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Abstract
1. Understanding the prevalence of pathogens in invasive species is essential to 

guide efforts to prevent transmission to agricultural animals, wildlife, and humans. 
Pathogen prevalence can be difficult to estimate for wild species due to imperfect 
sampling and testing (pathogens may not be detected in infected individuals and 
erroneously detected in individuals that are not infected). The invasive wild pig 
(Sus scrofa, also referred to as wild boar and feral swine) is one of the most wide‐
spread hosts of domestic animal and human pathogens in North America.

2. We developed hierarchical Bayesian models that account for imperfect detection to es‐
timate the seroprevalence of five pathogens (porcine reproductive and respiratory syn‐
drome virus, pseudorabies virus, Influenza A virus in swine, Hepatitis E virus, and Brucella 
spp.) in wild pigs in the United States using a dataset of over 50,000 samples across nine 
years. To assess the effect of incorporating detection error in models, we also evalu‐
ated models that ignored detection error. Both sets of models included effects of demo‐
graphic parameters on seroprevalence. We compared our predictions of seroprevalence 
to 40 published studies, only one of which accounted for imperfect detection.

3. We found a range of seroprevalence among the pathogens with a high seropreva‐
lence of pseudorabies virus, indicating significant risk to livestock and wildlife. 
Demographics had mostly weak effects, indicating that other variables may have 
greater effects in predicting seroprevalence.

4. Models that ignored detection error led to different predictions of seroprevalence 
as well as different inferences on the effects of demographic parameters.

5. Our results highlight the importance of incorporating detection error in models of 
seroprevalence and demonstrate that ignoring such error may lead to erroneous 
conclusions about the risk associated with pathogen transmission. When using 
opportunistic sampling data to model seroprevalence and evaluate risk factors, 
detection error should be included.
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1  | INTRODUC TION

Pathogens transmitted among humans, wildlife, and domestic ani‐
mals have increasingly received attention because of the emergence 
of pathogens causing disease in humans, economic damage to ag‐
ricultural systems, and conservation concerns for wildlife (Miller, 
Farnsworth, & Malmberg, 2013; Miller et al., 2017; Wiethoelter, 
Beltrán‐Alcrudo, Kock, & Mor, 2015). Disease transmission at the 
human–domestic animal–wildlife interface is inherently complex, 
and mitigating transmission risks requires understanding the role of 
wildlife in the epidemiology, spread, and maintenance of infectious 
diseases (Hassell, Begon, Ward, & Fèvre, 2017). Central to these 
goals, and often required for successful management or eradication 
of these diseases, are accurate predictions of disease prevalence 
(Pepin et al., 2017). Previous work has shown that information on 
detection error (e.g., diagnostic assay sensitivity and specificity) can 
be incorporated into models using serosurveillance data, reducing 
bias in predictions of seroprevalence and risk factors (DiRenzo et 
al., 2018; McClintock et al., 2010; Miller, Talley, Lips, & Grant, 2012). 
Yet, there remains a limited number of studies that explicitly account 
for detection error when predicting disease prevalence and the po‐
tential effect on inference of risk factors is not available.

Analysis of the temporal occurrence and distribution of disease 
plays an important role in epidemiology (Vergne, Gogin, & Pfeiffer, 
2017). Prevalence estimates for wildlife populations are often based 
on opportunistic samples from animals due to the difficulties in cap‐
turing and collecting samples. Apparent prevalence, the number 
of animals that test positive divided by the total number tested, is 
often not a useful estimate of the underlying disease prevalence due 
to unbalanced sample sizes, differences in diagnostic assay use, and 
variation across time (Pepin et al., 2017). The elucidation of temporal 
patterns is often complicated by missing or incomplete data, which 
is a common occurrence for wildlife populations (Kodric‐Brown & 
Brown, 1993). However, in the field of wildlife disease, the uncer‐
tainty associated with the diagnostic testing process is rarely included 
in published predictions of prevalence in wildlife. This is an important 
issue, as most diagnostic assays are developed for domestic animals 
and are not validated for wildlife (Stallknecht, 2007). Assays that have 
been evaluated for wildlife often have significantly different diagnos‐
tic uncertainty (Gardner, Hietala, & Boyce, 1996). This uncertainty 
may affect estimates of disease or pathogen prevalence and, in turn, 
estimates of risk factors associated with the host–pathogen system.

A primary focus of disease ecology has been to identify correla‐
tions between the temporal distribution of disease and demographic 
variables for natural populations (Delahay, Langton, Smith, Clifton‐
Hadley, & Cheeseman, 2000; Farnsworth et al., 2012; Osnas, Heisey, 
Rolley, & Samuel, 2009). One application of these correlations is 
identifying risk factors such as age or sex that are associated with 
higher rates of disease. Risk factors are frequently used to priori‐
tize surveillance in wildlife when monitoring for pathogens of con‐
sequence to humans, domestic animals, or of conservation concern 
for wildlife (Heisey, Jennelle, Russell, & Walsh, 2014; Jennelle et al., 
2018). Despite a robust literature examining risk factors associated 

with disease in wildlife, few have included true and false detection 
probabilities in models of pathogen prevalence. Recent studies have 
proposed the need to include true and false detection probabilities 
(i.e., the probability that a disease is detected when it is present and 
the probability that a disease is not detected when it is absent) in 
ecological models of disease (Lachish, Gopalaswamy, Knowles, & 
Sheldon, 2012; McClintock et al., 2010; Royle & Link, 2006). Several 
studies have demonstrated that not accounting for imperfect detec‐
tion can result in underestimates of pathogen prevalence (DiRenzo 
et al., 2018; Lachish et al., 2012; Miller et al., 2012). Additionally, two 
of these studies demonstrated that imperfect detection is related to 
host infection intensity resulting in nonrandom bias in pathogen de‐
tection (DiRenzo et al., 2018; Lachish et al., 2012). Despite recently 
developed methods to account for imperfect detection in models 
of pathogen or disease prevalence and demonstrated effects on 
prevalence estimates, no study to date has evaluated the effect of 
imperfect detection on interpretation of risk factors. This can be par‐
ticularly important for designing national‐scale monitoring and sur‐
veillance programs using risk factors to target surveillance intended 
to mitigate risks posed by wildlife disease (Gardner et al., 1996).

Here, we use pathogen serosurveillance data for invasive wild pigs 
in the United States to test hypotheses about the effect of demographic 
variables on the probability of infection for five pathogens of impor‐
tance to human, domestic animal, and wildlife health (porcine reproduc‐
tive and respiratory syndrome virus [PRRS], pseudorabies virus [PRV], 
Influenza A virus in swine [IAVS], hepatitis E virus [HEV], and Brucella 
spp. [SB]). Wild pigs in North America are considered one of the most im‐
portant host species for transmission of pathogens to humans, domestic 
animals, and wildlife (Bevins, Pedersen, Lutman, Gidlewski, & Deliberto, 
2014; Miller et al., 2017) receiving significant policy implementation to 
mitigate disease risks (Miller, Opp, & Webb, 2018). Since previous stud‐
ies have found demographic factors (age and sex) to be associated with 
increased or decreased probability of infection (e.g., Cleveland et al., 
2017; Feng et al., 2014), we evaluated these effects on seroprevalence. 
Additionally, we assessed the effect of accounting for detection error in 
models of seroprevalence and how this may affect interpretation of risk 
factor associations. We then conducted an extensive literature search 
to determine whether the patterns we found were consistent with pre‐
viously published studies that did not account for imperfect detection. 
Our goals were to evaluate the significance of demographic factors, de‐
termine the effect of detection error on interpretation of these demo‐
graphic factors, and to provide national‐scale estimates of the temporal 
true pathogen seroprevalence for the five pathogens investigated. Our 
results have broad implications for determining risk factor associations 
that can be used to inform disease management and risk‐based targeting 
in national‐scale surveillance programs.

2  | MATERIAL S AND METHODS

2.1 | Surveillance data

We selected five pathogens that are important to human, domes‐
tic animal, and wildlife health. PRV causes spontaneous abortions, 



10406  |     TABAK eT Al.

juvenile mortality, and respiratory illness in domestic pigs (Lari 
et al., 2006). PRV also causes rapidly fatal infections in livestock 
(Müller et al., 2011) and carnivores and is a threat to the endan‐
gered Florida panther (Puma concolor coryi; Glass et al., 1994). SB 
is an economically important disease of domestic pigs that can 
also be transmitted to humans and cattle (Olsen & Tatum, 2017). 
HEV has recently emerged as an important human health threat, 
as it is transmitted among humans and swine (Salines, Andraud, & 
Rose, 2017). PRRS is an important cause of late‐term reproduc‐
tive losses, severe pneumonia, and increased mortality of domes‐
tic pigs with an estimated annual loss of $664 million to the US 
domestic swine industry (Holtkamp et al., 2013). IAVS can cause 
sporadic infections and pandemic outbreaks among humans and 
reduces the production of domestic swine (Ma, Kahn, & Richt, 
2009).

We used data collected as part of the United States Department 
of Agriculture, Wildlife Services' disease surveillance in invasive 
wild pigs that are culled during agency control operations for dam‐
age management purposes. Serum is collected from culled animals 
annually for serologic monitoring of diseases of importance for 
human and animal health. Sampling is distributed throughout the 
United States with samples being collected throughout the year 
(Brown et al., 2019). The serological data used in our study were 
collected from 33,794 wild pigs in 845 counties in the United States 
from January 2007 through July 2018 (Appendix S1). The data in‐
clude serological assay results for the five pathogens along with 
sex and age of the animal. Age class was determined at the time of 
sampling based on lower jaw tooth eruption, a common approach 
for wild pigs (Matschke, 1967); individuals were categorized as 
juvenile (<2 months), subadult (>2 months and ≤1 year), and adult 
(≥1 year). Samples were submitted to one of eight accredited vet‐
erinary diagnostic laboratories in the United States for serological 
testing. The diagnostic tests used for each pathogen are described 
in Appendix S2.

2.2 | Model of pathogen prevalence

Observations from diagnostic test results (i.e., 0 is negative and 1 is 
positive) for each individual in each year (yit) were defined as:

where zit is the unobserved, latent infection state of individ‐
ual i in year t. ρ is the sensitivity or the probability of detecting 
the pathogen when present (Pr(yit = 1|zit = 1)). Specificity (ϕ) is 
the probability that the pathogen is not detected when absent 
(Pr(yit = 0|zit = 0)). Note that individuals were only sampled once, so 
for each i, there is only one t. We use the two subscripts to clarify 
that seroprevalence estimates were calculated by year. National‐
level seroprevalence in each year (πt) was calculated as the me‐
dian z across all individuals and across all iterations in that year: 
(πt = median(zit)).

The latent unobserved disease state, zit, is a function of the prob‐
ability that an individual is seropositive for the pathogen (ψ it):

and ψ it is a function of demographic parameters:

where β is a vector of regression coefficients corresponding to xT
i
,  

which is the transpose of the vector of the demographic covariates 
of the ith individual. Parameters used in the model were the age and 
sex of each individual. The full model included age (i.e., juvenile, sub‐
adult, or adult), sex (i.e., male or female), and an intercept term. We 
also ran three reduced models for each pathogen including only age, 
only sex, and only intercept.

2.3 | Prior distributions

Each of the regression coefficients was modeled using a vague prior:

with variance modeled using a common hyper‐prior:

(Chung, Rabe‐Hesketh, Dorie, Gelman, & Liu, 2013). The detec‐
tion parameters were modeled using uninformed prior distributions:

Posterior distributions for all parameters were generated using 
the No‐U‐Turn Sampler (Homan & Gelman, 2014) in Stan software 
version 2.17 (Carpenter et al., 2017) using 8,000 Markov chain 
Monte Carlo (McMC) iterations, with the first 4,000 used as warm‐
up. Annotated Stan code is available in Appendix S3. Convergence 
was evaluated by inspection of trace plots and r‐hat values (Gelman 
& Hill, 2006).

2.4 | Ignoring detection error

To evaluate the effect of including detection error (ρ and ϕ) on our 
estimates of seroprevalence and demographic effects, we also ran 
models excluding these parameters. Specifically, for this set of mod‐
els, we defined:

The observed disease state, yit, was a function of the probability 
that an individual was seropositive for the pathogen (ψ it) and ψ it was 
a function of demographic information:

yit∼Bernoulli
(

zit�+
(

1−zit
) (

1−�
))

zit∼Bernoulli
(

�it

)

logit
(

�it

)

=x
T
i
�

� ∼Normal
(

0,�2
�

)

�2
�
∼Gamma

(

2,0.1
)

�,�∼Beta
(

1,1
)

.

yit∼Bernoulli
(

�it

)

.

logit
(

�it

)

=x
T
i
� .



     |  10407TABAK eT Al.

2.5 | Model comparison and validation

For each pathogen, we compared models using Watanabe–Akaike 
Information Criterion (WAIC) and selected the model with the lowest 
score (Hooten & Hobbs, 2015). We conducted posterior predictive 
checks by using the model to predict apparent seroprevalence (�̂�) and 
comparing it with the observed apparent seroprevalence (πobserved); 
if we can predict the apparent seroprevalence from the model, then 
we assume that the predicted latent true seroprevalence is accurate. 
Specifically, we calculated Bayesian p‐values as the mean discrepancy 
between posterior predicted apparent seroprevalence and observed 
apparent seroprevalence (Gelman & Hill, 2006). We also conducted 
Pareto‐smoothed importance sampling leave‐one‐out cross‐valida‐
tion (PSIS‐LOO; Vehtari, Gelman, & Gabry, 2017). We performed 
out‐of‐sample model validation to assess model performance by 
withholding 25% of the dataset as the test dataset and using the re‐
maining samples (75%) as the training dataset (Gelman & Hill, 2006). 
Apparent seroprevalence was predicted in the test dataset for each 
pathogen in each year using the model trained on the training data‐
set. This was compared with apparent seroprevalence calculated for 
each pathogen in each year in the test dataset. The training and test‐
ing datasets were selected using conditional Latin hypercube sam‐
pling, conditioned on demographic parameters and year of sampling, 
to ensure that each dataset represented the demographic distribu‐
tion of the entire dataset (Minasny & McBratney, 2006).

2.6 | Literature search

We identified previous studies reporting pathogen seroprevalence 
in wild pigs in North America for the five pathogens using a system‐
atic review of the peer‐reviewed literature. Our approach was based 
on the Preferred Reporting Items for Systematic Reviews and Meta‐
Analyses (PRISMA) method (Liberati et al., 2009; Moher, Liberati, 
Tetzlaff, & Altman, 2009). To implement the search of the peer‐re‐
viewed literature, we searched three databases (PubMed, Scopus, 
and Web of Science) for scientific publications reporting surveillance 
results, pathology, and case reports using a priori selected keywords 
described by Miller et al. (2017). We restricted our analyses to stud‐
ies that were conducted on wild pigs from the United States and the 

five pathogens analyzed in this study. From each relevant paper, we 
recorded reported seroprevalence, sample size, and location of the 
study. If the paper evaluated demographic effects, we recorded the 
directional effect of sex and age class on seroprevalence. In order to 
compare differences in the reported seroprevalence from the litera‐
ture with our predicted seroprevalence, we calculated 95% credible 
intervals (CrIs) using Jeffrey's priors in the Binom package (version 
1.1‐1) in R (Dorai‐Raj, 2009).

3  | RESULTS

Out‐of‐sample model validation (Gelman & Hill, 2006) revealed a 
good correlation between the apparent seroprevalence (i.e., the pro‐
portion of individuals that tested positive) in the test dataset and 
predicted apparent seroprevalence in the training dataset (Table 1; 
Appendix S4) except for IAVS, which had a correlation of −0.83. In 
2010, the first year in which sera were tested for exposure to IAVS, 
apparent seroprevalence was much higher (15%) than in other years 
(6.9%) and only 2.6% of the samples were from this year. When we 
excluded samples from 2010 from the analysis of model validation, 
the correlation was 0.82. Similarly, Bayesian p‐values were close to 
.5 and median relative bias was close to 0 for all modeled pathogens, 
indicating good predictive capacity of the models (Table 1). PSIS‐
LOO predicted that the shape parameter of the Pareto distribution 
(k̂) was <0.5 for each pathogen indicating good predictive abilities of 
the model (Vehtari et al., 2017).

Median predicted seroprevalence across all pathogens and years 
ranged from 0.006 to 0.17 and were significantly different from 
apparent seroprevalence—that is the credible intervals (CrIs) of 
predicted seroprevalence did not overlap with apparent seropreva‐
lence—for PRRS and IAVS (Figure 1; Appendix S5). Median predicted 
annual seroprevalence varied through time for all pathogens ranging 
from 0.0006 for HEV to 0.20 for PRV (Figure 2; Appendix S6).

The best model for predicting pathogen seroprevalence, as de‐
termined by WAIC, was the intercept only model for two pathogens 
(PRRS and PRV). For IAVS and SB, the best model included age and 
sex, and for HEV, the best model included only an effect of age 
(Figure 3; Appendix S7). Most parameters had weak effects (the 

Pathogen Validation correlation Bayesian p‐value

Median 
relative 
bias

Porcine Reproductive & 
Respiratory Syndrome (PRRS)

0.99 .47 −0.095

Pseudorabies Virus (PRV) 0.99 .55 −0.086

Influenza A Virus in Swine (IAVS) −0.83 (0.82)a .47 −0.056

Hepatitis E (HEV) 1 .44 −0.027

Brucella spp. (SB) 0.87 .49 0.092

aExcludes 2010, a year in which the model predicted apparent seroprevalence poorly. Apparent 
IAVS seroprevalence in 2010 was over 200% of that from the remaining years, and only 3% of sam‐
ples for this pathogen were from 2010, so it was excluded from this measure of validation. 

TA B L E  1   Model validation results for 
models estimating the seroprevalence of 
each pathogen
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95% CrI overlapped zero), despite being in the best model. However, 
there was a clear positive effect of the adult age class on seroprev‐
alence of SB. The weak demographic effects we observed for most 
pathogens are similar to estimates from other researchers, who have 
generally found weak or no effects of demographic parameters on 
seroprevalence in wild pigs (Figure 4).

Sensitivity (ρ) and specificity (ϕ) are evaluated by the companies 
that manufacture the diagnostic tests. However, the sensitivity and 
specificity estimates are typically validated in domestic swine under 
controlled experimental conditions which may be different than 
those for wild swine. Our predictions of these parameters were sim‐
ilar to those previously reported for these diagnostic tests, with one 
exception: ϕ was higher than the estimate reported for IAVS from 
the manufacturer (Table 2; Appendix S2).

We found that models that did not include detection error (ρ and 
ϕ) predicted seroprevalence to be very similar to observed apparent 
seroprevalence (Figure 1). Model selection, as determined by WAIC, 
found the best demographic model for each pathogen was the same 
in both sets of models (Figure 3). However, the effects of demo‐
graphic parameters in the models that did not account for detection 
error were weaker (CrIs were closer to zero), and for SB, β values for 
some parameters changed from positive to negative and from signif‐
icant to insignificant (Figure 3).

Our literature search resulted in 40 relevant studies document‐
ing seroprevalence for these five pathogens in wild pigs in the United 

States (Appendix S8). Reported seroprevalence estimates ranged 
from 0 to 0.75, with wide CrIs for all pathogens except HEV and IAVS 
(Figure 1). Nevertheless, median seroprevalence estimates from the 
literature were similar to median seroprevalence predictions from 
our study. Some studies reported demographic effects on pathogen 
seroprevalence (a total of 20 demographic analyses across all patho‐
gens). Most (80%) of these analyses used t tests or similar analyses 
instead of estimating effect sizes using statistical models (i.e., GLMs 
or logistic regression; Appendix S8). Demographic effects in the lit‐
erature differed by pathogen but were often weak or insignificant 
(Figure 4). Only one of the 40 studies (Pedersen, Miller, & Musante, 
2018) used models incorporating sensitivity and specificity for the 
pathogen(s) analyzed.

4  | DISCUSSION

Using hierarchical Bayesian models that account for uncertainty in 
detection, we estimated national‐level seroprevalence for five path‐
ogens in wild pigs across time. Our modeling approach is useful for 
estimating temporal changes in pathogen prevalence and because 

F I G U R E  1   Comparison of seroprevalence predictions ignoring 
detection error with true seroprevalence predictions that account 
for detection error. The comparison includes porcine reproductive 
and respiratory syndrome virus (PRRS), pseudorabies virus (PRV), 
influenza A virus in swine (IAVS), hepatitis E virus (HEV), and 
Brucella spp. (SB). True seroprevalence that accounts for detection 
error was significantly different from seroprevalence predictions 
ignoring detection error for PRRS and IAVS. Medians are presented 
along with 95% credible intervals. Median seroprevalence from the 
literature was often close to apparent seroprevalence
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PRRS

National−level seroprevalence ± 95% credible interval

Apparent seroprevalence
Seroprevalence ignoring detection error
True seroprevalence
Seroprevalence from literature

F I G U R E  2   National‐level seroprevalence varied over time 
for porcine reproductive and respiratory syndrome virus (PRRS), 
pseudorabies virus (PRV), influenza A virus in swine (IAVS), hepatitis 
E virus (HEV), and Brucella spp. (SB). Points represent median of 
the posterior distribution, thicker bars represent the 50% credible 
intervals, and thin bars represent 95% credible intervals. The gray 
horizontal line represents the median seroprevalence across all 
years
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our model structure accounted for sampling data that were nonsys‐
tematically collected using different diagnostic tests, our approach 
demonstrates the broad potential use of these types of data for es‐
timating prevalence, changes in prevalence, risk factor associations, 
and detection error.

4.1 | Pathogen seroprevalence in wild pigs

Our predictions of seroprevalence and associated risk factors 
have important implications for interpreting results of surveillance 
studies. We found that the national‐level seroprevalence of PRV 
in wild pigs was high and varied across years (median seropreva‐
lence = 0.17 across all years). This is consistent with known epi‐
demiology of the virus. Once wild pigs are infected with PRV, the 
virus establishes a lifelong latent infection accompanied by rela‐
tively decreased levels of neutralizing antibodies (Pedersen et al., 
2013). The increasing seroprevalence in wild pig populations of 
North America indicates ongoing transmission that may present a 
risk to domestic animals and wildlife. Smith (2012) found that PRV 
was likely transmitted both sexually and nonsexually among wild 
pigs in North America. The potential role of nonsexual transmission 
may be a particularly important route of exposure and transmission 
of PRV to domestic animals and warrants additional investigation.

National‐level seroprevalence of SB varied considerably over 
time and generally had large 95% CrIs, with the upper bound rang‐
ing as high as 0.32. Fluctuating seroprevalence and large credible in‐
tervals indicate that there is likely temporal or regional variation in 

transmission that increases exposure of wild pigs to SB. Risks posed 
by SB‐infected wild pigs to humans and domestic animals likely vary 
greatly depending on location and time due to the different exposure 
rates and the distribution of feral swine. Accounting for this variation 
in the design of surveillance strategies may be particularly important.

Seroprevalences of PRRS, IAVS, and HEV were generally low 
across all years with some temporal variation (Figure 2), suggesting 
that these pathogens might be of less concern at a national scale, but 
variation observed over time may indicate some variation in regional 
transmission risk. This may be particularly relevant for PRRS, which 
had large credible intervals indicating that wild pig exposure to PRRS 
may vary regionally. However for all three of these pathogens, rel‐
atively little is known about the pathogen etiology and drivers of 
transmission and persistence for wild pigs of North America (Miller 
et al., 2017). Studies that elucidate these factors as well as risk fac‐
tors associated with potential cross‐species transmission among 
wild pigs, humans, domestic animals, and wildlife are needed to bet‐
ter characterize potential risks posed by these three pathogens.

4.2 | Demographic risk factors

The associations with demographic risk factors we found were 
similar to previous findings for PRV and PRRS. Our study supports 
previous studies that have found no significant effect of age class 
on seroprevalence of PRV (Hernández et al., 2018), although some 
studies have found higher exposure rates in older age classes in 
North America (Pedersen et al., 2013; Pirtle, Sacks, Nettles, & Rollor, 
1989) and Europe (Lari et al., 2006). It is possible that since PRV 
often results in high mortality in piglets, they are not being sampled 
and thus artificially decreasing risk associations. However, none of 
the studies reporting associations with age accounted for detection 
errors, which may have biased their reported findings.

F I G U R E  3   Posterior distributions for the effect of demographic 
parameters on pathogen seroprevalence for porcine reproductive 
and respiratory syndrome virus (PRRS), pseudorabies virus (PRV), 
influenza A virus in swine (IAVS), hepatitis E virus (HEV), and 
Brucella spp. (SB). Posteriors were generally wider when models 
incorporated detection error (a) than when models did not 
account for detection error (b). In some instances (e.g., the effect 
of juveniles on SB), the direction of the effect changed when 
detection error was ignored or the effect became insignificant (e.g., 
the effect of female and adult on SB). Points represent median of 
the posterior distribution, thicker bars represent the 50% credible 
intervals, and thin bars represent 95% credible intervals

F I G U R E  4   Agreement/disagreement between demographic 
effects found in this study with those of other studies for porcine 
reproductive and respiratory syndrome virus (PRRS), pseudorabies 
virus (PRV), influenza A virus in swine (IAVS), and Brucella spp. (SB). 
Blue boxes indicate that our study agreed with other studies from 
the literature, while red boxes represent disagreement. Asterisks 
are used if there were no studies in the literature finding the same 
directional effect as our study. The number of studies (n) reporting 
demographic effects for each pathogen is indicated below each 
panel. None of the studies represented here accounted for 
detection error in their estimates of seroprevalence. Only 20 of the 
40 studies identified in our literature review attempted to evaluate 
demographic effects on prevalence
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Contrary to the majority of previous studies (Figure 4), we found 
age and sex to be associated with increased risk of exposure for SB 
and IAVS. We found that adult males were more likely to be sero‐
positive for IAVS (Figure 3). None of the previous four studies in‐
vestigating differences in exposure risk for males and females have 
found an association, although these studies were conducted under 
different circumstances (Cleveland et al., 2017; Feng et al., 2014; 
Martin et al., 2017; Pedersen et al., 2017). While the effect of age 
on IAVS seroprevalence has been found to be unimportant in most 
studies (Figure 4, Appendix S8), our results supported two previous 
studies that found similar effects (Cleveland et al., 2017; Feng et 
al., 2014) and are consistent with IAVS risk factors in domestic pigs 
(Richt et al., 2003).

Similarly, we found associations with age and sex that differ from 
the majority of previous studies for SB (Figure 4). Higher seropreva‐
lence of SB in females is consistent with one previous study (Musser, 
Schwartz, Srinath, & Waldrup, 2013) and could be attributed to the 
fact that SB is primarily a venereally transmitted disease that can 
lead to higher exposure and seroprevalence in females (Cross et al., 
2009). Our findings indicate that exposure increases with age and is 
consistent with one previous study and more generally consistent 
with risk factors for other bacterial pathogens in wildlife (van der 
Leek et al., 1993; Pedersen et al., 2012).

4.3 | Accounting for detection error in 
models of prevalence

Our results highlight the importance of incorporating detection error 
(i.e., sensitivity and specificity) into models of pathogen seropreva‐
lence. Models that did not account for detection error resulted in 
predictions of seroprevalence that were significantly higher for both 
PRRS and IAVS (the 95% CrIs for models with and without detection 
error did not overlap; Figure 1). As expected, median seroprevalence 
modeled without detection error was nearly identical to apparent 
seroprevalence for all pathogens. Additionally, apparent seropreva‐
lence was consistently higher than predicted true seroprevalence 
that accounted for detection error. This likely results from serologi‐
cal assays that are designed to maximize detection of a pathogen 
resulting in false‐positive animals. Serological assays, especially 
those used in domestic animals, are typically designed to be used in 
series with other diagnostic tests so false‐positive animals are sub‐
sequently identified with additional testing. For the five pathogens 

we investigated, using apparent prevalence would have resulted in a 
biased estimator.

Only one of the 40 (2.5%) studies analyzed used methods that 
incorporated detection error to predict prevalence (Pedersen et 
al., 2018). Using models to investigate associations between sero‐
prevalence and risk factors that do not incorporate detection error 
effectively assumes that the pathogen is always detected when an 
individual is infected (ρ = 1) and that individuals testing positive 
are always infected (ϕ = 1). These assumptions are likely violated 
for most pathogens and diagnostic assays (Gilbert et al., 2013). We 
found that for all pathogens except PRV the lower 95% CrI for pre‐
dicted sensitivity (ρ) was below 0.9 and predicted specificity (ϕ) 
generally had less variation but for all pathogens extended below 1 
(Table 2, Appendix S9), indicating that this assumption (ρ = ϕ = 1) was 
violated. Therefore, we recommend future analyses of pathogen se‐
roprevalence incorporate both sensitivity and specificity into mod‐
els, especially if associations with risk factors are being investigated.

Including detection error may be particularly important for patho‐
gens when poor diagnostic tools are available, diagnostic assays are 
designed with high sensitivity, or when results are obtained from dif‐
ferent diagnostic laboratories that may be using different diagnostic 
assays. We found that when detection error was ignored the demo‐
graphic effects were weaker, less significant, and occasionally in a dif‐
ferent direction (Figure 3). While the effects of most demographic risk 
factors were insignificant, adults were significantly more likely to test 
positive for SB than other age classes in models accounting for detec‐
tion error. However, when we ignored detection error in our models, 
this effect was no longer significant. Other demographic effects for 
SB (female, male, and juvenile), although statistically insignificant (the 
95% CrIs overlapped 0), switched from positive to negative effects. 
Therefore, our results suggest that even in a study with weak demo‐
graphic effects, ignoring detection error could change inference of 
which risk factors are associated with seroprevalence. This may be par‐
ticularly important if these risk factors are being used to inform disease 
management or determine risk‐based targeted surveillance planning.

4.4 | Limitations and extensions

Demographic effects on seroprevalence were weak or nonexist‐
ent for most pathogens, indicating that other risk factors might be 
important in predicting seroprevalence and in determining patho‐
gen exposure. For PRRS and PRV, the best model included only the 

Pathogena ρ ρ diagnostic test ϕ ϕ diagnostic test

PRRS 0.92 (0.76, 0.99) 0.97 (0.91, 1.00) 0.99 (0.98, 0.99) 0.98 (0.90, 1.00)

PRV 0.98 (0.94, 1.00) 0.99 (0.96, 1.00) 0.98 (0.94, 1.00) 1.00 (1.00, 1.00)

IAVS 0.90 (0.84, 0.95) 0.90 (0.80, 0.98) 0.96 (0.95, 0.98) 0.85 (0.72, 0.94)

HEV 0.96 (0.86, 1.00) 1.00 (1.00, 1.00) 0.98 (0.96, 0.99) 0.98 (0.97, 0.99)

SB 0.93 (0.88, 0.97) 0.96 (0.92, 1.00) 0.96 (0.89, 0.99) 0.97 (0.92, 1.00)

aPathogens evaluated were porcine reproductive and respiratory syndrome virus (PRRS), pseudor‐
abies virus (PRV), influenza A virus in swine (IAVS), hepatitis E virus (HEV), and Brucella spp. (SB). 

TA B L E  2   Sensitivity (ρ) and specificity 
(ϕ) and 95% CrIs from models and from 
diagnostic tests used for each pathogen
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intercept, and for the other three pathogens, only one demographic 
effect was significantly different from zero (Figure 3). Additionally, 
the wide posterior distributions of the β values for most demographic 
parameters indicate that other variation was likely influencing expo‐
sure and seroprevalence. Previous studies have found similarly weak 
or nonexistent effects when analyzing how demographics contribute 
to seroprevalence (Figure 4; Appendix S8). While demographic risk 
factors may influence exposure risk at a local scale (Figure 4), spatial 
heterogeneity of these effects might cause them to diminish at the 
national scale. Previous studies have found that wild pig contact is 
strongly influenced by local scale factors of animal age, group mem‐
bership, and distance between group home ranges (Pepin et al., 2016; 
Podgórski, Apollonio, & Keuling, 2018). Additionally, it is possible that 
strong spatial factors (e.g., climatic or ecological effects) might over‐
shadow any demographic effects that would otherwise be observed.

Another important factor that might affect our predictions of 
seroprevalence and associations with demographic risk factors is 
the effect of demographic and environmental drivers on host de‐
tection probability. Probability of detecting a pathogen when pres‐
ent might depend on seasonality, climate, host age, etc., because 
these factors could interact with the effect of the pathogen on be‐
havior or survival of infected individuals (Jennelle, Cooch, Conroy, 
& Senar, 2007). For example, deer infected with chronic wasting 
disease have been observed to be less active, less likely to migrate, 
and have home ranges that are 160% smaller than uninfected deer 
(Edmunds et al., 2018). This reduced activity can result in increased 
sampling of uninfected individuals, leading to lower estimates of 
prevalence (Nusser, Clark, Otis, & Huang, 2008). Conversely, in‐
fected animals may be more vulnerable to capture and sampled 
at a higher rate, which has been observed in some host–pathogen 
systems (Blanchong et al., 2012; Courchamp, Say, & Pontier, 2000). 
These effects of sampling bias resulting from infection status have 
been observed in many wildlife disease systems (Conner, McCarty, 
& Miller, 2000; Courchamp et al., 2000). However, the interaction 
with environmental conditions is rarely accounted for explicitly. 
Therefore, it would be valuable for future analyses to incorporate 
the effects of abiotic and biotic drivers on detection probabilities 
using methods such as those described by Jennelle et al. (2007).

5  | CONCLUSIONS

It is becoming increasingly important in managing diseases that af‐
fect domestic animals and humans to understand the role of wildlife 
(Hassell et al., 2017). Seroprevalence is often used as a proxy for 
transmission risk and in many cases is the only measure of pathogen 
exposure available for wildlife (Pepin et al., 2017). While detection 
error is commonly addressed in ecological studies (Royle & Link, 
2006) and there are many tools available to account for these er‐
rors (Jennelle et al., 2007; McClintock et al., 2010), it is still rarely 
accounted for in wildlife disease studies. We found that not account‐
ing for detection error can significantly affect predictions of sero‐
prevalence and risk factor associations. Future work to disentangle 

detection error, not only resulting from the diagnostic assay un‐
certainty but also resulting from host detection, is needed. Studies 
reporting associations with risk factors that do not account for de‐
tection error should be carefully interpreted.
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