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Abstract

Background: Although rapid developed sequencing technologies make it possible for genotype data to be used in
clinical diagnosis, it is still challenging for clinicians to understand the results of sequencing and make correct
judgement based on them. Before this, diagnosis based on clinical features held a leading position. With the
establishment of the Human Phenotype Ontology (HPO) and the enrichment of phenotype-disease annotations, there
throws much more attention to the improvement of phenotype-based diagnosis.

Results: In this study, we presented a novel method called RelativeBestPair to measure similarity from the query terms
to hereditary diseases based on HPO and then rank the candidate diseases. To evaluate the performance, we simulated
a set of patients based on 44 complex diseases. Besides, by adding noise or imprecision or both, cases closer to real
clinical conditions were generated. Thus, four simulated datasets were used to make comparison among
RelativeBestPair and seven existing semantic similarity measures. RelativeBestPair ranked the underlying disease as top
1 on 93.73% of the simulated dataset without noise and imprecision, 93.64% of the simulated dataset with noise and
without imprecision, 39.82% of the simulated dataset without noise and with imprecision, and 33.64% of the simulated
dataset with both noise and imprecision.

Conclusion: Compared with the seven existing semantic similarity measures, RelativeBestPair showed similar
performance in two datasets without imprecision. While RelativeBestPair appeared to be equal to Resnik and better
than other six methods in the simulated dataset without noise and with imprecision, it significantly outperformed all
other seven methods in the simulated dataset with both noise and imprecision. It can be indicated that
RelativeBestPair might be of great help in clinical setting.
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Background
Correct diagnosis based on the observed clinical features
of patients is a quite important task for physicians, espe-
cially in the field of rare genetic diseases, where different
diseases often share some features. Recently, with the
rapid development of sequencing technology, it becomes
possible to improve diagnosis by providing physicians
with patients’ genotype data in a short time [1]. While
techniques like whole genome sequencing and whole ex-
ome sequencing allows a patient’s genotype data to be
used to detect mutations, the relative high expense and
the ability to identify disease-causing variants make it
difficult to be put into practical clinical use. However,
back to the beginning, if the performance of diagnosis
based on clinical features can be improved, it will be of
great help to the clinicians.
Thus, to make full use of clinical features or pheno-

typic information, many databases have been established
to record and reorganize phenotypic data of diseases,
such as OMIM [2] and Orphanet [3]. Furthermore, the
Human Phenotype Ontology (HPO) [4–6] was con-
structed to describe human phenotype abnormalities in
a structured and controlled vocabulary and has been
widely used in research.
Recently, HPO has been widely applied in various

fields. A web application called the Phenimizer provides
ontology similarity search based on HPO to assist the
clinical diagnosis workflow [7]. PhenoTips, a deep phe-
notyping tool and database, is developed to collect
phenotypic information of patients with genetic disor-
ders using HPO and suggest additional clinical investiga-
tions and possible disorders in Online Mendelian
Inheritance in Man (OMIM) [8]. PhenoDB, a Web-based
portal which can store and analyze phenotypic informa-
tion using mapped HPO terms as well as other clinical
information, is also developed [9]. Besides, several
methods or tools have been introduced to combine
phenotypic information based on HPO and genotypic
data with other information available to make variant or
gene prioritization, including eXtasy [10], Phen-Gen
[11], an initial study using semantic similarity [12],
PHIVE/Exomiser [13], Phevor [14], PhenoVar [15], Phe-
nIx [16] and OMIM Explorer [17]. Despite the short his-
tory of HPO, it has drawn much attention from
researchers and scientists and been broadly used in sci-
entific researches.
In this article, we focus on using similarity between

observed phenotypes of a patient and the annotated phe-
notypes of diseases to rank the candidate diseases of the
patient. From this point of view, several methods and
tools [7, 12, 18] has been presented to exploit HPO-
based semantic similarity borrowing ideas from semantic
similarity measures used in Gene Ontology (GO), which
have been widely studied and broadly used during the

last decade. Most of them utilized information content
(IC) to calculate the semantic similarity. Although those
approaches have been used in clinical research, the re-
sults are still uncertain and can be further imporved.
Here we present a new method called RelativeBestPair.
RelativeBestPair takes the ideas from information con-
tent and the best pair method. Our work shows better
diagnosis using the RelativeBestPair method over other
methods.

Methods
Human phenotype ontology (HPO)
An ontology is a knowledge-based structured system,
which consists of a rich, standardized vocabulary to de-
scribe entities and the semantic relationships between
them. The Human Phenotype Ontology (HPO) provides
a standardized vocabulary of phenotypic abnormalities
encountered in human disease. Terms in HPO, represent-
ing different phenotypic abnormalities, are related to their
parent terms by “is a” relationship in a relaxed hierarchy
which allows a term to possibly have multiple parent
terms (Fig. 1). With HPO terms corresponding to pheno-
typic abnormalities, diseases can be described in a detailed
and organized way. The HPO (version 1.2 releases/2017–
2-14) currently contains approximately 12,000 terms (still
growing) and over 120,000 phenotype-disease annotations.
Here we concentrate on annotations about 6918 diseases
listed in Online Mendelian Inheritance in Man (OMIM)
to calculate the semantic similarity scores.

RelativeBestPair method
Based on the HPO structure and annotations, the infor-
mation content of a term t in HPO is defined as follows:

IC tð Þ ¼ − log
Nt

N
ð1Þ

where N is the total number of annotated diseases and Nt is
the number of diseases annotated by term t and all its de-
scendants. When comparing the similarity between two
sets of phenotypes, the best pair method just simply counts
the number of same terms in both two sets, which does not
take the semantic inheritance structure of HPO and the dif-
ferent importance of the terms into consideration.
Thus we propose RelativeBestPair, a new semantic

similarity measure based on the information content and
the best pair method. Inspired by the idea of information
content, we collect diseases annotated by a phenotype t
and its descendants to measure the different importance
of terms. RealtiveBestPair is described as follows.

A. For a given term t, we denote D(t) as the set of
diseases annotated by term t and all its descendants
and Nt as the size of D(t). Then, the sccn term t is
defined as
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S D tjð Þ ¼ 1=Nt ; D ∈ d tð Þ
0; otherwise

�
ð2Þ

B. Then we can get all the scores of being each disease
given each term. For a sets of phenotypes {t1, t2,…,
tn} and a disease Dk, the semantic similarity score
can be calculated as

Sim Dk t1; t2;…; tnjð Þ ¼
Xn

i¼1
min α; S Dk tijð Þð Þ ð3Þ

where α is a given threshold.
The threshold α is introduced to control the contribu-

tion of a single term. If only several diseases are annotated
by a single term, then the score of being one of those dis-
eases given this term will be so large that it may dominate
the semantic similarity score and ignore the contributions
of other terms. For example, we observed a patient with
ten terms {t1, t2,…, t10}. If the score of being D1 given each
of {t1, t2,…, t9} is suitable like 0.005 while the score of
being D2 given t10 is quite large, for example 0.1, the
semantic similarity score between the patient and D2

will be larger than that between the patient and D1.
Thus we use the threshold α to avoid the such

extreme cases. Although the choice of α may affect
the performance, generally we set it to be 0.01.
Disease diagnosis based on RelaitveBestPair can be

summarized as followed (Fig. 2). With the input of HPO
and its annotations, the ontology and the database (con-
taining the scores of being each Disease D given each
term t using Eq. (2)) are constructed first. Then given a
query set of phenotype terms, the similarity scores from
query terms to each disease can be calculated with Eq.
(3). Finally, diseases are ranked according to these scores
from the largest to the smallest.

Existing semantic similarity measures
We compared the performance of RelativeBestPair with
other seven existing approaches summarized in HPOsim
[19]. Among those, six approaches are based on informa-
tion content. The Resnik measure [20], the Lin measure
[21], the Jiang-Conrath measure [22], the Relevance meas-
ure [23], the information coefficient measure [24] and the
graph IC measure [25] define the similarity between two
terms as follows:

sim Resnik t1; t2ð Þ ¼ IC tMICAð Þ ð4Þ

Fig. 1 Example of the structure of HPO. Term Abnormality of finger (HP:0001167) and all its ancestors are shown. Each term, representing a
phenotypic abnormality, is related to parents terms by “is a” relationship
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simLin t1; t2ð Þ ¼ 2� IC tMICAð Þ
IC t1ð Þ þ IC t2ð Þ ð5Þ

simJC t1; t2ð Þ ¼ 1
1þ IC t1ð Þ þ IC t2ð Þ−2� IC tMICAð Þð Þ ð6Þ

sim Rel t1; t2ð Þ ¼ simLin t1; t2ð Þ � 1−p tMICAð Þð Þ ð7Þ

simIC t1; t2ð Þ ¼ simLin t1; t2ð Þ � 1−
1

1þ IC tMICAð Þ
� �

ð8Þ

simGraphIC t1; t2ð Þ ¼
P

t∈ A t1ð Þ∩A t2ð Þð ÞIC tð ÞP
t∈ A t1ð Þ∩A t2ð Þð ÞIC tð Þ ð9Þ

Where IC is defined as (1), tMICA is the most inform-
ative common ancestors, p(tMICA) is the proportion of

diseases annotated by tMICA and A(t) is the set of the an-
cestors of term t in HPO.
Besides, the Wang measure [26] is based the structure

of ontology. For a given term t, DAGt = (t,Tt, Et) repre-
sents the subgraph made up of term t and its ancestors,
where Tt is the set of the ancestors of t and Et is the cor-
responding set of edges is DAGt. In DAGt, St(n) is de-
fined as:

St tð Þ ¼ 1
St nð Þ ¼ max we � St n0ð Þ n0∈j children of nð Þf gif t≠n

�

ð10Þ

here we choose we equal to 0.8. Therefore the similarity
between two terms is defined as:

Fig. 2 The workflow of disease diagnosis based on RelativeBestPair

Fig. 3 The workflow of disease diagnosis based on the seven existing methods

Gong et al. BMC Bioinformatics 2018, 19(Suppl 4):162 Page 114 of 119



simWang t1; t2ð Þ ¼
P

t∈Tt1∩Tt2St1 tð Þ þ St2 tð Þ
SV t1ð Þ þ SV t2ð Þ ð11Þ

where SV(t) is the sum of St(n) for n in DAGt.
In order to get the similarity between the query set of

terms and the set of disease associated terms, we used
the one-sided search algorithm as it was showed to be
superior to the symmetric version in [7]. The one-sided
search algorithm is defined as:

simone−sided Q→Dð Þ ¼ avg
X

t1∈Q
maxt2∈Dsim t1; t2ð Þ

h i
ð12Þ

where Q is the set of the query terms (observed pheno-
types of the patient), D is the set of terms annotated
with a given disease, and sim(t1, t2) can be one of the
seven approaches.
Disease diagnosis based the seven semantic similarity

measures is quite similar with that based on.
RelativeBestPair (Fig. 3). Firstly, the ontology and the

database (containing information content of each term
in HPO) are constructed based on HPO and its annota-
tion files. Secondly, given a query set of phenotype
terms, the similarity score from these query terms to
each disease are calculated with term-term similarity
based on each of the seven methods and then one-sided
search algorithm. Finally, diseases are also ranked from
the largest score to the smallest score.

Performance evaluation and generation of simulated
patients
Since it is difficult to get clinical features about a large
number of patients, we used similar method and same
data in [7] to generate simulated patients. In the data
used in [7], 44 complex dysmorphology syndromes were
identified with detailed frequency of phenotypes. The
simulation process is as follows. First, we assigned a disease
to each patient. Second, for each phenotype associated with
the assigned disease, a random integer between 0 and 100
was generated. If the number was smaller than the relative
occurrence in 100 patients (frequency*100), the corre-
sponding phenotype was kept. For each of the 44 diseases,
we generated 25 patients with at least three phenotypes. Fi-
nally, we got a dataset of 1100 simulated patients. To make
the simulation more realistic, three more datasets were also
generated just as what was done in [7, 12]. We generated a
dataset with ‘noise’ by adding half as many noise terms, un-
related with the underlying disorder, to the present terms, a
dataset with ‘imprecision’ by randomly substituting each of
the present phenotypes with one of its ancestors in HPO,
and also a dataset with both ‘imprecision’ and ‘noise’ by im-
precision step first and then noise step. With the four simu-
lated datasets, we evaluated the performance of semantic

similarity measure by the ranks of the true disease and
adopted the criterion from [12, 19].

Results
We evaluated the performance of the seven existing ap-
proaches and RealtiveBestPair method in the four simulated
datasets respectively. We denoted the dataset without noise
and imprecision, the dataset with noise and without impre-
cision, the dataset without noise and with imprecision, and
the dataset with both noise and imprecision as “Dataset
1(Noise:-, Imprecision:-)”, “Dataset 2(Noise:+, Imprecision:-
)”, “Dataset 3(Noise:-, Imprecision:+)”, and “Dataset
4(Noise:+, Imprecision:+)”. As we moved on from Dataset
1 to Dataset 4, it became more difficult to make the correct
diagnosis. It would show us the real abilities of those
methods to identify the true underlying disease.
For a given patient, we calculated the similarity score

from the patient to each of the 6918 OMIM diseases
using one kind of semantic similarity measure, and then

Table 1 Summary results of different methods on the four
simulated datasets

Dataset 1(Noise:-, Imprecision:-)

Resnik Lin JC Rel IC GraphIC Wang RBP

Top 1 1027 1016 1029 1018 1021 1029 1023 1031

Top 5 1087 1071 1082 1071 1075 1079 1078 1091

Top 10 1089 1077 1088 1077 1079 1081 1081 1095

Top 20 1092 1078 1092 1078 1080 1083 1081 1096

Dataset 2(Noise:+, Imprecision:-)

Resnik Lin JC Rel IC GraphIC Wang RBP

Top 1 992 997 1036 996 1006 1031 1001 1030

Top 5 1074 1059 1081 1063 1070 1077 1071 1089

Top 10 1081 1069 1086 1071 1077 1080 1078 1094

Top 20 1087 1074 1089 1076 1078 1083 1079 1095

Dataset 3(Noise:-, Imprecision:+)

Resnik Lin JC Rel IC GraphIC Wang RBP

Top 1 434 243 104 302 336 120 172 438

Top 5 767 502 261 583 603 341 446 765

Top 10 866 613 342 685 707 482 604 863

Top 20 926 714 440 785 797 620 725 926

Dataset 4(Noise:+, Imprecision:+)

Resnik Lin JC Rel IC GraphIC Wang RBP

Top 1 183 130 97 143 162 73 77 370

Top 5 453 327 239 383 406 252 263 694

Top 10 579 452 319 509 533 393 384 786

Top 20 703 570 420 640 657 540 535 860

Resnik the Resnik measure, Lin the Lin measure, JC the Jiang-Conrath measure,
Rel the Relevance measure, IC the information coefficient measure, GraphIC
the graph IC measure, Wang the Wang measure, RBP RelativeBestPair method
The seven existing measures are all implemented with one-sided search
algorithm. The numbers represent the number of patients in 1100 cases that
the true diseases are ranked within top 1, top 5, top 10 or top 20
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rank all the diseases by their similarity scores (from the
largest to the smallest). In case that some diseases
received the same score, the average rank was returned
to make it more reasonable. The results of all the eight
methods on the four datasets are shown in Table 1 and
Figs. 1, 2, 3 and 4.
It can be seen that in the seven existing semantic simi-

larity measures, the Resnik measure has a modest advan-
tage over other six approaches, similar to the results in
[7]. The RelativeBestPair method shows the almost the
best performance in all four datasets (Table 1). Although
in Dataset 1 and Dataset 2, two datasets that do not
include “imprecision”, all methods reveal good results by
ranking the true diseases as top 1 on over 90% of the
patients and within top 20 on over 95% of the patients
(Table 1, Figs. 4 and 5), their performances deteriorate
with different extents in Dataset 3 and Dataset 4. In
Dataset 3 with imprecision, RelativeBestPair method,
along with the Resnik measure, tends to be superior with
the underlying diseases being ranked within top 1, top 5,
top 10, top 20 on 39.82%, 69.55%, 78.45%, 84.18% of the
cases for RealtiveBestPair and 39.45%, 69.73%, 78.73%,
84.18% for Resnik (Table 1, Fig. 6). The corresponding
percentages using other measures are much smaller. In
Dataset 4, a more real situation by both introducing
unrelated phenotypic noise and using terms that are
more general, RelativeBestPair achieves the best
performance among the eight methods (Table 1, Fig. 7).
On 33.64% of the patients, their underlying diseases are
ranked the highest when applying RelativeBestPair. In
comparison, the percentages using Resnik, Lin, Jiang-

Conrath, Relevance, information coefficients, Graph IC
and Wang measures are only 16.64%, 11.82%, 8.82%,
13%, 14.73%, 6.64% and 7% respectively. Even if a higher
rank threshold is employed to give out a candidate list,
RelativeBestPair still turns out to be significant better
than other methods (Fig. 4). In total, it indicates that
RelativeBestPair has the potential to provide a candidate
disease/disease list for clinician to improve the diagnosis
efficiency as well as accuracy.

Discussion and conclusion
Recently, the rapid development of sequencing technol-
ogy makes it possible to get personal genotype data for
clinical use, which may be helpful in disease diagnosis.
However, the relative high cost and low ability to identify
the disease-related causal variants prevent it from being
widely used in real cases. While lots of effort and money
have been paid to study the relationship between
diseases and genetic mutations, to speed up the process
of sequencing and to promote the accuracy of sequen-
cing results, in this article we focus on the improvement
in the field of phenotypic diagnosis. Compared with
genotypic data, it is much easier to get phenotypic data
from patients. With the construction and development
of the Human Phenotype Ontology and the enrichment
and completeness of disease-phenotype annotations, the
observed phenotypes of a particular patient can provide
more information about the underlying disease he/she
might suffer.
Here we proposed a novel method called RelativeBest-

Pair to measure the semantic similarity from a given set

Fig. 4 Cumulative Distribution of the rank of the underlying diseases on the simulated dataset without noise and imprecision. The horizontal axis
is the threshold for the disease rank. The vertical axis is the corresponding ratio of patients satisfying the ranking threshold
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of phenotypes to a disease. Different from those existing
approaches that calculate the similarity from the query
set to a certain disease based on term-term comparison,
we directly define the contribution of one phenotype term
to the certain disease. To evaluate the performance of
RelativeBestPair and seven existing methods, we adopted
the procedure similar to that in [7, 12] to generate four
kinds of simulated patients from the easiest situation to

the most difficult situation. In order to be adapted to the
scenario of disease diagnosis, the one-sided search algo-
rithm, which showed better performance than symmetric
version in [7], was chosen for the seven existing methods.
The results on the simulated datasets demonstrated that
RelativeBestPair outperformed other methods in all situa-
tions especially when “noise” and “imprecision” were
added, typical in the clinical setting.

Fig. 5 Cumulative Distribution of the rank of the underlying diseases on the simulated dataset with noise and without imprecision. The
horizontal axis is the threshold for the disease rank. The vertical axis is the corresponding ratio of patients satisfying the ranking threshold

Fig. 6 Cumulative Distribution of the rank of the underlying diseases on the simulated dataset without noise and with imprecision. The
horizontal axis is the threshold for the disease rank. The vertical axis is the corresponding ratio of patients satisfying the ranking threshold
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Despite the well performance in simulation, there still
remains much for RelativeBestPair to take into consider-
ation. Firstly, the optimal value for α requires further
discussion. The introduction of threshold α played a key
role in the performance of RelativeBestPair since we
found poor results when the threshold α was not
employed. Therefore, the choice of threshold α would
substantially affect the performance. Other than 0.01, we
also tested other values for α including 0.001–0.005,
0.015, 0.02, 0.025 and 0.03. Although those results
showed some minor difference (data not shown), consid-
ering the fact that on average one term annotates about
150 diseases which indicates that average score of being
the given disease is 1/150 ≈ 0.0067, empirically the
choice of 0.01 for α might be enough to make sure that
the contribution of one single term won’t be too large.
Other choices are also welcomed as long as α is neither
too big nor too small. Secondly, unlike the seven existing
approaches, RelativeBestPair cannot be used to compute
the similarity between two phenotype terms. The usage
of RelativeBestPair might be limited in disease diagnosis
and its expansion to other biomedical ontologies and
other usages may be uncertain. Finally, without thousands
of real cases, the true ability of RelativeBestPair as well as
other semantic similarity measures in disease diagnosis is
still unknown. As mentioned before, all the simulations
are based on 44 complex diseases with detailed frequen-
cies of phenotypes [7]. Then, we cannot assert the per-
formance in any cases. However, from the simulation
results, RelativeBestPair might have a large potential to
identity the true underlying diseases of patients.

In conclusion, we have presented a new method, Rela-
tiveBestPair, that calculates the semantic similarity from
the given query terms to each disease. Our method has
the advantage of pay special attention to the fields of
disease diagnosis. This approach can be applied to the
real clinical setting by providing clinicians with a candi-
date disease list. We have shown that RelativeBestPair
achieved a better performance of identifying the true
disease as top-ranked diseases against other methods in
four simulated dataset, mimic to the real cases.
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