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Simple Summary: It is known that drug transport barriers in the tumor determine drug concentra-
tion at the tumor site, causing disparity from the systemic (plasma) drug concentration. However,
current clinical standard of care still bases dosage and treatment optimization on the systemic
concentration of drugs. Here, we present a proof of concept observational cohort study to accu-
rately estimate drug concentration at the tumor site from mathematical modeling using biologic,
clinical, and imaging/perfusion data, and correlate it with outcome in colorectal cancer liver metas-
tases. We demonstrate that drug concentration at the tumor site, not in systemic circulation, can
be used as a credible biomarker for predicting chemotherapy outcome, and thus our mathematical
modeling approach can be applied prospectively in the clinic to personalize treatment design to
optimize outcome.

Abstract: Chemotherapy remains a primary treatment for metastatic cancer, with tumor response
being the benchmark outcome marker. However, therapeutic response in cancer is unpredictable due
to heterogeneity in drug delivery from systemic circulation to solid tumors. In this proof-of-concept
study, we evaluated chemotherapy concentration at the tumor-site and its association with therapy
response by applying a mathematical model. By using pre-treatment imaging, clinical and biologic
variables, and chemotherapy regimen to inform the model, we estimated tumor-site chemotherapy
concentration in patients with colorectal cancer liver metastases, who received treatment prior to
surgical hepatic resection with curative-intent. The differential response to therapy in resected
specimens, measured with the gold-standard Tumor Regression Grade (TRG; from 1, complete
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response to 5, no response) was examined, relative to the model predicted systemic and tumor-
site chemotherapy concentrations. We found that the average calculated plasma concentration
of the cytotoxic drug was essentially equivalent across patients exhibiting different TRGs, while
the estimated tumor-site chemotherapeutic concentration (eTSCC) showed a quadratic decline
from TRG = 1 to TRG = 5 (p < 0.001). The eTSCC was significantly lower than the observed plasma
concentration and dropped by a factor of ~5 between patients with complete response (TRG = 1)
and those with no response (TRG = 5), while the plasma concentration remained stable across TRG
groups. TRG variations were driven and predicted by differences in tumor perfusion and eTSCC. If
confirmed in carefully planned prospective studies, these findings will form the basis of a paradigm
shift in the care of patients with potentially curable colorectal cancer and liver metastases.

Keywords: chemotherapy; colorectal cancer; FOLFOX; liver metastases; mathematical model

1. Introduction

Systemic cytotoxic chemotherapy is still the primary treatment for many cancer pa-
tients with solid tumors who present with de novo metastatic disease. Specifically, for
patients with high-risk potentially curable tumors and good performance status, upfront or
neoadjuvant (prior to tumor resection) chemotherapy is often the recommended approach.
Response to therapy has consistently been shown to be a critical determinant of prognosis
and outcomes for most systemically administered treatments, including chemotherapy
drugs, biologic targeted agents, cell and/or antibody-based immunotherapy [1–7]. How-
ever, there is substantial heterogeneity in the overall response to treatment within and
across cancer types, suggesting a puzzling differential chemotherapy effect even among
patients with apparently similar clinical features of the disease [8–11]. Unfortunately, such
variability in response to chemotherapy in patients remains poorly understood.

Previous works have reported on the heterogeneity of chemotherapy delivery to tumor
cells as a plausible explanation for the observed differences in response to chemotherapy.
Koay et al. showed that differences in inter-patient [12], as well as intra-patient [13] trans-
port properties of pancreatic ductal adenocarcinoma tumors, lead to variation in DNA
incorporation of gemcitabine, despite similar vascular pharmacokinetics of the drug [12].
Batchelor et al. highlighted the importance of improved tumor drug delivery through
enhanced tumor perfusion, in order to improve patient survival in newly diagnosed
glioblastoma [14]. Further, the role of improved tumor blood vessel functionality in deter-
mining the success of metronomic cancer chemotherapy was highlighted by the same group
of investigators lead by Jain [15]. The above studies indicate that poor transportability of
drugs through the tumor may be a driving cause of therapy failure.

Mathematical modeling efforts to understand cancer biology [16,17] and tumor growth
dynamics [18–20] have provided support to improve therapeutic responses through conven-
tional [21–23] or novel treatment strategies [24–32], and to overcome drug resistance [33].
Current clinical practice of delivering chemotherapy aims to achieve a systemic chemother-
apy concentration (σB), based on patient-specific body measurements (e.g., body surface
area (BSA)). However, inherent biophysical barriers of the tumor tissue might perhaps pre-
vent the attainment of chemotherapy concentration at the tumor-site (〈σT〉) that is necessary
and sufficient to cause tumor cell death (characterized as fkill or the fractional tumor killed
by chemotherapy). Thus, tumor-specific parameters, in addition to patient characteristics,
should be considered during dose design. Drug concentration at the tumor site can differ
significantly from systemic concentrations, and may be a better determinant of therapeutic
efficacy. To correctly estimate drug concentration at the tumor site, we have developed and
validated a mechanistic mathematical model of diffusion-based drug transport, based on
patient-derived data, to account for and describe the role of tumor biophysical attributes
in drug efficacy [34–37]. Our mathematical model allows for the estimation of drug con-
centration at the tumor-site based on systemic drug pharmacokinetics, patient features,
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and tumor characteristics quantified through routine clinical parameters and standard
imaging. Our working hypothesis is that impaired drug transport to and within the tumor
microenvironment is correlated in a causal, mechanistic fashion, to drug efficacy. We first
introduced this hypothesis in a histopathology-based study of response to chemother-
apy [34], where we developed the mechanistic model to predict tumor response based on
patient-specific measurements of tumor vascularization and perfusion. To adapt the model
for determination of estimated tumor-site chemotherapeutic concentration (termed eTSCC),
we designed a proof-of-concept study implementing the mechanistic perfusion model
based on the tumor and treatment data of cancer patients, and examined the association
between chemotherapy concentration at the tumor-site and response to therapy. Notably,
we employed a colorectal liver metastasis (CRLM) model in which tumor specimens are
obtained during curative-intent surgery after patients received neoadjuvant systemic cy-
totoxic chemotherapy. This clinical scenario provided a unique opportunity to test our
mathematical model against the current gold-standard of pathologic tumor response to
therapy (Tumor Regression Grade (termed TRG)) [38]. As a consequence, we were able to
understand the eTSCC dependent heterogeneity in tumor response and to establish the
eTSCC threshold for the classification of patients into responders and non-responders. To
the best of our knowledge, this is the first model that utilizes routinely measured clinical
parameters as surrogates for model parameters to estimate local chemotherapeutic drug
concentration at the tumor-site. In the long term, the prospective application of this model
in the clinic will enable patient-specific treatment protocol design using routine clinical
measurements of patient and tumor micronevironmental parameters.

2. Results

On the basis of chemotherapy regimens given to the patients and tumor attributes,
we have implemented a validated mathematical model to estimate chemotherapy concen-
tration at the tumor-site and to examine its association with response to chemotherapy,
measured with the current pathological gold-standard, TRG. A serial cohort of patients
(n = 33) presenting with colorectal cancer and liver metastases (from 2016 to 2018), which
received standard neoadjuvant (preoperative) chemotherapy prior to liver resection and
with all the required information was included in the analysis (Table 1). As described in
the Section 4, we have set out to incorporate the following parameters in the mathematical
model: (i) the specific chemotherapy regimen received by all individual patients (including
BSA-based dose received, number of treatment cycles, and frequency of cycles), (ii) the
tumor and liver perfusion assessed through standard computed tomography image analy-
sis [12,13,39], and (iii) the total tumor burden. We have calculated chemotherapy plasma
and tumor-site concentrations (blinded to the TRG results) and subsequently used them to
examine differences in response to therapy (Figure 1).

Table 1. Features of patients with colorectal liver metastasis, followed by partial liver resection
after chemotherapy.

Clinical Characteristics All (n = 33)

Patient features
Median age 57 (range, 42–83)

Male 20 (60%)
Female 13 (40%)

Clinical tumor-related characteristics
Primary tumor site

Right colon 12 (36%)
Left colon 12 (36%)

Rectum 9 (28%)
Synchronous presentation–CRLM 29 (89%)

Extrahepatic disease present 11 (33%)
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Table 1. Cont.

Clinical Characteristics All (n = 33)

Colorectal cancer liver metastases
Number of lesions (median) 2 (range, 1–5)
Largest lesion size (median) 3.2 cm (range, 1–10)

CEA at presentation (median) 13.4 (range, 1–97)
Molecular characteristics

MSI-high tumors 0
Kras mutated tumors 11 (33%)

BRAF mutated tumors 1 (3%)

Treatment variables
Median of preoperative chemotherapy cycles 4 (range, 1–9)

Chemotherapy regimen
FOLFOX 25 (76%)
FOLFIRI 1 (3%)

FOLFOX/FOLFIRI combinations 7 (21%)
Combination with targeted/biologic agent

None 13 (39%)
Bevacizumab 20 (61%)

TRG outcomes
TRG1 2 (6%)
TRG2 4 (12%)
TRG3 8 (24%)
TRG4 13 (39%)
TRG5 6 (19%)
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Figure 1. Schematic description of the mathematical model and its variables. The model presented here takes as input
the treatment, patient, and tumor-related variables to predict tumor response to chemotherapy. (a) Calculated systemic
drug concentration, as obtained through pharmacokinetic analysis of patient-specific dosage regimen, is scaled by the
(b) frequency of drug administration and (c) total tumor burden (surrogate: serum carcinoembryonic antigen (CEA)) to
provide an estimate for (d) tumor vascular drug concentration, which upon further scaling with the tumor blood volume
fraction (BVF), estimates drug concentration in the (e) tumor interstitium, which correlates directly with response. Note:
Normalized area under the curve (AUC) of contrast enhancement kinetics in abdominal CT (computed tomography)
scan provides a measure of tumor BVF. ∆t is the duration of a single therapy cycle. Color gradients denote level of drug
concentration and drug diffusion barriers in the tumor. Illustration is not to scale.
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Mathematical formulation for estimating tumor-site chemotherapy drug concentra-
tion and correlation analysis. With established pharmacokinetic (PK) models of systemic
drug disposition and validated models of diffusion-based drug transport, we devel-
oped a mathematical model with patient and tumor-derived clinical data to estimate
the chemotherapy concentration at the tumor-site. As described in the Section 4, we first
calculated the time-averaged systemic blood concentration (

=
σB,i) of the cytotoxic drug

5-fluorouracil (5-FU) during a chemotherapy cycle i with a standard two-compartment PK
model (Equations (6) and (7)), which includes literature-derived PK parameters such as
clearance and inter-compartment mass transfer rate constants [40–42], and patient-specific
BSA-based dose (Figures S1 and S2). From

=
σB,i, drug concentration in the tumor extravas-

cular tissue (〈σT〉) was then estimated with the mathematical model. As detailed in the
Section 4, under the typical tumor vascularization conditions for CRLM (and other hy-
povascular tumors), one can safely assume that the blood volume fraction (BVF), which
represents tumor perfusion,� 1, thereby leads to the simplified form of our mathemati-
cal model:

fkill ∼ f 0
kill·BVF (1)

where f 0
kill is the fraction of tumor death or cell kill (dimensionless: 0 ≤ f 0

kill ≤ 1) that would
be obtained in a dose-response study in vitro, for the given drug-cell pair at a concentration
equal to the time-averaged concentration achieved in the tumor blood vessels (〈σT,B〉),
throughout the total duration t of the treatment. Clinically, and supported by correlation
analysis of tumor and treatment variables (Figure 2A–D), an accurate surrogate for the
in vitro f 0

kill is thus obtained by estimating 〈σT,B〉 as:

f 0
kill ∼ 〈σT,B〉 ∼

=
σB,i·

λ·∆t
CEA

(2)

where λ = N
t is the frequency of chemotherapy cycles, i.e., number of cycles N per unit

duration t of treatment; ∆t is the duration of a single therapy cycle (≈46 h); and serum
carcinoembryonic antigen (CEA) is the biomarker for total tumor burden, a surrogate for
tumor size based on the correlation (Figure 2A). The significant correlation of the λ

CEA
factor with TRG further supports and characterizes this variable in the model (Figure 2B).
As described in the Section 4, we have recently reported a correlation between the BVF,
measured from histopathology, and the tumor perfusion measured by a standardized
approach derived from CT imaging of the tumor [34]. Our current data confirm the
correlation of perfusion with a response to therapy (Figure 2C), as well as the inverse linear
correlation of the size of the tumor with perfusion (Figure 2D). Thus, tumor perfusion
normalized to healthy liver perfusion values serve as a surrogate for the BVF. We have
previously shown that the cumulative uptake of drug over time by tumor cells in vitro, over
the course of drug exposure, is a key determinant of fkill [43]. Therefore, the time-averaged
concentration 〈σT〉 experienced by the tumor cells throughout the course of treatment is
proportional to fkill, and was obtained from the model as:

〈σT〉 ∼ f 0
kill·BVF (3)

Estimated tumor-site chemotherapy concentration and correlation with tumor and
treatment variables. Based on the estimated tumor-site concentration 〈σT〉 of 5-Fluorouracil
(5-FU) (estimated from Equation (3)), we next identified significant correlations between
〈σT〉 and various tumor and treatment-related variables. Figure 3A illustrates the linear
correlation between 〈σT〉 and tumor perfusion. Furthermore, as seen in Figure 3B, 〈σT〉 has
a non-linear (power law) dependence on tumor size (cm), which can be explained by the
negative linear relation observed between perfusion and tumor size in Figure 2D, leading
to reduced drug accumulation in large tumors. As mentioned before, we observed a direct
linear correlation between tumor size and serum CEA levels (Figure 2A); as a result, 〈σT〉
has a similar power law correlation with CEA (Figure 3C), as seen between 〈σT〉 and size
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(with comparable exponent values: 0.94 and 1.02). This provides a rationale for the use of
serum CEA levels as a surrogate for the total tumor burden. Finally, the linear correlations
between λ

CEA and 〈σT〉 (Figure 3D) and between λ
CEA and TRG (Figure 2B) indicate the

dependence of tumor response (TRG) on 〈σT〉, such that a greater λ
CEA value corresponds

to higher 〈σT〉 and a better response.
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Estimated chemotherapy drug concentrations and response to therapy. Having calculated
chemotherapy concentration in the systemic circulation (with the PK model) and estimated
tumor-site chemotherapy concentration (with the above mathematical model (Equation (3)),
we next focused on the clinical relevance of these observations by comparing the results at
the two sites and the association with response to chemotherapy, i.e., TRG (Figure 4). We
found that the average plasma concentration of 5-FU (

=
σB,i, red squares) during a therapy

cycle is essentially equivalent (i.e., minimal variability) across patients exhibiting different
TRGs (one-way ANOVA, p > 0.05), while 〈σT〉 shows a significant quadratic decline (one-
way ANOVA, p < 0.001) as we move from TRG = 1 to TRG = 5 (blue circles). As a result,
for instance, the average 〈σT〉 for patients exhibiting TRG = 5 is ~5.7 times less than their
corresponding average

=
σB,i. Based on these empirical observations, a number of critical

findings can be summarized as follows: the chemotherapy concentration at the tumor-site
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(Figure 4, blue) is significantly lower than the observed plasma concentration (Figure 4,
red), and drops significantly between patients with complete response (TRG = 1) and those
with no response (TRG = 5), by a factor of ~4.8, while the plasma concentration (Figure 4,
red) remains stable across TRG groups. Notably, the plasma concentration of 5-FU is higher
than its average in vitro IC50 value for the same tumor type (Figure 4, black) [42], whereas
the tumor-site concentration gradually falls below the mean IC50 for increasing TRG (i.e.,
poor response).
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Predictive model for response to chemotherapy. To further validate the hypothe-
sis that eTSCC (〈σT〉) varied between responders and non-responders, we performed
logistic regression-based binary classification analysis to classify patients based on their
eTSCC. The obtained ROC curve had an AUC or c-statistic of ~0.88, which indicates
good classification ability of eTSCC (Figure 5A). From the ROC curve, 0.51 µg mL−1 was
selected as the optimal cut-off value to differentiate the patients into responders and non-
responders (values > 0.51 µg mL−1 indicate responders, while <0.51 µg mL−1 indicate
non-responders). To visualize the binary classification based on the chosen threshold, we
plotted the complementary cumulative distribution (CCD) function of the eTSCC data.
As shown in Figure 5B, the eTSCC correctly classified ~83% and ~85% of responders and
non-responders, respectively, with an overall accuracy of classification being ~85%.
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Data represents mean ± standard deviation (SD). (Patient cohort size, n = 33).
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Figure 5. Logistic regression-based binary classification and cross-validation. Receiver operating
characteristic (ROC) curve to evaluate the classification ability of eTSCC into responders and non-
responders (A). Complementary cumulative distribution function (CCD) of patients shows the
accuracy of binary classification at a discrimination threshold of 0.51 µg mL−1 (B). ROC curves gen-
erated for multiple training data sets obtained through the leave-one-out cross validation technique
(C). Results of cross validation in correctly classifying the test data point (D).

To evaluate the predictive ability of the binary classifier, we performed leave-one-out
cross validation (LOOCV). The average AUC thus obtained for the ROC curves generated
by iteratively removing one data point from the training data was 0.87 ± 0.01, which
was very similar to the AUC of the complete training data set (Figure 5C). Based on each
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training data, we classified the left-out test data point, pooled the results of all the iterations,
and obtained a classification accuracy of 81.8%, with ~83.3% and ~81.5% of responders and
non- responders being correctly classified, respectively (Figure 5D).

3. Discussion

With a validated tissue perfusion model and incorporating relevant treatment and
tumor-related variables, here we report the development of a mathematical model to esti-
mate chemotherapy drug concentration at the tumor-site, and its association with response
to treatment. We examined the eTSCC and response to therapy in a cohort of patients
with colorectal cancer liver metastases treated with standard preoperative chemotherapy
regimens prior to curative-intent surgery. This allowed us to use relatively uniform patient
data from real-life clinical practices to develop and implement our models, and to measure
response to chemotherapy with the current histopathologic gold-standard: TRG score (mea-
sured in surgical specimens). Our findings emphasize principles regarding drug delivery,
drug penetration, and actual chemotherapy concentration achieved at the tumor site. With
established physical laws of a diffusion-based validated mechanistic model to estimate
chemotherapy concentration at the tumor site, we found eTSCC to be significantly lower
than the calculated plasma concentration across non-responders. Most notably, the eTSCC,
which is a function of tumor burden, tumor perfusion, and cumulative chemotherapy dose
overtime, was directly correlated with response to chemotherapy. Moreover, this model can
reliably estimate tumor site concentration, which in turn accurately predicts and classifies
patients based on (expected) the response to chemotherapy. This is a novel and unique tool
with potentially direct and immediate implications on day-to-day cancer care practices,
as it can guide the use of chemotherapy and can help develop and implement ways to
optimize the delivery of chemotherapy agents to the tumor site.

Based on the report of our previously validated hypothesis [34], which describes
the direct association of tumor perfusion and response to therapy, we first focused on
implementing the model to estimate chemotherapy concentration in the tumor vascula-
ture. Though a systemic (plasma) concentration (

=
σB,i) is predictable with established PK

models [40,41], delivery of a chemotherapy agent to the tumor site, diffusion across the
microenvironment, and concentration accomplished at the site of cancerous cells (〈σT〉)
are more complex and to some extent erratic and difficult to measure [44]. Different tech-
niques using in vitro and in vivo models have been developed to examine the delivery of
chemotherapy agents [45–47], and though important for understanding the tumor delivery
of agents, the complexity of this system makes these measurements challenging and far
from practical for clinical use. Our findings, entered into a mathematical model, account for
tumor vascularization and biophysical barriers of diffusion, such as increased interstitial
fluid pressure and dense extracellular matrix, which ultimately determine the transport
of the drug molecules to the tumor site. With established measures of normal tissue and
tumor tissue perfusion [12,13,39], and empirical correlations of tumor burden and treat-
ment variables, all derived from data available during the process of clinical care, we were
able to estimate the tumor site chemotherapy concentration for the patients, and predict a
significantly lower and variable concentration to that observed in the systemic circulation.
The model developed incorporates objective data, providing a reliable measure for the
estimation of tumor site concentration. Notably, results from the correlation analysis em-
phasized the linear association of tumor perfusion and eTSCC; this finding further supports
the critical role of tumor tissue perfusion as an adequate surrogate for microenvironmental
diffusion barriers. Tumor tissue diffusion barriers are of key importance for the prediction
of clinical therapeutic outcomes, particularly when treating patients with hypovascular
(i.e., poorly perfused) tumors, as in the well established case patients with CRLM [48].

Therefore, among the most salient findings of our study is the direct association
between eTSCC and response to chemotherapy treatment. Most commonly, studies evalu-
ating the response to treatment have focused on cellular and genetic mechanisms driving
such responses [33,44,49,50]. However, our group and others have reported on the critical
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role of chemotherapy agent delivery, tumor perfusion, and chemotherapy penetration
to reach tumor cells in governing the response to therapy [33,34,51–53]. After grading
the response to chemotherapy with the TRG score in a blinded fashion, we found an
inverse correlation between eTSCC, derived from the developed model, and the TRG score,
whereas the systemic concentration remained stable and above the mean IC50 across all
patients. This difference is based on limitations in drug delivery associated with tumor
perfusion impairment, tumor burden (serum CEA level was used as a surrogate), and
frequency of treatment (cumulative chemotherapy given over time). Further, eTSCC was
correlated with response to treatment, and none of the traditional clinical predictive factors
were found to impact this association (Supplemental Table S1). As a proof of concept study,
the implications of this finding are substantial and medically meaningful as a response
to therapy is the most important prognostic factor in patients with advanced solid malig-
nancies receiving chemotherapy, and this information can be used preemptively to guide
decisions regarding the use of preoperative chemotherapy for patients with CRLM under-
going curative-intent surgery. Most importantly, it can help guide the use of chemotherapy
for cancer patients within this setting, based on desired versus expected concentrations
at the tumor site. Given the model that was developed from patients receiving standard
preoperative chemotherapy in the context of a real-life setting, theses findings are general-
izable to patients receiving systemic chemotherapy for CRCLM with similar characteristics.
Furthermore, the purpose of our study was to test the presented concept using surgical
specimens so as to have the gold-standard for response to therapy. With findings support-
ing the association between tumor-site concentration and TRG, the clinical implications can
potentially expand to patients treated with systemic therapy only (not surgical patients).
Further, these findings can be used as a model to guide future studies incorporating this
concept for patients with other tumors–hypovascular ones specifically. Future studies will
be needed to validate these applications.

Due to the complexity and myriad factors governing chemotherapeutic drug transport
and eventual penetration into tumor tissue, mathematical modeling has evolved into a
reliable methodology to understand chemotherapy delivery, thereby providing a frame-
work to quantitatively examine the relative importance of competing factors and to guide
clinical use [44,54,55]. Applying a previously developed model of tumor tissue perfusion,
here we describe important parameters driving chemotherapy concentration achieved
at the tumor site and response to therapy, with a clinical cohort of patients treated with
standard 5-FU-based chemotherapy frontline regimens such as FOLFOX. The mathematical
model introduced here is reliable, accurate, and is directly suitable for clinical performance.
Hence, it represents a developmental blueprint for use with other classes of agents in
the field of anti-cancer therapy, including perhaps targeted drugs or immunotherapeutic
agents [43,56,57]. We built the model considering biophysical barriers to diffusion and
report important findings for the estimation of tumor site chemotherapy. Remarkably,
we were able to accurately predict the response to therapy when incorporating the vari-
ables derived from individual patient tumors and treatment factors, as predicted in the
mathematical model (Figure 5A–D). Indeed, the ability to a priori predict responses to
chemotherapy with standard treatment regimens is critical and continues to be a challenge
when choosing among various potentially curative treatment strategies for cancer patients.
Specifically, for CRLM patients receiving chemotherapy preoperatively, it is essential to be
able to predict the response as it may guide the type of chemotherapy regimen to be used
and/or may change the strategy to a surgery-first or surgery-only approach. We envision
having this model available in the clinical setting at initial patient consultation to help
guide individualized patient care by estimating tumor site concentration and predicting
expected response to chemotherapy prior to choosing the best treatment approach for a
given patient. Similarly, for those patients with metastatic lesions not amenable to surgical
approaches, this work can serve as the basis to develop and/or implement novel modes of
more effective chemotherapy delivery, such as transarterial infusion (e.g., hepatic artery
infusion for CRLM) [58,59], or different strategies for delivering and “dosing” systemic
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chemotherapy [15,60]. As such, the use of this model will provide more robust information
ultimately translating into an individualized, outcome-driven approach to chemotherapy
treatment for patients with solid malignancies.

Several aspects of this investigational study merit further comment. Given the retro-
spective nature of this initial proof-of-concept study, there are some obvious limitations
to the data interpretation. Patients included in the analysis may evidently be subject to
selection bias favoring those ultimately making it to surgery, and as such exhibiting a dif-
ferent profile in regards to response to chemotherapy. However, we selected serial patients
from a real-life surgical oncology practice from a single-institution (an NCI-designated
Comprehensive Cancer Center), including all patients receiving preoperative chemother-
apy and having resection, as an accurate representation of clinically uniform patients with
CRLM being evaluated for surgical treatment in a quaternary setting. Notably, despite
the relative similarities of patients included in regard to tumor burden (resectable) and
treatment approach (all treated with standard first-line chemotherapy regimens), we still
encountered marked variability in the response to treatment and heterogeneity in the tumor
tissue perfusion and the overall eTSCC accomplished; this finding resulted in the ideal
translational setting to provide an experimental proof-of-concept supporting our working
hypothesis regarding tumor site chemotherapy concentration and response to treatment.
Similarly, as with mathematical model development, a number of assumptions related to
the biophysical barriers of diffusion across to tumor sites were made when developing the
model. However, these assumptions are derived from validated work examining each of
the different variables encompassed in a real-life model development.

In conclusion, these findings support the working hypothesis that response to chemother-
apy is driven by the ability of the chemotherapeutic agent to reach the cancer cells at an
effective concentration. Understanding tumor perfusion and chemotherapy delivery prin-
ciples are essential steps to improve current delivery methods that can be translated into
better prediction and improved response to therapy [15,43,51]. This may be particularly rel-
evant when treating hypovascular tumors for which diffusion barriers limit chemotherapy
delivery and overall response to treatment. Thus, this proof-of-concept study represents
an initial step towards a paradigm shift in our capability to predict the effectiveness of
chemotherapeutic agents. If successfully confirmed and reproduced in carefully planned
prospective translational studies, here and elsewhere, this work may be considered to be
fundamental groundwork for the field in going forward.

4. Methods

Study Design and Population. A retrospective cohort study was done on patients
with CRLM treated with preoperative chemotherapy followed by curative-intent surgery
(liver resection-hepatectomy). The study protocol was approved by the Study Review
Committee (SRC) at the Moffitt Cancer Center and by the Institutional Review Board (IRB)
of the University of South Florida (IRB #MCC16466). The study sample was obtained by
query of the hepatobiliary surgical database at Moffitt Cancer Center to identify patients
having liver resection for CRLM within the last 30 months (from January 2016 to June
2018), for which tumor tissue specimens were available. Among the initially evaluated
patients (n = 99), we included only those receiving standard preoperative chemotherapy
regimens within four months of surgery, and for whom the oncology record was available
for information regarding the chemotherapy regimen and unique actual dose given during
each cycle. Lastly, only patients with contrast enhanced pre-chemotherapy computed
tomography available for appropriate imaging review of tumor imaging characteristics
were included in the analysis, yielding the total cohort of patients reported here (n = 33)
(Supplemental Figure S1). Patients included in the study had all the information and data
necessary for modeling and analysis. Baseline and treatment characteristics of the study
sample are described (Table 1).

Outcomes. The aim of this study was to examine the differences in plasma and tumor-
site chemotherapy concentration and to evaluate the association of these with response to
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chemotherapy, which was measured with pathologic TRG, as described in Reference [38]. In
short, TRG was expertly assessed by two experienced gastrointestinal pathologists blinded
to all other patient and treatment-related information. Archived liver specimens from the
hepatectomy procedure were retrieved and slides from the largest lesion were selected
and examined for residual tumor cells and the extent of fibrosis. Based on the findings, a
TRG score was assigned to each patient using a validated algorithm that incorporates the
degree of fibrosis and residual tumor cells; TRG 1: no residual tumor cells or abundant
fibrosis; TRG 2: rare residual tumor cells scattered throughout abundant fibrosis; TRG 3:
residual tumor cells throughout predominant fibrosis; TRG 4: large amount of tumor
cells predominating over fibrosis; and TRG 5: exclusively residual tumor cells without
fibrosis [38]. Notably, two pathologists performed the assessment of TRG and they were
blind to all the other information. Similarly, the radiologist measuring tumor perfusion
variables was blinded to the primary outcome–TRG.

Data collection. Patients in the hepatobiliary surgical database are entered prospectively
in a consecutive manner, and as such, all surgical cases are included. The database consists
of baseline clinical variables (age, gender, race/ethnicity and comorbidities), cancer-related
information (primary tumor-site, stage, and metastatic site/s), detailed data regarding the
liver metastases, including: presentation, number of lesions, size of largest lesion, serum
CEA level at presentation, molecular and mutational analysis (when performed), and
treatment characteristics (use of preoperative chemotherapy, margin-negative resection,
postoperative complications, and use of adjuvant therapy). Specific variables related
to this study, and not collected routinely in the database (such as TRG, chemotherapy
regimens and tumor perfusion variables) were collected retrospectively, as described in the
corresponding sections.

Chemotherapy treatment. For this study, we collected more detailed information regard-
ing the preoperative chemotherapy treatment received by those meeting eligibility criteria.
Data collected included chemotherapy agent/s received, BSA-based dose received for each
agent during every individual treatment, and number of treatments (cycles). Patients with
missing data for any of these variables, those receiving second-line or greater chemotherapy
regimens, those treated for >20 cycles or receiving treatment for four months or more before
the liver resection procedure were excluded from the analysis.

Tumor perfusion. Based on previous work from our group and a validated method
for perfusion assessment of the tumor [13,34,39,43], we measured perfusion of the normal
liver and the largest metastatic tumor (to correlate imaging perfusion measurements to the
corresponding TRG measurement of the same lesion) with contrast-enhanced three-phase
CT (non-contrast, arterial and portal venous phases) obtained prior to the initiation of
preoperative chemotherapy of all selected patients. CT measurements were done by two
experienced cancer radiologists and a hepatobiliary surgeon, who used Centricity Universal
Viewer version 6.0 (GE Healthcare, Waukesha, WI). Manual 1 cm circular regions of interest
were applied within the tumor and the surrounding liver on each contrast phase, and the
mean Hounsfield units (HU) and standard deviation were recorded. These data were used
to calculate tumor perfusion by applying a previously described methodology [13,34,39,43].

Mathematical model development. By analyzing the diffusional transport of drug
molecules within the tumor microenvironment, and assuming that local tumor cell death
in a tumor is equivalent to the dose response in vitro at the same drug concentration as
experienced at that location within the malignant tissue, we obtained a “master equation,”
i.e., a closed-form solution of the diffusion equation, predicting the fraction fkill of a tumor
that would be killed by a given chemotherapy regimen:

fkill = 2· f 0
kill·BVF·

BVF1/2·K1(rb/L)− K1

(
BVF−1/2·rb/L

)
BVF1/2·rb/L·K0(rb/L)·(1− BVF)

(4)

where K0 and K1 are modified Bessel functions of the second kind of orders 0 and 1,
respectively; f 0

kill is the fraction of kill (dimensionless: 0 ≤ f 0
kill ≤ 1) that would be
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obtained in a dose-response study in vitro at a drug concentration equal to the time-
averaged concentration achieved in the tumor blood vessels throughout the entire multi-
month course of the treatment; L (units of length) is diffusion penetration distance of drug
molecules within tumor tissue, consistent with an observed correlation between lesion size
and perfusion (Figure 2D); rb (units of length) is the average blood vessel cross-sectional
radius, and the BVF (dimensionless) is the blood volume fraction, i.e., the fraction of
tumor volume occupied by blood, representing tumor perfusion (0 ≤ BVF ≤ 1). These are
measurable patient-specific parameters that characterize the unique pharmacokinetic, as
well as the mass transport properties of the patient’s tumor tissue. It can be shown that f 0

kill
is the maximum theoretical kill achievable in vitro, as transport barriers in patient tumor
tissue pose an additional penalty factor (function of BVF and rb/L) limiting kill further,
thus fkill ≤ f 0

kill ≤ 1. For hypovascular tumors, we can assume BVF� 1, which leads to
the simplified form (by 1st order Taylor-series expansion in the BVF in the neighborhood
of BVF ≈ 0):

fkill ∼ f 0
kill·BVF (5)

which provides a simple linear dependence on the dose-response f 0
kill and the micro-

environmental transport factor BVF. Note that there is an additional factor, 2·K1(rb/L)
rb/L·K0(rb/L) ,

function of the lengths ratio, which is assumed here to be a constant. For example, for
a typical vessel radius rb = 10 µm and diffusion penetration distance L ∼ 100 µm [34],
one obtains rb/L = 0.1 and K1(rb/L)

rb/L·K0(rb/L) = 245. This, as well as other constants, are herein
removed from consideration by normalization.

Systemic (plasma) concentration kinetics of drug during one treatment cycle. In a
single treatment cycle, the patients received 5-FU as part of the FOLFOX and/or FOLFIRI
regimen as an intravenous bolus at a dose D of 400 mg·m−2 of BSA followed almost
instantaneously, by an intravenous infusion of 5-FU at a dose R of 2400 mg·m−2 BSA
spread over a duration ∆t of 46 h. We began by estimating the blood concentration kinetics
of 5-FU with a two-compartment pharmacokinetic modeling approach (Supplemental
Figure S2) [40,41]. The model consists of a system of two ordinary differential equations
(ODEs) representing the concentration of 5-FU in the blood compartment (σB) and the
peripheral compartment (σP):

dσB

dt
= −k12σB − σB

Cl
V

+ k21σP +
D

∆t·V ·BSA, σB(0) = σ0 =
D·BSA

V
(6)

dσP

dt
= k12σB − k21σP, σP(0) = 0 (7)

where k12 and k21 are the first-order inter-compartment mass transfer rate constants; Cl is
the clearance rate of 5-FU; and V is the volume of blood. Parameter values were obtained
from published reports and include: k12 = 5.35 h−1; k21 = 5.69 h−1; Cl = 65.3 l·h−1 [40,41].
Patient-specific volume of blood (units, mL) was estimated from patient-specific BSA
(units, m2), by using the following empirical relation [61]:

V = (3.29·BSA− 1.229)·1000 (8)

Assuming concomitant administration of the bolus and infusion doses, we use the
theoretical blood concentration σ0 of 5-FU, achieved instantaneously after the intravenous
bolus, as the initial condition for Equation (6). However, in this case, an infusion was
not preceded by a bolus injection, the initial condition for Equation (6) was σB(0) = 0.
We numerically solved the system of equations in MATLAB (MathWorks, Natick, MA) to
obtain the blood concentration kinetics curve of 5-FU (Supplemental Figure S3).

Systemic (plasma) drug concentration kinetics over multiple treatment cycles. From
the blood concentration kinetics curve, we determined the area under the curve (AUCi)
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(Supplemental Figure S3) with the trapezoidal method, which is used to obtain the time
averaged concentration σB,i of 5-FU in a given treatment cycle i as:

σB,i =
AUCi

∆t
(9)

By using the PK model to simulate the multiple cycle chemotherapy regimen (Sup-
plemental Figure S4), we obtained the time averaged blood concentration

=
σB,i of 5-FU for

each patient over N cycles, i.e., the average blood concentration of 5-FU during any given
treatment cycle:

=
σB,i =

∑i AUCi
N·∆t

(10)

Alternatively,
=
σB,i can be calculated by averaging σB,i over N cycles:

=
σB,i =

∑i σB,i

N
(11)

Classifying the patients based on their response to chemotherapy (TRG), the mean ± SD
of

=
σB,i was plotted as a function of TRG (Figure 4, red squares).

Estimating tumor drug concentration over the course of treatment. In previous work
we showed that cumulative uptake of drug over time by cancer cells in vitro, over the
course of drug exposure, is a key determinant of drug efficacy [43]. In a clinical setting,
this can be equivalently described as the fkill (tumor cell kill from chemotherapy) achieved
through the time averaged drug concentration 〈σT〉 in the tumor extravascular tissue over
the course of treatment t. Here, t represents the time from the initiation of therapy to the
time of surgery (Supplemental Figure S4, inverted blue triangles), thereby also accounting
for the intermediary period between cycles and the time after the final cycle, during which
drug was not being administered to the patients. Further, based on our own previous
work [34] and from earlier discussion of the model in the present report, fkill correlates with
patient-specific tumor perfusion characteristics, i.e., BVF, thus for hypovascular tumors:

fkill ∼ 〈σT〉 ∼ f 0
kill·BVF (12)

where BVF is estimated as:
BVF ∼ AUCtumor

AUCliver
(13)

AUCtumor and AUCliver are determined from the contrast enhancement kinetics plots
of tumor and liver in an abdominal CT scan, respectively. Clinically, f 0

kill is proportionate
to the time averaged drug concentration achieved in the tumor vasculature 〈σT,B〉, which
correlates with systemic drug concentration (

=
σB,i), frequency of chemotherapy cycles(

λ = N
t

)
, and tumor burden (r) as:

f 0
kill ∼ 〈σT,B〉 ∼

=
σB,i·

λ·∆t
r

(14)

Given the multiple tumor lesions in every patient, we use a clinically measured
blood biomarker of total tumor burden, carcinoembryonic antigen (CEA), as a measure of
tumor size, based on the statistically significant correlation observed (Figure 2A). Thus, the
effective tumor drug concentration 〈σT〉 (Figure 4, blue circles) is estimated as:

〈σT〉 ∼
=
σB,i·

λ·∆T
CEA

·BVF (15)

Binary classification. Logistic regression-based binary classification was performed to
test the ability of eTSCC 〈σT〉 to classify the patients into responders and non-repsonders
(Figure 5). The entire data set (n = 33) was used to train the binary classifier. A logistic
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regression model was fit between the predictor (〈σT〉) and response (responder/non-
responder) variables, and receiver operating characteristic (ROC) curve was computed.
Accuracy of classification was obtained as the percentage of tumors correctly classified
by the ‘discrimination threshold’ (selected from the ROC curve to maximize the accuracy
of classification).

Leave-one-out cross validation (LOOCV) technique was used to evaluate the predic-
tive capability of the binary classifier. In this technique, n − 1 training data sets were
generated from the total n data points by iteratively removing one data point. Each train-
ing dataset was used to generate a ROC curve and select a discrimination threshold to
classify the left-out test data point. The prediction results from all iterations were pooled to
calculate the average accuracy of the classifier.

Statistical analysis. Clinical data are presented as mean ± SD and proportions and
range, for continuous and categorical data (at n = 33). One-way ANOVA was performed
to compare multiple groups and student’s t-test was performed for comparison between
two groups. A level of p < 0.05 was considered statistically significant. The Levenberg-
Marquardt algorithm was used to perform regression analysis. All analyses were performed
in MATLAB R2018a.

Additionally, multi-variable logistic (ordinal) regression was performed to test the
significance of age, gender, tumor presentation (metachronous versus synchronous), lesion
count, extra-hepatic disease, and primary tumor location as predictors of therapy response,
with the following model to determine the log odds of being in a TRG ≤ i versus being in
a TRG > i:

log
(

P(TRG ≤ i)
P(TRG > i)

)
= αi + β1·Xage + β2·Xgender + β3·Xpresentation + β4·Xcount + β5·XEH dz + β6·Xlocation (16)

where αi is the intercept corresponding to the equation for TRG = i; β j represents the
regression coefficient of a variable (j = 1 for age, j = 2 for gender, j = 3 for tumor
presentation, j = 4 for lesion count, j = 5 for extrahepatic disease, and j = 6 for primary
tumor location). Our analysis reveals p > 0.05 for all intercepts and coefficients, suggesting
that the tested variables cannot reliably predict therapy response. Parameter estimates are
given in (Supplemental Table S1).

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/3/444/s1, Figure S1: Workflow describing patient selection criteria (N = 33), Figure S2:
Two-compartment pharmacokinetic model, Figure S3: Systemic concentration kinetics of 5-FU,
Figure S4: Complete chemotherapy regimen, Table S1: Parameter estimates of multivariable logistic
(ordinal) regression.
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