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Understanding controversies in the 
α-ω and ω-β phase transformations 
of zirconium from nonhydrostatic 
thermodynamics
Lin Zhang1*, Ying-Hua Li1, Yan-Qin Gu2 & Ling-Cang Cai1

Significant debate has been noted in the α-ω and ω-β phase transformations of zirconium. The initial 
pressure of the α-to-ω transformation at room temperature has been reported to vary from 0.25 to 
7.0 GPa, while the hydrostatic transformation is believed to occur at approximately 2.2 GPa. Shear 
stress is commonly considered as a key factor leading to the discrepancy. However, the principal 
mechanisms previously proposed concluded that the phase transformation pressure would be 
decreased in the presence of shear stress. The experimental results of the α-ω transformation in 
zirconium are contrary to this conclusion. In the ω-β phase diagram of zirconium, the dT/dP along 
the phase boundary near the α-ω-β triple-point was reported to be either positive or negative, but 
no theoretical explanation, especially a quantitative one, has been proposed. This article aimed 
to quantitatively investigate and explain the controversies reported in the α-ω and ω-β phase 
transformations of zirconium by applying a new nonhydrostatic thermodynamic formalism for solid 
medium, which has recently been proposed and is capable of quantitatively estimating the impact of 
shear stress on phase transformations in solids.

The phase structure, phase transformation and phase diagram of zirconium have attracted the interest of many 
researchers because of their scientific significance and widespread applications in aerospace, nuclear, and biomed-
ical industries1–21; however, studies in the past few decades have revealed some controversies in its α-ω and ω-β 
phase transformations. For the α-ω transformation, the initial transition pressure at room temperature was found 
to vary from 0.25 to 7.0 GPa1–5,11,12, which exhibits a great discrepancy. For the ω-β phase transformation, earlier 
measurements discovered a positive dT/dP slope of approximately 6 K/GPa along the ω-β phase boundary near 
the triple point of the α-ω-β phase diagram22. It was found that the ω phase can be transformed into the β phase at 
room temperature by pressure at approximately 30 ± 2, 33 and 35 ± 3 GPa6–8, as well as by shock at approximately 
26 GPa7,23. These indicate that the ω-β phase boundary of zirconium must return toward the room temperature 
axis at high pressure at some point. However, thus far, no published reports of theoretical multiphase equation 
of state (mEOS) have noted such behaviour. Zhang et al.9,10 re-measured the phase diagram of zirconium using 
synchrotron x-ray diffraction and time-of-flight neutron scattering techniques, and a negative dT/dP slope of 
approximately 15.5 K/GPa was obtained along the ω-β phase boundary near the triple point, which was contrary 
to the earlier results. Similar controversies were also found in many other substances13,19,24–27. Although some 
studies were devoted to explain these controversies20,21, their understanding remains an open issue. Impurity is 
often considered as a main factor that may cause these controversies. In general, impurity may change the energy 
barrier for phase transformation, resulting in a change in its transition pressure28. Shear stress is another factor 
exerting high impact on phase transformation. There are two principal viewpoints on how shear stress affects 
phase equilibrium and phase transformation. One states that shear stress is influential to the potential energy 
for phase transformation, however it is commonly accepted that shear stress usually decreases the height of the 
potential barrier29–34. The other viewpoint20,21,35–39 explains that shear stress causes plastic deformation of the sam-
ple and leads to dislocations in return, and the dislocations are further densely piled up against grain boundary or 
other obstacles, thus strong concentrators of stress tensor are generated. As a result, the local stresses near stress 
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concentrators may reach the required level for high-pressure phase nucleation, even though the externally applied 
pressure is much lower than the transition pressure. Two review papers focused on the studies can be found in40,41. 
These two viewpoints concluded that shear stress leads to a decrease in transition pressure. Although the conclu-
sion was supported by many experiments performed on some substances, the α-ω transformation in zirconium is 
contrary to this because the hydrostatic transition pressure at room temperature of the transformation is usually 
believed to be approximately 2.2 GPa4–7, much lower than most experimental measured values. Thus, a more 
reasonable and persuasive theoretical interpretation is highly necessary. In a recent study, we proposed a nonhy-
drostatic thermodynamic formalism42 (referred to as ZLC formalism hereinafter), which is capable of quantita-
tively estimating the impact of shear stress on phase transformations in a solid. According to the formalism, the 
transition pressure of a solid-solid phase transformation is extremely sensitive to the shear stress level and the 
material shear modulus as a function of pressure and temperature of both relevant phases, i.e., the G(P, T) rela-
tionships for both phases. This conclusion gives birth to a new mechanism of the influence of impurity on phase 
transformation. In other words, by changing the yield stress level and the G(P, T) relationship of the material, a 
tiny amount of impurities may exert great impact on phase transformations. In this article, we aimed to explain 
the controversies observed in the α-ω and ω-β transformations in zirconium by applying the formalism. We 
believe that a comprehensive quantitative explanation of these controversies may provide a general understanding 
and a theoretical approach to explain similar controversies that were widely observed in pressure-induced phase 
transformations in other solids.

Methods
ZLC formalism.  ZLC formalism is an approximate approach for nonhydrostatic thermodynamics which is 
applicable for phase equilibrium, phase diagram and phase transformation problems under nonhydrostatic sit-
uations from a macroscopic view, and is based on the following assumptions that are widely adopted in solid 
mechanics:

	(1)	 The object system could be regarded as a homogenous continuum, and the heterogeneities in meso- and 
micro-scales could be ignored or managed based on the average.

	(2)	 The substance of two phases that coexist at equilibrium could be regarded as a solution (completely mixed 
together), and the effect of interface between the two phases might be ignored.

	(3)	 A quantity Ed was introduced to depict the total stored energy produced by various meso- and micro-scales 
defects such as dislocations and grain boundaries. Ed could be dealt with as being homogenously stored 
throughout the object, based on the average. In addition, the inelastic work done by internal stresses 
should be the dominant contribution to the increment of Ed.

	(4)	 The constitutive relationships among the components of deviatoric stress and deviatoric elastic strain are 
linear at fixed pressure and temperature. However, the elastic coefficients may change with pressure and 
temperature.

Based on the above assumptions, the first law of thermodynamics under nonhydrostatic situation was derived 
as follows:

μ= − +dE T dS P dV dn (1)v eff eff

in which:
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where P, T, V, S, E and Eτ are the pressure, temperature, volume, entropy, total energy and total elastic potential 
energy related to shear deformation of the system, respectively; μ is the general chemical potential, n is the num-
ber of moles of the substance; Cijmn(i, j, m, n = 1–3) are the elastic coefficients, components of a fourth-order 
tensor, and satisfy Cijmn = Cmnij; τij and ξ e

ij  (ij = 1–3) are the components of deviatoric stress and deviatoric elastic 
strain, respectively; lowercase “s” and “v” denote the specific entropy and volume per mass unit; Teff and Peff are 
the conjugate quantities to entropy and volume with respect to the thermodynamic potential EV, and have the 
units of temperature and pressure, respectively. It is worth noting that Teff and Peff are derived to correlate with the 
constitutive relationships between stress and strain, and this has essential significance; this implies that deviatoric 
quantities can effectively affect volumetric quantities in non-hydrostatic situations, while in classical solid 
mechanics volumetric quantities are usually believed to have no relationship with deviatoric quantities. By the 
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variation method, the two-phase equilibrium conditions under nonhydrostatic situation were derived as 
follows:

τ τ μ μ= = = =Ι ΙΙ Ι ΙΙ Ι ΙΙ Ι ΙΙT P PT , , , (5)ij ij

where the superscripts “I” and “II” represent variables for phase I and II, respectively. Furthermore, the expression 
for the general chemical potential was derived as:

μ = − + = − +E T S P V n e T s P v( )/ (6)V Veff eff eff eff

For isotropic solids (in the strict sense, when an isotropic solid is subjected to nonhydrostatic load, its iso-
tropic symmetry will be broken due to the nonhydrostatic stress produced inside the body; however, for most 
engineering materials, especially metals, the isotropic approximation for stressed bodies is extensively adopted, 
especially in engineering), the relationships between deviatoric stresses and deviatoric strains become τ ξ= G2 e

ij ij  
(i, j = 1–3), in which G = G(P, T) is the material shear modulus, and the expressions for the quantities Teff and Peff 
are changed to
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where eτ is the specific elastic shear deformation energy, which is defined as follows:
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J2 refers to the second invariant of the deviatoric stress tensor. Making use of Eqs (5–9), the generalised 
Clausius-Clapyron relationship for isotropic solids under the above restrictions is derived as follows:
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The expressions for the partial differentiations in Eq. (10) can be found in our previous work42.
ZLC formalism indicates that for a solid in nonhydrostatic stressed states, the traditional phase boundary 

line between two solid phases in (P, T) space is extended to a phase boundary face in (P, T, J2) space under the 
isotropic approximation, and the P = P(T, J2) phase diagram can be constructed from the P = P(T) phase diagram 
using Eq. (10).

mEOS for zirconium.  To quantitatively evaluate the shear stress effects on phase transformation through 
ZLC formalism, the hydrostatic multiphase equation of states and the G = G(P, T) relationships for related phases 
of the material must be constructed. The mEOS of α-, ω-, β- and liquid-Zr have been constructed in this article. 
The liquid state was included because the G(P, T) model we adopted in this work correlates with the melt line, 
i.e., the phase boundary between the corresponding solid and liquid phases. The mEOS were constructed using 
an average mean field potential model which is based on calculations of the specific Helmholtz free energy f(v, 
T). The equations used to calculate f(v, T) in this work are the same as those in our previous work42, which are 
summarised as follows:
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Γ
(J/kg.K2)

vr
(m3/kg) δ

α 94 4.0 1.527e-4 2.0e13 0 4/3 0.5 0.0153 1.527e-4 0.7

ω 100 3.2 1.4945e-4 2.162e13 −38.585548 4/3 0.5 0.0153 1.527e-4 0.7

β 79 3.9 1.52e-4 1.75e13 40438.613 4/3 0.5 0.0153 1.527e-4 0.7

L 77 4.1 1.535e-4 9.0e12 4086.7004 4/3 0.5 0.0153 1.527e-4 0.7

Table 1.  EOS parameters for α, ω, β and liquid-zirconium.

Figure 1.  Isothermal line for α-,ω- and β-Zr at room temperature. Scatter symbols are experimental data 
from2,6,8,51; solid line represents theoretical results. Volume is normalised to the value at ambient conditions V0. 
A value of 0.1 was added to V/V0 for ω-Zr and 0.2 to that for β-Zr in order to make a clear separation.

Figure 2.  Isobaric lines under ambient pressure for β- and liquid-Zr. Scatter symbols are experimental data52,53; 
solid lines represent theoretical results.
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Figure 3.  Hugoniot lines of zirconium. Scatter symbols are experimental data54,55; lines represent theoretical 
results.

P (GPa) T (°K) V/V0 (expt) V/V0 (theoretic) (theoretic-expt)/expt

1.01 473 0.99184 0.99315 0.13%

2.08 474 0.98175 0.98221 0.05%

3.36 474 0.96908 0.96983 0.08%

1.59 673 0.99055 0.99158 0.1%

1.27 674 0.99356 0.99498 0.14%

2.33 674 0.98218 0.98401 0.19%

3.63 674 0.96888 0.97135 0.26%

1.45 873 0.99678 0.99768 0.09%

2.63 873 0.98218 0.98535 0.32%

3.91 874 0.96951 0.97283 0.34%

2.67 918 0.98497 0.98594 0.1%

Table 2.  Specific volumes of α-Zr at various high-pressure and -temperature points. Experimental values are 
cited from Zhao et al.51.

P (GPa) T (°K) V/V0 (expt) V/V0 (theoretic) (theoretic-expt)/expt

0 973 1.02491 1.0154 −0.93%

6.38 973 0.94159 0.94044 −0.12%

7.37 972 0.93515 0.93094 −0.45%

8.63 898 0.91604 0.91809 0.22%

8.63 973 0.91991 0.91951 −0.04%

10.54 974 0.90337 0.90331 −0.01%

13.4 975 0.88082 0.88127 0.05%

15.38 873 0.85935 0.8658 0.75%

14.82 930 0.86343 0.87048 0.82%

14.49 973 0.87116 0.87343 0.26%

Table 3.  Specific volumes of β-Zr at various high-pressure and -temperature points. Experimental values are 
cited from Zhao et al.51.
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where ec is the static energy at zero temperature, fion is the free energy of ion motion and fel is the free energy due 
to the thermal excitation of electrons. The details of derivation of the above equations and the significance of the 
parameters please refer to our previous article42. The final EOS parameters for α-, ω-, β- and liquid-Zr are listed in 
Table 1, in which the parameter Γ was determined from the low-temperature heat capability data43, others were 
fitted to various experimental measurements of thermodynamic and phase transformation properties. Figures 1–3 
as well as Tables 2 and 3 present various comparisons between theoretic predictions and experimental results, which 
demonstrate that the mEOS constructed for zirconium in this work have high precision.

Figure 4 presents the hydrostatic phase diagram of α, ω, β and liquid phases. It shows that the theoretical 
boundaries agree well with the experimental data that were collected by Tonkov and Ponyatovsky22. Moreover, the 
α-to-ω transformation is predicted to occur at approximately 1.85 GPa under room temperature, accompanying 
a volume change of (vα − vω)/vω = 2.3%, which coincides with the experimental results22. The theoretical slope 
dT/dP of the ω-β phase boundary was calculated to be positive near the α-ω-β triple point; however, as pressure 
increases, it gradually becomes negative. Therefore, the theoretical ω-β phase boundary finally returns toward 
the room temperature axis. This explains the occurrence of the pressure-induced ω-to-β phase transformation at 
room temperature observed in some experiments. Here, we would like to highlight our mEOS for the curvature of 
the theoretical ω-β phase boundary of zirconium. We found no other published mEOS of zirconium having such 
curvature property. Through our mEOS, the ω-to-β transformation is predicted to take place at approximately 
56.0 GPa under hydrostatic loading at room temperature, and at approximately 36.8 GPa under shock, whereas 
the corresponding experimental results are approximately (30 ± 2)–(35 ± 3) GPa6–8 and 26.0 GPa7,23, respectively. 
These discrepancies can be explained by the shear stress impacts, which will be reported later in this article.

G(P, T) relationships.  Numerous studies have focused on the variation of shear modulus with pressure and 
temperature for solid materials, on which we made a brief review in our previous article42. In this article, we use 
the following equation:

σ
σ

=
−
+

G P T P T
P T

B P T( , ) 3[1 2 ( , )]
2[1 ( , )]

( , )
(21)

where B is the bulk modulus, and its relationship of B(P, T) can be calculated from EOS; σ is the Poisson ratio. 
There are some advantages to calculating G(P, T) through the equation, because it is well known that the Poisson 
ratio varies only slightly with pressure and temperature. Many experimental measurements on various materials 
have indicated that the σ(T) relationship under constant pressure can be reasonably approximated by linear line, 
while the σ(P) relationship under constant temperature deviates slightly from linear. Thus, we experimentally 
write:

σ σ
σ σ

= +
−
−

−P T P T P T P P T
T P T

T T( , ) ( , ) ( , ( )) ( , )
( )

( )
(22)r r

c c r r

c r
r

Figure 4.  Hydrostatic phase diagram of zirconium. Scatter symbols are experimental data6–9,22; lines represent 
theoretical results.

https://doi.org/10.1038/s41598-019-53088-3


7Scientific Reports |         (2019) 9:16889  | https://doi.org/10.1038/s41598-019-53088-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

where Tr is a reference temperature, σr(P, Tr) the pressure-dependent Poisson ratio at the reference temperature 
and Tc(P) the pressure-dependent critical temperature at which the Poisson ratio begins to rapidly increase to 0.5 
as the temperature increases close to the melting point. σc(P, Tc(P)) is the critical Poisson ratio corresponding to 
the critical point (P, Tc(P)). For σc(P, Tc(P)) and σr(P, Tr), we proposed the following expressions42:

σ σ σ= + − −P T P T T T T( , ( )) (0, (0)) exp[ ( )/ ] (23)c c c c c m c
1

0

σ σ σ σ= +P T P( , ) exp( ) (24)r r r r r
0 1 2

α= ⋅T P T P( ) ( ) (25)c m

where σr
0, σr

1, σr
2, σc(0, Tc(0)), σc

1, T0 and α are constant parameters.
There are some data on the relationship between the Poisson ratio, pressure, and temperature for zirconium. 

Fisher et al.44 determined the pressure derivatives of the single-crystal elastic moduli of α phase experimentally, 
thus providing some data on the σ(P) relationship, and these data can be well fitted by Eq. (24) with the param-
eters (σr

0, σr
1, σr

2) being (0.41915, −0.08792, −0.07034 GPa−1). Lu et al.45 reported an experimental value of 
0.29 for ω phase at ambient conditions. Recently, Liu et al.46 measured the values for α and ω phases at ambient 
conditions, being 0.331 and 0.311 respectively. Some high-pressure experimental values for ω phase at room 
temperature were reported in another of their ref.47, and these data are well fitted by Eq. (24) with the parameters 
(σr

0, σr
1, σr

2) being (0.3392, −0.04921, −0.18431 GPa−1). In theory, Zhang et al.48 calculated by first-principles the 
variation of Poisson ratio with pressure for α, ω and bcc phases at absolute zero, which might be fitted by Eq. (24)  
with the parameters (σr

0, σr
1, σr

2) being (1.28976, −0.96602, −0.0042 GPa−1) for α phase, (0.4885, −0.19503, 
−0.01902 GPa−1) for ω phase, and (0.39435, 0.10115, −0.05739 GPa−1) for bcc phase, respectively. Wang et al.49 
also calculated the values for bcc phase under various high pressures, which might be fitted by Eq. (24) with the 
parameters (σr

0, σr
1, σr

2) being (0.32361, 0.13328, −0.03152 GPa−1).

α-Zr ω-Zr Shear stress 
J2(GPa2)

Transition 
pressure at 293 Kνr(P, Tr) νc(P, Tc) νr(P, Tr) νc(P, Tc)

case 1 constant value 0.33; 
Tr = 293 K

constant value 0.48; 
Tc = 0.95Tm

constant value 0.29; 
Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

1.0 3.36 GPa

case 2 constant value 0.33; 
Tr = 293 K.

constant value 0.48; 
Tc = 0.95Tm

fitted to47; Tr = 293 K Constant value 0.48; 
Tc = 0.95Tm

1.0 4.38 GPa

case 3 fitted to44;
Tr = 293 K

constant value 0.48; 
Tc = 0.95Tm

fitted to47; Tr = 293 K Constant value 0.48; 
Tc = 0.95Tm

1.0 0.64 GPa

case 4 fitted to44;
Tr = 293 K

constant value 0.48; 
Tc = 0.95Tm

fitted to48; Tr = 0 K Constant value 0.48; 
Tc = 0.95Tm

1.0 1.02 GPa

case 5 constant value 0.33; 
Tr = 293 K

constant value 0.48; 
Tc = 0.95Tm

fitted to48; Tr = 0 K Constant value 0.48; 
Tc = 0.95Tm

1.0 4.90 GPa

case 6 constant value 0.33; 
Tr = 293 K

constant value 0.48; 
Tc = 0.95Tm

fitted to48; Tr = 0 K Constant value 0.48; 
Tc = 0.95Tm

1.7 6.81 GPa

Table 4.  The relationships of σ(P, T) that were used for α and ω phases when calculating the change of the α-ω 
phase boundary caused by shear stresses. The changed transition pressures at 293 K at some given shear stress 
levels are also listed.

Figure 5.  Changes of the α-ω phase boundary of zirconium that are caused by shear stresses. The results are 
examined in the situations listed in Table 4.
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Results and Discussion
For the α-ω transformation, we examined the movement of the phase boundary in (P, T) space at some fixed 
shear stress levels. Six situations in total have been calculated. The details of σ(P, T) relationship for both α and 
ω phases, as well as the J2 levels for each situation are presented in Table 4, the altered P-T phase boundaries are 
shown in Fig. 5. In Table 4, the altered transition pressures at room temperature (assumed to be 293 K) under the 
six situations are also listed.

It can be found from Fig. 5 that the phase boundary may move left or right of the hydrostatic line in the 
presence of shear stress, and its actual occurrence is sensitively correlated with the σ(P, T) relationships for both 
phases. As shown in Table 4, at 293 K, the transition pressure decreases to approximately 0.64 GPa in case 3, and 
increases to approximately 4.90 GPa in case 5 and 6.81 GPa in case 6. This variation range covers most scattered 
data measured in different experiments. Moreover, if the shear stress continues to increase, the transition pres-
sure will display a greater change. Zirconium is known to be sensitive to various impurities, and a tiny amount 
of impurities, even in the order of ppm, may lead to great changes in its mechanical properties, such as hardness 
and yield strength. Thus, various samples in different experiments may satisfy various σ(P, T) relationships and 
hold different shear stresses. In addition, in static high-pressure experiments, powder samples are often used, as a 
result, shear stresses may be generated inside particles even under quasi-hydrostatic external loading conditions 
due to the friction between sample particles. Particularly, if fine powder samples are used, since the abundant 
particle surfaces act as obstacles to dislocation movement, the strain-hardening inside particles may be very 
strong, resulting in the emerge of high shear stresses inside particles. In50, it was found that before and after α-ω 
transformation, the maximum deviatoric stress in pure zirconium rapidly changed from 0.18 GPa to 1.18 GPa 
over a pressure interval about 1.0~1.3 GPa, which started at about 5.3 GPa, a pressure very close to the transi-
tion pressure 6.0 GPa. Consequently, the deviatoric stress at the transition pressure can be estimated to be about 
0.72~0.88 GPa by linear interpolation. However, our most examinations were performed under the shear stress 
state J2 = 1 GPa2. Assuming that the shear stresses in the three principal directions in stress space are the same, the 
corresponding shear strength is 0.84 GPa. They are consistent. Therefore, the σ(P, T) relationships and the shear 
stress levels assumed in the six situations are valid in actual experiments. This means that the results predicted 
though our calculations are reasonable, thus it is understandable that the large scatter of the experimental meas-
ured transition pressure of the α-ω phase transformation of zirconium might be attributed to the difference in 
shear stress in different experiments.

As aforementioned in the introduction section, great controversial data on the ω-β transformation have been 
obtained in various experiments. One of the representatives is that both positive22 and negative9,10 slopes were 
reported for dT/dP in the vicinity of the α-ω-β triple-point. We believe that this controversy must be produced 
by some intrinsic factors instead of some uncontrolled errors in experiments, and among the factors, shear stress 
should be firstly considered. Our mEOS agrees with the phase diagram with a positive slope of dT/dP at the 
α-ω-β triple point; hence, it is critical to ascertain whether the slope would become negative in the presence of 
shear stress. In other aspects, our theoretical hydrostatic phase diagram predicts that the pressure-induced ω-to-β 
transformation at room temperature occurs at approximately 56 GPa, much higher than the experimental value 
28–38 GPa6–8. The shock-induced transformation is predicted to occur at approximately 37 GPa, which is also 
higher than the experimental value of approximately 26 GPa7,23. The preceding part of this article is devoted to 
explain these controversies.

In principle, to estimate the change of transition pressure caused by shear stress, the shear stress states should 
be given in advance. However, it is difficult to re-identify the actual shear stress states in those experiments per-
formed to measure the phase boundary. Generally, if the temperature is far away from the melting point, the shear 
stress will monotonically increase with the increasing hydrostatic pressure. Therefore, we artificially constructed 

Figure 6.  Shear strength curves constructed for estimating the movements of the ω-β phase boundary caused 
by shear stresses.
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three appropriate J2–P relationships to depict the shear stress variation with the increasing experimental pressure. 
Figure 6 shows the corresponding shear strength calculated according to the classical Mises yield model.

Nine situations were examined for the ω-β transformation. The detailed σ(P, T) relationships and shear 
strength curves used in calculation are presented in Table 5, and the results are shown in Fig. 7. In case 1, for the 
ω-phase, σr(P, Tr) was assumed to be constant, with an experimental value of 0.29, and with Tr = 293.0 K, and 
σc(P, Tc(P)) was also assumed to be constant with the value 0.48 and with Tc(P) = 0.95Tm(P); for β-phase, σr(P, 
Tr) was fitted to the theoretical data obtained via first-principles calculations by Zhang et al.48 with Tr = 0 K, and 
σc(P, Tc(P)) was assumed to be constant with the value 0.45, and also Tc(P) = 0.95Tm(P). As shown by line-case1 in 
Fig. 7(a), when the shear strength varies with pressure along curve 1 shown in Fig. 6, the boundary becomes con-
sistent with those experimental data obtained by Zhang et al.9,10, which has a negative slope of dT/dP. Moreover, 
the transition pressure at room temperature in this case becomes approximately 36 GPa, which agrees with the 
experimental measurements6–8. Similar results were obtained in cases 2–6, in which different σ(P, T) relation-
ships constructed with various experimental and theoretic data in selected studies were used. In cases 7 and 8, 
the moved boundaries calculated by ZLC formalism become even lower than the experimental line obtained by 
Zhang et al.9,10. However, as shown by line-case9 in Fig. 7(b), if a lower level of shear stress represented by curve 3 
in Fig. 6 is selected, the boundary moves back and coincides with the experimental data in9,10. It is simultaneously 
exhibited in Fig. 7 that the hydrodynamic Hugoniot line within ω-phase intersects with those altered ω and β 
phase boundaries at around 22 GPa. Taking the effects of the sample’s elastic-plastic behaviour on Hugoniot lines 
into consideration (a Hugoniot line will move close to the pressure axis in P-T space when taking the effects of 

ω-Zr β-Zr Shear strength 
curveνr(P, Tr) νc(P, Tc) νr(P, Tr) νc(P, Tc)

case 1 constant value 
0.29; Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to48; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 1

case 2 constant value 
0.31; Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to48; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 1

case 3 constant value 
0.29; Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to49; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 2

case 4 constant value 
0.31; Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to49; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 2

case 5 fitted to47; 
Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to48; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 1

case 6 fitted to47; 
Tr = 293 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to49; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 2

case 7 fitted to48; 
Tr = 0 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to48; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 1

case 8 fitted to48; 
Tr = 0 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to49; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 2

case 9 fitted to48; 
Tr = 0 K

Constant value 0.48; 
Tc = 0.95Tm

fitted to49; 
Tr = 0 K

constant value 0.45; 
Tc = 0.95Tm

curve 3

Table 5.  Poisson ratio variation relationships, i.e., σ(P, T) and shear strength curves that were used in the 
investigation of the ω-β phase boundary movements caused by shear stresses. For shear strength curve, please 
refer to Fig. 6.

Figure 7.  Variations of the ω-β phase diagram of zirconium caused by shear stresses. The results are examined 
under the conditions listed in Table 5. Data 1: from9; Data 2: from22; Data 3: from6–8.
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sample’s elastic-plastic behaviour into consideration, hence the transition pressure should become a little higher 
than 22 GPa), it explains the experimental measurements that the shock-induced ω-β transformation occurs at 
around 26 GPa7,23.

The shear stress levels represented by the three curves in Fig. 6 are not high, especially along curve 3. The shear 
strength does not exceed 2.5 GPa, even when the pressure rises to 30.0 GPa. Thus, based on the quantitative inves-
tigations in this work, it is reasonable to believe that the controversies on the ω-β transformation of zirconium are 
mainly induced by the inevitable shear stresses in the experiments.

Summary and Conclusion
Significant debate has been noted in previous experiments for the α-ω and ω-β phase transformations in zirco-
nium. The initial pressure of the α-to-ω transformation at room temperature was reported to spread in a range 
from 0.25 to 7.0 GPa1–5,11,12, while the hydrostatic transition pressure was believed to be approximately 2.2 GPa4–7. 
Earlier measurements of the ω-β phase boundary exhibited a positive dT/dP slope near the α-ω-β triple-point22, 
whereas recent experiments performed by Zhang et al.9,10 revealed a negative slope even at the α-ω-β triple-point. 
The ω-to-β transformation pressure at room temperature was also found to be controversial, varying from 28 to 
38 GPa6–8. Similar controversies were simultaneously discovered in other extensive substances. How to explain 
these controversies, especially in a quantitative way, remains an open issue. In this article, we present a successful 
quantitative explanation for the controversies regarding the α-ω and ω-β transformations in zirconium by apply-
ing a nonhydrostatic thermodynamic formalism we proposed. We believe that the explanation is also appropriate 
for similar controversies observed in other substances.
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