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1  | INTRODUC TION

Global consumption of fish is expected to hit 146 million tons an-
nually by 2030; yet, supply is staggering low (FAO, 2008). This is 
despite the fact that aquaculture is the fastest growing animal 
food production sector in the world, accounting for about 50% of 
all fish products consumed by humans (FAO, 2016). Generally, the 

challenges associated with the food production sector in the twen-
ty-first century are nothing other than the world's population explo-
sion which is exponential compared to the level of food production. 
Consequently, the increased demand for food is intensifying the 
pressures on natural resources and ecosystems as efforts are made 
to fill the supply gap (Delaide et al., 2017; Suhl et al., 2016). To effi-
ciently solve these challenges, sustainable food production inched 
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Abstract
Aquaponics is known to be a smart way of producing fish and crops simultaneously; 
however, there is a paucity of information about the extents of this system's efficiency 
over other conventional methods of food production. Thus, this study was designed 
to evaluate the performance of a catfish–pumpkin aquaponics system in compari-
son with recirculatory and static aquaculture systems (for fish performance), as well 
as irrigated and nonirrigated systems (for pumpkin performance). Results obtained 
showed that the production of fish in the aquaponics system was 29% and 75% more 
efficient than recirculatory and static aquaculture systems, respectively. The survival 
of the fish was also significantly improved probably due to better water quality in the 
aquaponics system. With respect to pumpkin production, yield in the aquaponics 
system was about five times the performance in irrigated land and eleven times those 
in nonirrigated land. This study gives definitive evidence to support the efficiency of 
the aquaponics system over other conventional food production methods.
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on low carbon imprints, less water, and a low land requirement is 
obvious the way forward for the future. This is because traditional 
aquaculture production systems in ponds (static systems) have a 
high water budget and cause significant negative environmental 
impacts (i.e., nutrient load of wastewater) (Klinger & Naylor, 2012; 
Verdegem, 2013).

Also, traditional crop production required large portions of land 
and high water budget and sometimes lead to deadly resource-use 
conflict between farmers and herdsmen (Ajuwon, 2004; Fasona 
& Omojola, 2005; Udo, Ier, & Yemi, 2019). The need to adopt effi-
cient production systems has paved the way for the development of 
urban farming methods such as Recirculatory aquaculture systems 
(RAS) and hydroponic systems. These closed systems are based on 
the concept of water reuse, hence has less water budget and causes 
less environmental impacts compared to conventional agriculture 
systems (Timmons, Ebeling, Wheaton, Summerfelt, & Vinci, 2010; 
Verdegem, 2013). However, there is still a need for water exchange 
in the RAS to reduce nitrogen waste accumulation below levels that 
could be toxic to fish (Rakocy & Hargreaves, 1993; Yildiz et al., 2017). 
Hydroponic system, on the other hand, strives on constant supple-
mentation of nutrients to meet the requirement of the crops grown 
(Blidariu & Grozea, 2011; Love et al., 2015; Pantanella, Cardarelli, 
Colla, Rea, & Marcucci, 2010; Pulvenis, 2016; Sonneveld & Voogt, 
2009).

Aquaponics production system is therefore considered one of 
the most efficient and environmentally sustainable farming meth-
ods of the twenty-first century (FAO, 2014; Oladimeji, Olufeagba, 
Ayuba, Solomon, & Okomoda, 2020) as it combined the RAS with 
hydroponic system, hence mitigating the adverse effects of these 
methods on the environment (Tyson, Treadwell, & Simonne, 2011; 
Zou, Hu, Zhang, Guimbaud, et al., 2016). This integration ensures 
that the nitrogen-rich fish wastes produced are utilized as organic 
fertilizer by the plant (Blidariu & Grozea, 2011; Love et al., 2015; 
Pantanella et al., 2010), while the purified wastewater recycled 
from the plant is used in rearing the fish (Zou, Hu, Zhang, Xie, et al., 
2016). The aquaponics system is therefore an innovative, reliable 
and cost-effective way of boosting food production as well as mit-
igating communal clashes for land use. However, there is a paucity 
of information establishing the efficiency of this system over other 

conventional methods of fish and vegetable production. This study 
is designed to fill that gap of knowledge.

The choice of a catfish and pumpkin for this study is predicated 
on the importance of both commodities. The African catfish Clarias 
gariepinus (Burchell, 1822) is one of the most emblematic and im-
portant freshwater aquaculture species in Africa and South-East 
Asia (Okomoda, 2018; Okomoda, Koh, & Shahreza, 2017; Solomon, 
Okomoda, & Ochai, 2013). Pumpkin Telfairia occidentalis is a mem-
ber of the Cucurbitaceae family indigenous to Southern Nigeria 
and grown mainly for its leafy vegetables and seeds (Akoroda, 1990). 
The leaves have antioxidants, hepatoprotective, and antimicrobial 
properties (Nwanna, 2008), while the seeds have a high proportion 
of oil (Akoroda, 1990). The T. occidentalis is therefore primarily ex-
ploited for food (i.e., soup making), herbal medicines, and as a po-
tential export commodity (Nwanna, 2008; Okoli & Mgbeogu, 1983). 
Catfish production and pumpkin production have historically been 
through conventional means. Only recently, we reported our find-
ings on the performance of a catfish–pumpkin aquaponics system 
using different grow beds (Oladimeji et al., 2020). The concept of 
the aquaponics system is also not popular in many underdeveloped/
developing countries of the world. It is hoped that the findings of 
this study will buttress the efficiency of the aquaponics system over 
conventional planting/fish rearing methods.

2  | MATERIAL S AND METHOD

The study was conducted at the Agricultural Department of the 
National Biotechnology Development Agency (NABDA) Headquarter 
located along the Umaru Musa Yar'adua Express, Airport road Lugbe 
Abuja, Nigeria. The study area is situated at latitude 9°16′N and lon-
gitude 7°20′E, and 300 m altitude above sea level with 1,500 mm 
rainfall annually. The catfish–pumpkin aquaponics system used was 
according to the specification previously reported by Oladimeji et al. 
(2020) as shown in Figure 1 and Table 1 (in a glasshouse). The grow 
bed used was periwinkle shell; this has been earlier demonstrated 
to be better for pumpkin production (Oladimeji et al., 2020). The 
pumpkin pods for this study were obtained from a known source 
in Eastern Nigeria (Imo state), while the juveniles of African catfish 

F I G U R E  1   Aquaponics system layout 
as used in this study (adapted from 
Oladimeji et al., 2020)
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C. gariepinus were obtained from the NABDA aquaculture produc-
tion facility.

Static aquaculture systems used in this study were composed of 
four numbers of tanks installed just behind the glasshouse for the 
aquaponics system. Water change was done once every week ac-
cording to Okomoda, Tiamiyu, and Iortim (2016) who earlier reported 
this to be better for the growth of the African catfish. Similarly, the 
Recirculatory aquaculture system (RAS) was installed alongside the 
static system and was a replica of the RAS of the aquaponics system. 
Both the RAS and the aquaponics system were daily-added water at 
a level of 5% of the total water which is to compensate for evapora-
tion and transpiration losses, respectively (Maucieri et al., 2017). All 
the quadruplicate tanks used to raise the fish in the different setup 
were 200 L each and water level maintained three-quarter mark 
throughout the study period. Also, 50 randomly selected juveniles 
(mean weight = 10.01 ± 0.11 g; stocking density = 0.25 g/L) were 
stock in each rearing tanks in all the systems.

The conventional farming in this study was done one meter left 
and right of the glasshouse facility holding the aquaponics system 
(each 48 m2 by size). The soil properties (physical and chemical) were 
tested at the soil science laboratory of the University of Agriculture 
Makurdi and found suitable for the growth of pumpkin (Table 2). 
Both the irrigated land and the nonirrigated land received rainwater 
throughout the study period; however, grow beds of the aquaponics 
system were shielded due to the glasshouse installation and only 
received water from the RAS connected to it. The land used for irri-
gation was fed pond water from the static aquaculture system every 
week when a water change is done. The pods of pumpkin in this 
study were first cut to expose the seeds and then planted in pairs. 
Thirty-two seeds of pumpkin were planted in each planting system 
at the rate of one pair per troughs of the aquaponics system and one 
pair per 0.045 m3 of the irrigated land and nonirrigated land.

During the course of the study, the African catfish in all the sys-
tems were fed commercial diet Coppens® (45% CP; 1.5% fiber; 8.2% 
moisture, and 9.5% ash) at a rate of 5% body weight. The weights 
of the fish were taken weekly using a sensitive weighing balance 
(0.001 g) and the feeding regime adjusted as appropriate. At the 
end of the study which lasted for 4 months, growth performance 
and other indices were done as adopted by Okomoda, Tiamiyu, and 
Akpan (2017), Okomoda, Koh, et al. (2017) and shown below.

1. Growth rate (g/d) = W2−W1

t2−t1

where W1 = initial weight (g); W2 = final weight (g); t2 − t1 = duration 
between W2 and W1 (days).

2. Specific growth rate (%/day) = loge(W2)−loge(W1)
t2−t1

3. Feed conversion ratio (FCR) = dry feed intake
W2−W1

4. Feed efficiency ratio (%FER) = (W2−W1)×100

dryfeed intake

5. %Survival = fish stocked−mortality

fish stocked
×100

Water samples were collected from the fish tanks in the various 
system and tested for temperature, pH, dissolved oxygen (DO), am-
monia (NH3), nitrite-nitrogen (NO2), and nitrate-nitrogen (NO3) using 
a digital multiparameter water checker (Hanna water tester Model 
HL 98126) and chemical water kits.

In the course of this study, some assumptions were made and 
could have constituted the core of limitations for the current study: 
Firstly, it was assumed that the number of fish reared and vegetable 
seedling propagated in the aquaponics unit matches nutrient input 
and requirements for the smooth running of the system. Secondly, it 
was thought that a hydraulic loading rate of 7.5 L/hr was sufficient for 
the aquaponics setup in this study. Thirdly, it was also assumed that 
the daily addition of 5% of water to both the RAS and the aquapon-
ics system was sufficient to compensate losses through evaporation 
and transpiration losses, respectively. Fourthly, it was assumed that 
the plants in the irrigated and nonirrigated land got required nutrients 
from the soil without any need to add any form of fertilizer (similar 
to practices of indigenous pumpkin farmers). Also, the authors as-
sumed the nonrearing of the crops under aquaponics conditions did 

TA B L E  1   System dimension of the aquaponics system (adapted 
from Oladimeji et al., 2020)

S/N Tanks Dimensions

1 Fish rearing tanks 200 L

2 Planting bowls 0.045 m3

3 Mechanical filter tank 20 L

4 Sump tank 250 L

5 Hydraulic loading rate 7.5 L/hr

6 Water volume in the system 800 L (0.8 m3)

7 RAS land area occupied 12 m2

8 The hydroponic land area occupied 48 m2

TA B L E  2   Physical and chemical properties of the soil for 
irrigated and nonirrigated land (at 0–15 cm depth)

S/no. Mechanical composition Value

1 Clay (g/kg) 8.64

2 Silt 25.33

3 Sand 65.47

4 Textural classification (USD) Loamy sand

 Chemical composition  

1 pH (H2O) 5.55

2 pH (0.01 M CaCl2) 5.03

3 T N% 0.15

4 Avail. P (mg/kg) 16.08

5 K (mg/kg) 0.14

6 C (mg/kg) 0.53

7 Mg (mol/kg) 3.12

8 Ca (mol/kg) 4.16

9 Na (mol/kg) 82.71

10 CEC (mol/kg) 2.71
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not affect the performance of the fish since the routine procedure of 
weeding and other needed husbandry requirement were given. Lastly, 
it was assumed that the rainfall during the study period was sufficient 
for the growth of pumpkin in the conventional system.

Data collection for the yield parameters of the plants was initi-
ated 4 weeks after seed germination and subsequently every 2 weeks 
according to the method specified by Cornelissen et al. (2003). The 
parameters collected include vine length, leave numbers, number of 
branches, and plant yield. Data were analyzed using Minitab 14 com-
puter software. Firstly, descriptive statistics of all data were done 
followed by a one-way analysis of variance (ANOVA). When signif-
icant (p < .05) differences were observed, Fisher's least significant 
difference was used to separate the means.

It is also important to state that the experimental proto-
cols for this study were reviewed and approved by the National 
Biotechnology Development Agency (NABDA) committee on re-
search. More so, all methods used in this study involving the care 
and use of animals were in accordance with international, national, 
and institutional guidelines.

3  | RESULT AND DISCUSSION

The water quality parameters of the rearing tanks in the aquaponics 
system and RAS (Table 3) were within the recommended range for 
aquaculture (Ajani, Akinwole, & Ayodele, 2011; FEPA, 1988) but not 
for the static system. The levels of dissolved oxygen and nitrogen 
waste in the static system could be implicated in the performance of 

fish as observed in this study (Table 4). Boyd (1982) had opined that 
dissolved oxygen should be above 5 mg/L to support the survival 
and development of aquatic life in any culture system. However, 
many fishes have been reported to tolerate much lower. The study 
by Ostrand and Wilde (2001) had earlier shown that cyprinids are 
tolerant to the dissolved oxygen concentration of about 2.1 mg/L. 
Similarly, Okomoda, Koh, Hassan, Amornsakun, and Shahreza (2019) 
observed that African catfish C. gariepinus could survive in dissolved 
oxygen below 1 mg/L because of its accessory respiratory organ. 
Although no standard of Ammonia has been reported particularly for 
the rearing of C. gariepinus, many studies have reported varying rec-
ommendations. According to Knepp and Arkin (1973), levels above 
0.2 mg/L are toxic to fish. Somervilla, Cohen, Pantanella, Stankus, 
and Lovatelli (2014), however, suggested a level less than 1 ppm, 
while Ridha and Cruz (2001) recommends 0.02 mg/L. Akinwole 
(2005), on the other hand, had recommendations of <8.8 mg/L for 
warmwater fish culture. The observations in this study, however, 
may have resulted from the combined effect of increased un-ionized 
ammonia in the absence of oxygen. This has been proven to be detri-
mental to African catfish survival in a static system over a prolonged 
period of time (Okomoda et al., 2019).

The high value of ammonia recorded in the static system could 
be linked to the high stocking density used and nonfrequent water 
renewal as done in the other closed systems (RAS and aquaponics). 
Although nitrate-nitrogen (NO3-N) and nitrite (NO2) are products 
of ammonia oxidation, only the latter is considered to be of serious 
concern in fish culture (Ebeling, Losordo, & Delong, 1993; Timmons, 
Ebeling, Wheaton, Summerfelt, & Vinci, 2002). Nitrite is toxic as it 

TA B L E  3   Water quality parameters from three different culture systems for fish

Parameters Aquaponics system Recirculatory system Static system p-value

Temp (°C) 27.83 ± 0.20 28.08 ± 0.02 28.55 ± 0.22 .131

DO (ppm) 5.23 ± 0.03a 4.97 ± 0.04b 3.34 ± 0.01c .001

pH 6.80 ± 0.05a 6.85 ± 0.03a 6.03 ± 0.11b .003

NH3 (mg/L) 0.05 ± 0.003c 0.82 ± 0.002b 3.34 ± 0.023a .001

NO2 (mg/L) 0.27 ± 0.04c 0.68 ± 0.02b 2.23 ± 0.01a .001

NO3 (mg/L) 0.32 ± 0.02b 1.64 ± 0.09a 0.33 ± 0.03b .001

Note: Mean in the same row with different superscripts differs significantly (p < .05).

TA B L E  4   Growth parameters of fish reared in three different culture systems

Parameters Aquaponics system Recirculatory system Static system p-value

Initial wt (g) 9.99 ± 0.21 9.92 ± 0.26 10.21 ± 0.26 .822

Final wt (g) 685.25 ± 7.02a 538.8 ± 17.8b 398.8 ± 5.08c .001

Wt gain (g) 671.12 ± 6.82a 529.5 ± 9.04b 373.1 ± 3.40c .001

Growth rate (g/day) 6.03 ± 0.06a 4.72 ± 0.16b 3.72 ± 0.02c .001

SGR 7.55 ± 0.01a 7.04 ± 0.04b 6.40 ± 0.03c .003

FCR 1.09 ± 0.05c 1.27 ± 0.03b 2.55 ± 0.05a .012

FCE (%) 86.51 ± 0.68a 78.82 ± 1.89b 49.18 ± 0.38c .009

Survival (%) 94.25 ± 2.12a 80.60 ± 1.20b 59.24 ± 1.91c .009

Note: Mean in the same row with different superscripts differs significantly (p < .05).
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can lead to prompt fish fatality. Toxic levels prevent the spread of 
oxygen within the bloodstream of fish (Bernstein, 2011). Throughout 
our study period, NO2 concentrations were lower than the sublethal 
concentration of 2.83 mg/L reported by Dabrowska and Własow 
(1986), and Thangam (2014). It is noteworthy that values recorded 
for the static system surpass the nitrite standard suggested by 
Somervilla et al. (2014), while that of the closed system was within 
the standard (i.e., <1 ppm). Nitrite (NO2) level from the aquaponics 
system was much lower than the other systems probably because of 
the double-sided action of nitrobacteria present in the biological fil-
ters and the grow beds for the pumpkins in the system. The value of 
NO3, however, was higher in the RAS owing to the build-up of nitrate 
by nitrobacteria present without corresponding usage. Plants utilize 
nitrates for growth (Britto, Herbert, & Konzucker, 2002). According 
to Syafiqah et al. (2015), plants in the aquaponics system act as bi-
ological filters, thereby absorbing nutrients such as nitrate and NH3 
from the system. This, therefore, explains the low levels observed 
in the aquaponics system in our study. The above-mentioned is in 
line with the findings of Hambrey (2013) and Wahyuningsih, Effendi, 
and Wardiatno (2015) who observed that leafy vegetables (lettuce) 
significantly decrease nitrogen waste such as NH3 and NO3 in aqua-
ponics system for up to 92% and 50%, respectively. A similar obser-
vation was also made by Oladimeji et al. (2020) when the inlet water 
of the aquaculture system was compared to its effluent water in a 
catfish–pumpkin aquaponics setup. The observation of low NO3 in 
the static system, however, may have resulted from a reduced nitri-
fication process in this system.

One of the advantages of aquaponics is the unilateral input 
of nutrients from the fish feed into the system. Hence, feed does 
not only serve as a nutrient source for the fish, but also, indirectly, 
for the plants as well (Goddek et al., 2015; Rakocy, Bailey, Shultz, 
& Thoman, 2004; Rakocy, Masser, & Losordo, 2006; Savidov, 
Hutchings, & Rakocy, 2005). This means in terms of input cost for 
optimum performance, growing fish, and pumpkin in the aquaponics 
system is much lesser than conventional means. This is the same po-
sition of Hochman, Hochman, Naveh, and Zilberman (2018) as they 
observed that the introduction of aquaponics system diversified 

farmers' sources of income, increasing the yield of fish and plant over 
other forms of food production systems. In line with this finding, 
this study showed that fish grow better in the aquaponics system 
recording 29% and 75% efficiency than growth in the recirculatory 
and static aquaculture systems, respectively (Table 4; Figures 2 and 
3). Obviously, the performance difference in the fish in the differ-
ent systems can be linked to water quality since the same feed and 
similar environment were used. Ajani et al. (2011) had noted that 
fish continuously exposed to more than 0.2 mg/L of the un-ionized 
form of ammonia exhibited reduced growth and increased suscepti-
bility to disease. This may explain the reduced growth in the RAS and 
the static system compared to the aquaponics system in this study. 
Aquaponics production of fish in this study was better than the re-
ports of Palm, Bissa, and Knaus (2014) for Nile Tilapia Oreochromis 
niloticus and African catfish C. gariepinus grown with a low-tech 
closed ebb-flow substrate aquaponics system. The differences in our 
study with these reference studies may be linked to many factors 
which include the type of aquaponics system, the stocking density 
of the fish and species differences.

Pumpkin production in the aquaponics system was five times 
the performance in irrigated land and eleven times those in non-
irrigated land as observed for plant characteristics and overall 
yield (Figures 4–8). Aquaponics had earlier been heralded not only 
for its suitability for environments with limited land and water 
but also for its ability to produce three to six times the vegeta-
bles in conventional planting systems (Resh, 2004). According to 
Roosta and Hamidpour (2011), Liang and Chien (2015), factors 
such as nutrient availability and ease of uptake influence the 
production and harvestable biomass of crops. Similarly, Maucieri 
et al. (2019) concluded that water characteristics, together with 
nutrient availability, affected many characteristics of vegetable 
production especially its final yield. Possibly, the higher levels of 
nutrient availability for plants in the aquaponics system and those 
planted in the irrigated lands (from the static aquaculture system) 
resulted in their better yield and plant parameters compared to 
the nonirrigated land. It is also noteworthy that the pumpkin in the 
different systems did not show any observable signs of disease 

F I G U R E  2   Weight of Clarias gariepinus 
raised in the different aquaculture 
systems over 16 weeks. Data shown are 
mean ± SE
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infection. Although no study exists for the comparative perfor-
mance of aquaponics and irrigated/nonirrigated lands, our find-
ings are similar to those of Goddek and Vermeulen (2018) who 

observed that lettuce grown in the commercial aquaculture-based 
hydroponic system had enhanced growth performance compared 
to those grown in the conventional hydroponic nutrient solution 

F I G U R E  3   Length of Clarias gariepinus 
raised in the different culture systems 
over 16 weeks. Data shown are mean ± SE

F I G U R E  4   Leave numbers of pumpkin 
propagated in the different systems. Data 
shown are mean ± SE

F I G U R E  5   Leave areas of pumpkin 
propagated in the different systems. Data 
shown are mean ± SE
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on a commercial scale. Earlier findings of Delaide, Goddek, Gott, 
Soyeurt, and Jijakli (2016) had also revealed the same under lab-
oratory conditions. Their study claimed that aquaponic-grown 
lettuce in significantly similar chemical nutrient solutions shows 
better growth advantage and yield of approximately 40% over per-
formance in a conventional hydroponic system. However, contrary 

to the trend in these studies, the findings by Suhl et al. (2016) on 
tomato showed that performance was similar in the aquaponics 
system and hydroponic system without any significant production 
advantage. This study has given substantial evidence to support 
the claim that the aquaponics system is more efficient in the pro-
duction of catfish and pumpkin compared to other production 

F I G U R E  6   Number of branches of 
pumpkin propagated in the different 
systems. Data shown are mean ± SE

F I G U R E  7   Pumpkin vine length in 
the different systems. Data shown are 
mean ± SE

F I G U R E  8   Pumpkin yield in the 
different systems. Data shown are 
mean ± SE. Bars with different letters are 
significantly different from each other 
(p ≤ .05)
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systems. Future studies can test this hypothesis on a commercial 
scale.
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