharmacol.
2007, 71, 1129–1139. [CrossRef] [PubMed]

57. Zhivotovsky, B.; Galluzzi, L.; Kepp, O.; Kroemer, G. Adenine nucleotide translocase: A component of the
phylogenetically conserved cell death machinery. Cell Death Differ. 2009, 16, 1419–1425. [CrossRef] [PubMed]

58. Whelan, R.S.; Konstantinidis, K.; Wei, A.C.; Chen, Y.; Reyna, D.E.; Jha, S.; Yang, Y.; Calvert, J.W.; Lindsten, T.;
Thompson, C.B.; et al. Bax regulates primary necrosisthrough mitochondrial dynamics. Proc. Natl. Acad.
Sci. USA 2012, 109, 6566–6571. [CrossRef] [PubMed]

59. Kowaltowski, A.J.; Fiscum, G. Redox mechanisms of cytoprotection by Bcl-2. Antioxid. Redox Signal. 2005, 7,
508–514. [CrossRef] [PubMed]

60. Hsuan, S.L.; Klintworth, H.M.; Xia, Z. Basic fibroblast growth factor protects against rotenone-induced
dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and
phosphatidylinositol-3 kinase pathways. J. Neurosci. 2006, 26, 4481–4491. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/neu.20255
http://www.ncbi.nlm.nih.gov/pubmed/16673395
http://dx.doi.org/10.1124/jpet.107.124669
http://www.ncbi.nlm.nih.gov/pubmed/17565007
http://dx.doi.org/10.1016/j.taap.2011.07.021
http://www.ncbi.nlm.nih.gov/pubmed/21846476
http://dx.doi.org/10.1074/jbc.M114.576702
http://www.ncbi.nlm.nih.gov/pubmed/25342743
http://dx.doi.org/10.1111/j.1582-4934.2008.00293.x
http://www.ncbi.nlm.nih.gov/pubmed/18298651
http://dx.doi.org/10.1111/j.1582-4934.2003.tb00237.x
http://www.ncbi.nlm.nih.gov/pubmed/14754503
http://dx.doi.org/10.1074/jbc.M703661200
http://www.ncbi.nlm.nih.gov/pubmed/17562707
http://dx.doi.org/10.1111/j.0022-202X.2004.23403.x
http://www.ncbi.nlm.nih.gov/pubmed/15304079
http://dx.doi.org/10.1016/j.jnutbio.2009.11.014
http://www.ncbi.nlm.nih.gov/pubmed/20382010
http://dx.doi.org/10.4081/ejh.2014.2355
http://www.ncbi.nlm.nih.gov/pubmed/24998923
http://dx.doi.org/10.1007/s10571-008-9340-8
http://www.ncbi.nlm.nih.gov/pubmed/19172392
http://dx.doi.org/10.1146/annurev-genet-102108-134850
http://www.ncbi.nlm.nih.gov/pubmed/19659442
http://dx.doi.org/10.1177/1534735411403306
http://www.ncbi.nlm.nih.gov/pubmed/21665877
http://dx.doi.org/10.1124/mol.106.031161
http://www.ncbi.nlm.nih.gov/pubmed/17227955
http://dx.doi.org/10.1038/cdd.2009.118
http://www.ncbi.nlm.nih.gov/pubmed/19696789
http://dx.doi.org/10.1073/pnas.1201608109
http://www.ncbi.nlm.nih.gov/pubmed/22493254
http://dx.doi.org/10.1089/ars.2005.7.508
http://www.ncbi.nlm.nih.gov/pubmed/15706098
http://dx.doi.org/10.1523/JNEUROSCI.4922-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641227


Int. J. Mol. Sci. 2017, 18, 216 25 of 25

61. Weinreb, O. Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety:
Interaction of Bcl-2 family members with PKC pathway. Ann. N. Y. Acad. Sci. 2005, 1053, 348–355. [CrossRef]
[PubMed]

62. Dichter, M.A. Rat cortical neurons in cell culture: Culture methods, cell morphology, electrophysiology, and
synapse formation. Brain Res. 1978, 149, 279–293. [CrossRef]

63. Mironova, E.V.; Evstratova, A.A.; Antonov, S.M. A fluorescence vital assay for the recognition and
quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in
culture. J. Neurosci. Methods 2007, 163, 1–8. [CrossRef] [PubMed]

64. Dringen, R.; Kussmaul, L.; Hamprecht, B. Detoxification of exogenous hydrogen peroxide and organic
hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res. Protoc. 1998, 2,
223–228. [CrossRef]

65. Nagasaki, H.; Nakashima, A.; Kaneko, Y.S.; Kodani, Y.; Takayanagi, T.; Itoh, M.; Kondo, K.; Nagatsu, T.;
Hamada, Y.; Ota, M.; et al. Aripiprazole increases NADPH level in PC12 cells: The role of NADPH oxidase.
J. Neural Transm. 2014, 121, 91–103. [CrossRef] [PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1196/annals.1344.030
http://www.ncbi.nlm.nih.gov/pubmed/16179541
http://dx.doi.org/10.1016/0006-8993(78)90476-6
http://dx.doi.org/10.1016/j.jneumeth.2007.02.010
http://www.ncbi.nlm.nih.gov/pubmed/17395268
http://dx.doi.org/10.1016/S1385-299X(97)00047-0
http://dx.doi.org/10.1007/s00702-013-1075-0
http://www.ncbi.nlm.nih.gov/pubmed/23934573
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	-T and the Viability and Function of Nerve Cells 
	The Dosage and Duration of Treatment with -T Govern Its Neuroprotective Effect 
	The Protective Effect of Preincubation with -T for 18 h against H2O2-Induced Death of Brain Cortical Neurons Is Diminished or Abolished in the Presence of Inhibitors of PI 3-Kinase, MEK1/2 and PKC 
	-T at Micromolar and Nanomolar Concentrations Diminishes the Accumulation of ROS Induced in Brain Cortical Neurons by H2O2 
	-T Increases the Basal Level of pAkt and pERK1/2 in Brain Cortical Neurons, but Does Not Change Total Akt and ERK1/2 Levels 
	While -T Prevents Akt Inactivation Initiated by H2O2 in Brain Cortical Neurons, the Effect of 100 nM and 100 M -T Is Similar 
	While -T Decreases the Time of Long Activation of ERK1/2 in Brain Cortical Neurons Initiated by H2O2, the Effect of 100 nM and 100 M -T Is Similar 
	-T at 100 M and 100 nM Concentrations Diminishes the Activation of PKC Initiated by H2O2 in Brain Cortical Neurons 
	-T at Micro- and Nanomolar Concentrations Prevents the Abrupt Decrease of Bcl-2 Level and the Marked Increase of the Bax/Bcl-2 Ratio Initiated by H2O in Brain Cortical Neurons 

	Materials and Methods 
	Materials 
	Brain Cortical Neurons in Culture 
	Assessment of Cell Viability Using the Lactate Dehydrogenase (LDH) Method 
	Determination of ROS Accumulation 
	Immunoblotting 
	Statistical Analysis 

	Conclusions 

