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Abstract
We investigated the eight decision rules for a same-different task, as summarized in Petrov (Psychonomic Bulletin & Review,
16(6), 1011–1025, 2009). These rules, including the differencing (DF) rule and the optimal independence rule, are all
based on the standard model in signal detection theory. Each rule receives two stimulus values as inputs and uses one or
two decision criteria. We proved that the false alarm rate p(F) ≤ 1/2 for four of the rules. We also conducted a same-
different rating experiment on motion discrimination (n = 54), with 4◦ or 8◦ directional difference. We found that the human
receiver operating characteristic (ROC) spanned its full range [0, 1] in p(F), thus rejecting these four rules. The slope of
the human Z-ROC was also < 1, further confirming that the independence rule was not used. We subsequently fitted in the
four-dimensional (pAA, pAB, pBA, pBB ) space the human data to the remaining four rules—DF and likelihood ratio rules,
each with one or two criteria, where pXY = p(responding “different” given stimulus sequence XY ). We found that, using
residual distribution analysis, only the two criteria DF rule (DF2) could account for the human data.

Keywords Same-different · Motion discrimination · ROC · Signal detection theory

Introduction

In psychophysics, the same-different task is a basic exper-
imental design that allows investigation of a participant’s
sensitivity d ′ and bias in the context of signal detection
theory (SDT). This task has the virtue of being straightfor-
ward for a participant to understand. For example, in motion
direction discrimination, a participant can easily understand
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what it means for two directions to be the same or differ-
ent. In comparison, when such discrimination is designed in
a two-alternative forced-choice (2AFC) task, it is less intu-
itive for the participant to understand whether the directional
change is clockwise or counter-clockwise, particularly if the
average direction varies from trial to trial (Liang, Zhou, &
Liu, 2016).

The flip side of the same-different design, however, is
that it is difficult to recover d ′. Specifically, d ′ recovery
from “same” or “different” responses depends on the
decision rule a participant has presumably used. In the
literature, there are two classic decision rules (or models)
(MacMillan & Creelman, 2005), with all existing rules
summarized in Petrov (2009). The first is called the
independence rule, which gives rise to optimal performance.
Using this rule, the observer determines without bias
whether the first stimulus belongs to category A or B; then,
independently, determines whether the second stimulus
belongs to A or B; and finally, the same or different
decision is made accordingly. There are three mathematical
consequences of this optimal rule, the first two of which are
shown in MacMillan and Creelman (2005), and the third
proved in the current study. The first consequence is that
the proportion of responding “different” when the stimulus
sequence is AB, denoted here as pAB , is equal to pBA.
The next consequence, under the assumption of the standard
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SDT model of two normal distributions d ′ apart, is that the
receiver operating characteristic in Z-coordinates (Z-ROC)
is linear with a slope = 1. The third is that the false-alarm
rate p(F), defined as the probability of deciding “different”
given AA or BB stimuli, or p(F) = p(“different”|AA ∪
BB), cannot be greater than 1/2. We prove p(F) ≤ 1/2
in the Appendix and demonstrate its usefulness in model
selection.

The second classic decision rule is called the differencing
(or DF) rule, which is suboptimal. In this model, the
observer takes the difference between the two stimuli in a
trial. If the magnitude is greater than some pre-set threshold,
the response will be “different”. Otherwise, it will be
“same”. This rule, with a single threshold, also leads to
pAB = pBA, pAA = pBB and a linear Z-ROC, but the
Z-ROC slope is < 1.

If either of the two rules above is used in a same-
different task, the underlying d ′ can be recovered from the
experimental data, under the assumption of the standard
SDT model. In fact, the same d ′ should be recoverable
regardless of the specific experimental task used, be
it same-different, yes-no, or 2AFC. There are studies
in the literature that confirmed such independence on
experimental designs from d ′ recovery. These studies
include taste discrimination (Hautus & Irwin, 1995),
synthetic vowel discrimination (MacMillan, Goldberg,
& Braida, 1988), line-length discrimination (Chen &
MacMillan, 1990), and auditory frequency discrimination
(Creelman & MacMillan, 1979).

In addition to the independence and differencing rules
that an observer may use, there were other studies that
aimed to characterize what rules human participants may
use in a variety of same-different tasks (DeCarlo, 2013;
Irwin & Hautus, 1997). Insightfully, Petrov (2009) pointed
out that the four experimental measures, pXY , where
X, Y ∈ {A, B}, contained rich information about what
decision rules participants may have used, and should
not be lumped together immediately into p(F) and p(H)

(the hit rate) without examining the equality relationship
between pAB and pBA, and pAA and pBB . Petrov (2009),
using motion discrimination as an example, summarized
a set of eight symmetry-based decision rules that took
into consideration the two equality relationships above.
Symmetry here refers to unchanged decision making when
A and B are exchanged. Table 1 provides a summary of
these eight rules, organized into four decision models with
either one or two parameters, along with the special cases.

Even with these more general rules included as
candidates, however, Petrov (2009) showed that the decision
rules used by his participants in motion discrimination were
not completely determined. This ambiguity is due in part to
the binary “same” or “different” responses used in the task,
with each participant contributing only a single datum point

in the ROC space. As will be proved in this study, for four
of the eight total decision rules and regardless of where the
decision criteria are placed, the false-alarm rate p(F) ≤ 1/2
provides a simple and powerful mathematical constraint for
model testing. A rating, rather than a binary, same-different
experiment offers an opportunity to span the p(F) (along
with p(H)) in the full range of [0, 1], thereby providing the
possibility of testing whether or not human p(F) > 1/2.

The present study used such a same-different rating
experiment to generate empirical four-dimensional “ROC”s,
namely ROC equivalent in the pXY (X, Y ∈ {A, B}) space
rather than the two-dimensional (p(F ), p(H)) space, to test
all eight candidate models of the same-different task. Our
results indicated that the four models with p(F) ≤ 1/2
could not explain human data. It should be noted that the
p(F) ≤ 1/2 does not depend on the prior probabilities of
AA and BB trials that p(F) is derived from, although in
our human experiment we set the prior p(XY) = 1/4. Even
within the range of p(F) ≤ 1/2, some of the mathematical
conjectures in Petrov (2009) were empirically disconfirmed,
attesting to the value of model fitting.

The four remaining models are the likelihood ratio
and differencing models with either one or two decision
criteria. Regarding the likelihood ratio rule, on one hand,
Petrov (2009) was “doubtful that human observers have the
requisite knowledge and processing power to implement” it
(p.1012). On the other hand, the various Bayesian observer
models (Knill, 1996; Maloney & Mamassian, 2009) largely
boil down to a likelihood ratio model in the simple case
of our current study. In van den Berg, Vogel, Josic, & Ma
(2012) and Shen and Ma (2016), when these likelihood ratio
type optimal models were pit against suboptimal models
such as differencing models, the human data were better
explained by the optimal models. However, these studies
did not use motion discrimination, and our current study
would test the generality of this optimality hypothesis. To
anticipate, our study indicated that the data could be better
accounted for by the suboptimal differencing model with
two parameters than the optimal likelihood ratio models.

Same-different rating experiments

Stimuli and task

The experiment was a two-interval same-different rating
task. In each trial, two random-dot motion stimuli were
presented sequentially (Fig. 1), and participants decided
whether the two motion directions were the same or
different, on a six-point rating scale. Specifically, within
a circular aperture of 8◦ in diameter (262 pixels) and in
gray background (22.0 cd/m2), 400 black random dots (0.0
cd/m2) moved along a single direction with a speed of
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Table 1 The four decision models with two parameters each, as summarized in Petrov (2009); the model policies; and their special cases

Model Model policies Special cases

Covert classifica-
tion

The two stimuli are classified independently: “A” if x <

−k1, “B” if x > k2, and “ambiguous” otherwise; where
−k1 ≤ k2. The final response will be “different” iff the
two stimuli are unambiguous and different. Otherwise, the
response will be “same”.

When k1 = k2, it is called CC with two symmetric
criteria (CC2s). When −k1 = k2 = k, it is called
CC with one criterion (CC1). When this k = 0, it
is the optimal independence model.

Differencing “Same” if −k1 ≤ x2 − x1 ≤ k2, “different” otherwise. When k1 = k2, it is differencing model with 1
criterion.

Likelihood
ratio

“Same” if Ld/s < β1 where d means x1 = A, x2 = B or if
Ld/s < β2 where d means (x1 = B, x2 = A ; “different”
otherwise. β1, β2 > 0.

When β1 = β2, it is likelihood ratio model with 1
criterion β. When β = 1, it is the optimal model.

Reverse classi-
fication

“Different” when x1 < −k1 (labeled as “A”) and x2 > k1
(labeled as “B”), or when x1 > k2 (labeled as “B”) and
x2 < −k2 (labeled as “A”); where k1, k2 ≥ 0. “Same”
otherwise.

When k1 = k2, it is called reverse classification
with two symmetric criteria (RC2s).

10◦/s. Each dot was 0.09◦ in size (a square of 3× 3 pixels).
A central red disk served as the fixation, which was 0.5◦ in
visual angle in diameter (16 pixels), with a luminance of 5.6
cd/m2.

Each stimulus lasted for 500 ms, and the inter-stimulus
interval was 200 ms. The prior probability of p(XY) = 1/4.
After the secondmotion stimulus, a six-point rating scale was
shown with the following texts at the scale: “surely same,”
“same,’’ “maybe same,” “maybe diff,” “diff,” and “surely diff”
(diff = different). Participants used a computer mouse to click
on the corresponding label to respond. Trial-wise feedback
was provided by a computer beep to a correct response.

In a blocked design, two reference motion directions,
±45◦ (0◦ was upward), were selected. The directional
difference in each trial, when different, was either ±4◦

or ±8◦. As an example, when the reference direction was
45◦ and the difference was ±8◦, the two directions were
randomly and independently sampled from the following
two directions: 41◦ and 49◦. Each participant was assigned
with only one reference direction (−45◦ or 45◦) and one
directional difference (4◦ or 8◦). There were ten blocks of 72
trials. The experiment took close to an hour per participant.

Participants

Fifty-four students (16 females) from the University of
Science and Technology of China (USTC), City of Hefei,
participated. They were 21 to 31 years of age (23.6 ±
0.3). Our research protocol was approved by the Ethics
Committee of USTC and in accordance with the guidelines

Fig. 1 Illustration of one trial in the same-different task. During each
trial, the participant saw two stimuli sequentially, each lasted for 500
ms, with an inter-stimulus interval of 200 ms. The participant fixated
at the central red disk and decided whether the two motion directions

were the same or different by choosing from a six-point rating scale,
namely, “surely same,” “same,” “maybe same,” “maybe diff,” “diff,”
and “surely diff” (diff = different)
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of the Declaration of Helsinki. Written informed consent
was also obtained from each participant. Participants were
unaware of the purposes of the study, and had normal or
corrected-to-normal visual acuity via acuity measurement
prior to the experiment.

Of the 54 participants, 28 were in the 4◦ discrimination
task, and 26 the 8◦ task.

Pre-training

The 4◦ discrimination task was studied first. The 28 parti-
cipants were randomly assigned to one of the two reference
directions: ±45◦. Before the actual experiment started, they
first practiced the task with 4◦ directional difference along
their assigned directions. Author JH as the experimenter
ensured that every participant clearly understood the task.
Each participant practiced 61 trials on average.

After the 4◦ experiment, it was found that some partici-
pants’ accuracies were close to chance. Consequently, 26 addi-
tional participants were recruited to the 8◦ task. Each par-
ticipant first practiced 12◦ directional discrimination along
their assigned direction (−45◦ or 45◦), with 14 trials on
average. They then practiced the 8◦ directional discrimi-
nation along their assigned direction, with 129 trials per
participant on average. Author JH again worked with every
participant to ensure that they clearly understood the task.

Apparatus

The stimuli were displayed on a 17-inch Sony Multiscan
G220 monitor, with a resolution of 1024×768 pixels, and a
100-Hz refresh rate. The experiment used MatLab software
(MathWorks Corp., Natick, MA, USA) with Psychophysics
ToolBox 3 (Brainard, 1997; Pelli, 1997). Participants sat in
a dim room and viewed the stimuli binocularly from 60 cm

away. A chin rest was used to stabilize the participant’s head
during the experiment.

Human behavioral results

To provide an intuitive measure of the participants’ perfor-
mance, we first computed the accuracy for each participant
by categorizing the six-point rating responses into binary
responses using the middle criterion. The mean accuracies
for the 4◦ and 8◦ discrimination were 0.55 ± 0.01 (standard
error) and 0.74 ± 0.01, respectively.

We then used the six-point rating data to obtain five
pairs of (p(H), p(F )) and plotted the Z-ROC for each
participant. Following the conventional correction method
to avoid infinity (Wickens, 2002), we added 1/2n if a
participant’s mean rating was 0, and −1/2n if it was 1,
where n = 720 was the number of trials per participant.
Figures 2 and 3 show the individual participants’ ROCs and

their linear fittings using the total least square (TLS) method
(Golub & Van Loan, 1980; Wickens, 2002; Liu, Yang, &
Intraub, 2016). The mean slope for the 4◦ discrimination
was 0.96 ± 0.02, which was not significantly different from
1 (t (27) = −1.66, p = 0.11, two-tailed). Upon a closer
look, however, we found that some of the participants were
at chance, whose ROCwould beZ(H) = Z(F)with a slope
= 1. The lowest accuracy was 0.48. We accordingly assumed
that 0.52 should also be considered as random variation
from the chance of 0.50, and excluded the participants
whose accuracies were ≤ 0.52. As a result, ten of the
28 participants were excluded.1 The mean slope of the
remaining 18 participants was 0.92, and was significantly
smaller than one (t (17) = 3.00, p = 0.008).

In the 8◦ condition (where all participants were above
chance), the mean slope was 0.84 ± 0.02, and was
significantly smaller than one (t (25) = 6.49, p = 8.58 ×
10−7). Taken together, the slope results from the 4◦ and
8◦ conditions suggest that the discrimination could not
possibly have used the covert classification rule with one
parameter (CC1), of which the optimal independence rule is
a special case when the criterion is unbiased.

It should be noted that the hypothesis testing of slope =
1 as predicted by the CC1 model in this section is different
from model testing in the next section. Here, the human
data are Z(H) and Z(F), and the slope = 1 hypothesis is a
mathematical result from the independence rule. In the next
section, the human data will be pXY and the model data will
also be pXY derived from the specific model assumptions.
In this sense, the hypothesis testing in the current section
and the next will be largely independent of each other.
Therefore, if the CC1 model is again tested in the next
section with model fitting and shown not to account for
human data, then we will have converging evidence that the
Z-ROC slope method and model fitting method gave rise to
consistent results. Hence we will start the next section by
verifying the results obtained in the current section, but only
using the human pXY data when p(F) = 1

2 (pAA + pBB) ≤
1/2 to ensure fairness.

Fitting the human data
with the one- and two-parameter
differencing and likelihood ratio rules

We proved in the Appendix that the false-alarm rate
p(F) ≤ 1/2 for the covert classification (CC) and reverse-
classification (RC) models, regardless if the models have

1In the rest of the analysis, these ten participants would be still
included. This is because the accuracy, as a single number, cannot
sufficiently constrain the distribution of pXY (where X, Y ∈ {A, B})
across rating criteria for model-fitting purpose, even though chance
performance tends to favor pAB + pBA = pAA + pBB on average.
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Fig. 2 Individual participants’ ROCs in Z-coordinates and their linear fittings for the 4◦ discrimination. In each panel, the fitted linear equation is
shown

one or two parameters, and regardless of how the parameters
are chosen. Since the human p(F) could exceed 1/2 (or
Z(F) > 0, Figs. 2 and 3), the four models above could not
account for the human data.

For the remaining four models, namely differencing

and likelihood ratio models with one or two parameters,
there are the following two ways to fit them with human
data. The first is suggested by Petrov (2009), which is
to use χ2 null hypothesis testing to verify the following
equalities: pAA=pBB and pAB = pBA, and categorize

Fig. 3 Similar to Fig. 2, individual participants’ ROCs in Z-coordinates and their linear fittings for the 8◦ discrimination are shown
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accordingly which participants’ data qualitatively fit which
models. However, this approach of categorization using null
hypothesis testing has to rely on a fixed α value (e.g.,
α = 0.05) that is somewhat arbitrary (Rozeboom, 1960).
For example, pAA = pBB is deemed acceptable in a χ2

analysis if p = 0.052, but is rejected if p = 0.048, although
the two cases can be practically the same.

Alternatively, one can fit all the pAA, pBB, pAB , and
pBA human data, rather than human data only consistent
with the χ2 test per Petrov (2009), to a specific model. Here,
the fitting will be similar to the Z-ROC fitting in the last
section using the TLS method (Golub & Van Loan 1980;
Wickens, 2002; Liu et al. 2002) , except that it will be in the
4-D pXY space.2

In what follows, we will fit all human data with the
likelihood ratio and differencing models with one and two
parameters. We will check whether the residuals are evenly
distributed across different confidence levels and across
the four dimensions of pXY (Kellen & Singmann, 2016).
Afterwards, to seek converging evidence, we will also check

pAA

( =
�=

)
pBB and pAB

( =
�=

)
pBA for model selection

according to Petrov (2009).
But first, we will verify the effectiveness of this approach

of ROC model fitting by checking whether such model
fitting gives rise to results consistent with the results
independently obtained in “Human behavioral results”,
namely the human Z-ROCs had a mean slope smaller than
one.

Verifying the effectiveness of themodel fitting
approach

In “Human behavioral results”, we compared the slopes
of human Z-ROCs with that predicted by the covert
classification model with one parameter (CC1), of which the

2It should be noted that the model comparison here is under the
assumption that a human ROC from a rating experiment can be
similarly obtained from a number of binary same-different tasks each
with a different criterion or criteria. We understand that there is
disagreement against this assumption (Van Zandt, 2000; Balakrishnan,
1999), but believe that the best way to address this controversy is
empirical. Accordingly, we ran five additional participants in a binary
same-different experiment that was otherwise identical, except the
participants were instructed to reply “same” if and only if they were
absolutely certain. There was no feedback either (since feedback
would nudge the criterion to the middle). The new [p(H), p(F )] are:
[0.78, 0.67], [0.68, 0.58], [0.84, 0.70], [0.72, 0.62], and [0.85, 0.65];
clearly indicating that human criterion or criteria could give rise to
p(F) > 1/2.

independence rule is a special case. In that comparison, we
found that the slopes of human Z-ROCs were different from
the model prediction, thereby rejected the CC1 model as a
candidate.

We now independently verify if CC1 model fitting in the
4-D pXY (X, Y ∈ {A, B}) space would yield similar results.
Since the model’s p(F) ≤ 1/2, we used human data whose
p(F) ≤ 1/2 also. We further verified the CC model with
two parameters (CC2a), of which CC1 is a special case. For
both models, and for all the 26 8◦ participants and the 18
4◦ participants who were above chance, the fittings were
rejected because the residuals of the model fitting were not
evenly distributed across the four dimensions of pXY . This
indicates that the 4-D model fitting was consistent with
the independent ROC slope analysis. The details of this
verification are in Appendix C.

In what follows, we will apply the similar model fitting
to the remaining four models, in two aspects. (1) We will
measure the residuals across the pXY ’s and rating scale.
(2) We will check the relative residual distributions across
these two dimensions, because an uneven distribution would
indicate poor fitting.

Regarding (1), we first calculated χ2 between model
prediction and each participant’s data, and then calculated
the cumulative χ2 across all participants, for the 4◦ and 8◦
conditions, respectively. Given the large degrees of freedom
(since each participant across ten sessions contributed
240 numbers), the resultant χ2 distribution could be well
approximated by a normal distribution. The discrepancy
between the human data as a whole and each model was
highly significant (Z ≥ 9.25).

That is to say, neither of these four models was a good fit
to the human data in terms of absolute residue magnitudes.
This is perhaps not very surprising for the following two
reasons.

1. Petrov (2009) qualitatively determined which partici-
pant’s data were consistent with which model, checking
whether or not pAA=pBB and pAB=pBA (see below).
In our case, only a certain proportion of participants’
data were consistent with each of the four models. As a
result, when all participants’ data were considered, the
majority of the participants’ data violated one or both
of equations above, which ensured a large discrepancy
in χ2.

2. All participants were inexperienced (albeit with pre-
experiment practice). This in itself made it possible for
the data to have large residuals.

In the remainder of this section, we will focus on (2),
whether or not residuals were evenly distributed across the
pXY ’s and rating scale.
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Fig. 4 Residual means from using the LR1 (likelihood ratio rule with one parameter) to fit the 54 participants’ data. These means are plotted
across the four dimensions of pXY , X, Y ∈ {A, B} and across the five rating criteria. Error bars represent standard error of the mean

Fitting human data to the likelihood ratio model
with one parameter (LR1)

By definition, pXY = p(responding “different”|XY),
where X, Y ∈ {A, B}. From Irwin and Hautus (1997),3

given that p(H) = 1
2 (pAB + pBA) and p(F) =

1
2 (pAA + pBB) (under the assumption that the prior
p(XY) = 1/4); and that pAA = pBB, pAB = pBA for the
LR1 model, we have:

When β > 1,

pAA = pBB = p(F ) = 1 − �2
i=1

(
1 − �

(
ln (β)

d ′ + (−1)i
d ′

2

))2

,

pAB = pBA = p(H) = 1 − 2�2
i=1

(
1 − �

(
ln (β)

d ′ + (−1)i
d ′

2

))
.

When β ≤ 1, (1)

pAA = pBB = p(F ) = 2�2
i=1

(
1 − �

(−ln (β)

d ′ + (−1)i
d ′

2

))
,

pAB = pBA = p(H) = �2
i=1

(
1 − �

(−ln (β)

d ′ + (−1)i
d ′

2

))2

,

where �(·) is the cumulative distribution function (CDF) of
a normalized Gaussian.

Figure 4 shows the means of residuals of fitting the 54
participants’ data using the LR1 model. The residual data
were analyzed in a two-way ANOVAwith pXY as one factor
and rating criterion as the other factor. The main effect
of pXY was significant, F(3, 159) = 9.83, p = 5.53 ×
10−6. The main effect of rating criterion was significant,
F(4, 212) = 10.15, p = 1.55 × 10−7. The interaction was
also significant, F(12, 636) = 8.39, p = 7.62 × 10−15.
This means that the residuals were unevenly distributed
across different levels of rating, and unevenly in responses
to different stimuli. We conclude that the LR1 was not a
good candidate fitting the human data.

3Note that a hit here is defined as p(“different”|AB ∪BA), which was
defined as correct rejection in Irwin and Hautus (1997).

Fitting human data to the likelihood ratio rule
with two parameters (LR2)

For model LR2, pAA = pBB, pAB �= pBA. This means that,
in Eq. 1, the threshold β used for pAB is different from that
used for pBA.

Figure 5 shows the fitting results of the LR2 model,
similarly plotted as Fig. 4. A similar ANOVA indicated
that all effects were significant: the main effect of rating
criterion (F(4, 212) = 2.84, p = 0.025); the main effect
of pXY (F(3, 159) = 27.92, p = 1.48 × 10−19); and
the interaction (F(12, 636) = 12.09, p = 3.02 × 10−24).
These results indicate that the residual distributions were not
uniform across different rating criteria and across different
pXY response variables. As can be seen in Fig. 5, the uneven
distribution of the residuals across pXY was particularly
pronounced. Consequently, the LR2 model was not a good
candidate to explain the human data either.

Fitting human data to the differencingmodel
with one parameter (DF1)

For model DF1, similar to LR1, pAA = pBB, pAB = pBA.
We have:

pAA = pBB = p(F) = 2�

(
− k√

2

)
,

pAB = pBA = p(H) = �2
i=1�

(−k + (−1)id ′
√
2

)
,

(2)

where �(·) is the cumulative distribution function (CDF) of
a normalized Gaussian.

Figure 6 similarly shows DF1 model fitting results. A
two-way ANOVA on the residuals across rating criteria and
across pXY ’s yielded the following significant results. The
main effect of rating criterion was significant (F(4, 212) =
2.79, p = 0.027). The main effect of pXY was significant
(F(3, 159) = 8.93, p = 1.67 × 10−5). The interaction
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Fig. 5 Similar to Fig. 4 except that two-parameter model LR2 was used to fit the human data

was highly significant F(12, 636) = 5.91, p = 8.53 ×
10−10). These results indicate that the residuals were again
unevenly distributed across rating criteria and across pXY ’s.
Consequently, DF1 was not a good candidate to explain the
human data as a whole.

Fitting human data to the differencingmodel
with two parameters (DF2)

For model DF2, pAA = pBB but pAB �= pBA. This means
that the threshold k used for pAB in Eq. 2 is different from
that used for pBA.

A two-way ANOVA on the residuals across rating criteria
and across pXY ’s yielded the following results, the main
effects of which were different from the three models
above. Namely, the main effect of rating criterion was not
significant (F(4, 212) = 1.90, p = 0.11). Nor was the
main effect of pXY significant (F(3, 159) = 2.18, p =
0.092). The interaction was significant (F(12, 636) =
5.95, p = 6.89 × 10−10). These results indicate that the
residuals shared comparable means across different rating
criteria, and across different pXY measures. Note that the
comparable means along the dimensions of rating criteria
and pXY ’s were from all participants’ data, including those

whose pAB �= pBA. The significant interaction effect was
possibly due to these data with pAB �= pBA. To verify this
conjecture, we separately analyzed data that were accepted
by the χ2 test in the residual analysis (n = 23), and found not
surprisingly that the two main effects remain nonsignificant
(F(4, 88) = 1.25, p = 0.29;F(3, 66) = 0.99, p = 0.40).
But the interaction became much weaker also (F(12, 64) =
1.81, p = 0.047) (Fig. 7).

Taken together, and primarily from the lack of main
effects in the residual analysis, we conclude that the human
data were consistent with the differencing rule with two
parameters. Namely, the threshold used in deciding whether
the difference was small enough between the two stimuli
in a trial depended on the sequence of the two stimuli.
In other words, in the decision to respond “same” when
−|k1| ≤ x1 − x2 ≤ |k2|, there was participant bias that
depended on the stimulus sequence.

Assuming that the human participants indeed used the
DF2 rule, then the mean of the best fitting d ′s from the 28
4◦ participants was d ′ = 1.04 ± 0.09 (standard error). The
mean of the best fitting d ′s of the 26 8◦ participants was
d ′ = 2.40± 0.06. Under the standard SDT model, the mean
standard deviation of a motion direction in the 4◦ condition
was 4◦/1.04 = 3.85◦. In the 8◦ condition, this standard

Fig. 6 Similar to Fig. 4 except that the fitted model is DF1, the one-parameter differencing rule
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Fig. 7 Similar to Fig. 4 except that the fitted model is DF2, the two-parameter differencing rule

deviation was 8◦/2.40 = 3.33◦. These two estimates were
not significantly different (t (52) = 1.53, p = 0.13). This
indicates that the standard deviation of perceiving a motion
direction was approximately 3.59◦.

Qualitative model selection per Petrov
(2009)

Petrov (2009) proposed to use χ2 tests to verify pAA

( =
�=

)

pBB and pAB

( =
�=

)
pBA. Qualitative model selection can

then be accomplished according to the four possible out-
comes (but before considering our new result that p(F) ≤
1/2 for some models).

Table 2 shows the number of participants satisfying
each of the four equality-inequality cases, along with the
candidate decision rules for that case. In the current study,
since a rating experiment was used, we applied the χ2

test per decision criterion. However, since rating data are
not completely independent of each other, the degrees of
freedom used in the χ2 test was an overestimate. For this
reason, we also binarized the rating data by using the
middle criterion, recalculated χ2 per block per participant,
and recategorized the four cases. The results are shown in
Table 2 in parentheses.4

To summarize from Table 2, out of the 54 participants
total and using Petrov’s (2009) qualitative model selection
method, data from 74% of the participants could be
explained by the differencing (DF) and likelihood ratio (LR)
rules (cases 1 and 3), whereas the remaining 26% could not
be explained by any rules (cases 2 and 4). If we keep in mind
that the null χ2 hypothesis testing used here with α = 0.05
has some degree of arbitrariness, then the qualitative model
selection in this section is, broadly speaking, consistent with

4The order of the cases in Table 2 is different from that in Petrov
(2009) because presenting simpler, one-parameter models first may aid
understanding of the subsequent two-parameter models.

the quantitative model fitting results in the last section. The
overlap between these two sections is that the biased (or
two-parameter) differencing rule is a candidate to account
for the majority of human data. This conclusion is also
consistent with the argument in Petrov (2009) that human
participants may not be able to have access to the full details
of the optimal likelihood ratio models. The differencing rule
as a candidate is also appealing in that executing this rule
(taking the difference between two stimuli) is intuitive.

Discussion

In the current study, we collected data from 54 participants
in a same-different rating experiment on motion discrim-
ination, with two levels of directional difference, 4◦ and
8◦. With all eight models available in the literature, we fit-
ted to each individual participant’s data a four-dimensional
“ROC” in the pXY space, rather than the conventional ROC
in the two-dimensional (p(F ), p(H)) space. We found the
following:

Table 2 The distribution of the number of participants and the
candidate decision rules according to the equality relationships of the
four stimulus pairs

Case No.
Participants

Candidate
rules

1 pAA = pBB, pAB = pBA 11 (17) DF1, CC2s, LR1

2 pAA �= pBB, pAB = pBA 4 (4) CC1, CC2a

3 pAA = pBB, pAB �= pBA 26 (26) DF2, RC2a, LR2

4 pAA �= pBB, pAB �= pBA 13 (7) None

The numbers in parentheses are obtained by collapsing the rating
data into “same” “different” binary responses using the middle
criterion only. DF1: differencing rule with one criterion; CC2s:
covert classification with two symmetric criteria; LR1: likelihood
ratio with one criterion; CC1: covert classification with one criterion;
CC2a: covert classification with two asymmetric criteria; DF2:
differencing rule with two criteria; RC2a: reversed-classification with
two asymmetric criteria; LR2: likelihood ratio with two criteria
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• The false alarm rate p(F) can be proven mathemati-
cally to be p(F) ≤ 1/2 for four of the eight models.

• Since our rating experiment could obtain an ROC with
a large range of decision criteria, our human p(F)’s
could exceed 1/2, hence rejecting the four models
above, including the covert and reverse classification
models (CC and RC), with either one or two parameters.
A supplementary, binary same-different experiment,
which was otherwise identical to the main experiment,
further confirmed that p(F) could exceed 1/2. This
means that participants could indeed position their
decision criterion such that p(F) > 1/2.

• In particular, the well-known optimal model, the
independence rule, could be rejected because it is a
special case of the covert classification rule with one
parameter.

• The differencing rule with two parameters (DF2) well
accounted for the human data as a whole, as opposed to
the rest of the three models: DF1, LR1, and LR2.

We should qualify that, when we said that the DF2
model accounted for the participants’ data as a whole, we
meant that some combinations of the two criteria could
well approximate the participants’ data across the full
rating criteria. However, we do not understand how in
principle a participant’s five rating criteria were chosen in
any systematic way, if DF2 was used. In other words, we
do not understand how the DF2 model’s two criteria were
positioned to give rise to each of the five rating criteria. In
fact, we only know that the DF2 model was a candidate
to explain the human data. Whether or not the participants
actually used this rule or some other yet unknown rule,
remains an open question. In this sense, we are still far from
understanding the functional mechanism of human decision
making in motion discrimination.

Since Petrov (2009) also used motion direction discrim-
ination as an example problem in his binary same-different
task, it is informative to compare his results with ours. In his
study, among 13 participants total, data from 11 were con-
sistent with DF2, RC2a, and LR2. Since we proved in the
current study that p(F) ≤ 1/2 for RC2a, the two studies
converged on DF2 and LR2.5

It is interesting to note that, in Petrov (2009), no
participant’s data violated both symmetry constraints, such
that no participant’s data were in case 4. In our study, if we
used the χ2 null hypothesis test, on average ten out of the 54
participants’ data (or 19%) were in case 4, not explainable
by any rules. What might be the discrepancy between the
two studies? Petrov (2009) collected the data in a motion

5Petrov (2009) conjectured that RC2a = LR2, but that LR2 was an
unlikely model for human performance

discrimination perceptual learning experiment with four
training sessions, plus a pre-training test session and a
post-training test session. Because his analysis focused on
the symmetry constraints of pAB = or �= pBA? and
pAA = or �= pBB? for model selection, an increased
d ′ as a result of perceptual learning would be unlikely to
affect the analysis. His approach has an advantage that
participants could have possibly settled into their strategies
as a result of the perceptual learning. In comparison, our
participants ran only a single session of the experiment.
Although these participants went through pre-experiment
practice and would not start the experiment until deemed
ready, we could not rule out the possibility that some
participants were still exploring and switching strategies.
That said, however, since our main aim was to fit a 4-
D “ROC” with a steady d ′, we could realistically use
only a single daily session’s data when d ′ was presumably
steady. Compared to perceptual learning studies, our study
investigated generic motion direction discrimination with
participants who did not go through extensive training, but
nevertheless practiced the task prior to the main experiment.
In this sense, we believe that our results are informative
about how non-expert participants discriminated motion
directions.

Optimal and suboptimal models

Although we have tested all of the eight same-different
models in the literature that we are aware of, these models
are all based on the standard SDT model and can be
certainly extended. To illustrate, van den Berg et al. (2012)
studied same-different visual discrimination using an array
of oriented ellipses, with the goal of testing whether
optimal or suboptimal models better accounted for human
performance. Here, since the number of independently
varying orientations was greater than two, the standard SDT
model no longer applied. Yet, the optimal model could still
be constructed that compared the ratio between the posterior
probability of all ellipses being identically oriented over that
of the ellipse orientations being different. Such a model is
mathematically equivalent to the simpler LR1 model in the
current study with the criterion β = 1. The suboptimal
model in van den Berg et al. (2012) calculated pair-wise
orientation differences between the ellipses, which is a
variation of the DF1 model. These authors found that their
optimal model “accurately describes human behavior,” and
outperformed those differencing type of models.

Beyond same-different tasks, the optimal Bayesian
models (Ma, 2019) can be all boiled down to the
likelihood ratio models (LR) in the simple case of the
current study. This Bayesian approach offers a broader
platform (beyond same-different discrimination) to evaluate
perceptual decision making. For example, Shen and Ma
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(2016) deliberately pit a complex optimal decision rule
(which is equivalent to the LR1 model, in the current study’s
simpler case) against suboptimal rules (e.g., DF models)
such that these models predicted qualitatively different
results from the optimal model. It turned out that their
optimal model well fit the human data, whereas the simpler
but suboptimal models failed to account for the human data.
Consequently, their results are supportive of the optimal
LR models, although we note that their experiments were
neither same-different nor motion discrimination.

In contrast, in the current study on same-different motion
discrimination, the suboptimal DF2 model better accounted
for the human performance than the optimal LR models. It
remains an open question whether this discrepancy is due
to different tasks used, or to the complexity of different
models. This question regarding optimality is intriguing,
and certainly worthy of continued investigation.

Appendix A: Proof of p(F) ≤ 1/2 in the RC2a
rule

In pages 1014-1015, Petrov (2009) said:

“...if the first stimulus is classified as “B” when x1 >

c2, the second stimulus is classified as “A” when x2 <

−c2. If the first stimulus is classified as “A” when
x1 < c1, then second stimulus is classified as “B”
when x2 > −c1. With symmetric criteria (c1 = −c2),
the resulting rule coincides with the CC2s rule”.6

It should be apparent from the above that c1 < 0 because
c1 ≤ −c1 in order to avoid double labeling (because
otherwise, if −c1 < c1, then when x1 < c1, x2 can
be labeled both as “A” and “B” if −c1 < x2 < c1). It
is also apparent that when the first stimulus is classified
as B correctly or incorrectly, criterion c2 will be used
for both the first and second stimuli. Therefore, when the
response is correct, p(“first response is B”|B) = bB1 =
1 − �

(
c2 − d ′

2

)
. When the response is incorrect, p(“first

response is B”|A) = bA1 = 1 − �
(
c2 + d ′

2

)
.

Likewise, if the first stimulus is classified as A (centered
at - d ′

2 ) correctly or incorrectly, criterion c1 is used for
both the first and second stimuli. Therefore, when the
response is correct, p(“first response is A|A) = aA1 =
�

(
c1 + d ′

2

)
. When the response is incorrect, p(“first

response is A”|B) = aB1 = �
(
c1 − d ′

2

)
.

6Note that in the main text we used k for a criterion because we started
by introducing the independence and differencing rules in MacMillan
and Creelman (2005), where k was used. Here in the Appendix, we
mainly refer to Petrov (2009), where c was used for criterion. For
consistency, we use c also in the Appendices.

We now consider the false alarm rate p(F) by definition,7

p(F) = p(“responding different”|AA ∪ BB)

= p(“responding different”|AA)p(AA|AA ∪ BB)

+p(“responding different”|BB)p(BB|AA ∪ BB)

= 1

2
(p (“responding different”|AA)

+p (“responding different”|BB)) (A.1)

= 1

2
(aA1bA2 + bA1aA2 + aB1bB2 + bB1aB2) .

Let us look at the first two terms in the parenthesis,
aA1bA2 + bA1aA2. Recall aA1 means that “responding A”
when the first stimulus is A, that c1 is used when the first
stimulus is responded as “A,” and that c2 is used when the
first stimulus is responded as “B”.

aA1bA2 = �

(
c1 + d ′

2

)(
1 − �

(
−c1 −

(
−d ′

2

)))
,

bA1aA2 =
(
1 − �

(
c2 + d ′

2

))
�

(
−c2 −

(
−d ′

2

))
.

Note that aA2 = �

(
−c2 −

(
−d ′

2

))
= 1 − �

(
c2 − d ′

2

)
, (A.2)

and bA2 = 1 − �

(
−c1 −

(
−d ′

2

))
= �

(
c1 − d ′

2

)
.

Similar derivation, or better yet, the symmetry consider-
ation, gives us (as it should, given the necessary condition
for RC2a)

p(responding “different”|BB) = p(responding “different”|AA).
(A.3)

Hence,

p(F) = �

(
c1 + d ′

2

)
�

(
c1 − d ′

2

)

+
(
1 − �

(
c2 + d ′

2

)) (
1 − �

(
c2 − d ′

2

))
. (A.4)

Note in the derivations above there might not appear a
need for c1 ≤ c2. However, since aA1 = bB2 and bA1 =
aB2, it is necessary that c1 ≤ 0 ≤ c2 to avoid overlap
labeling. We next prove that p(F) ≤ 1/2.

∵ c1 ≤ 0,

∴ �

(
c1 + d ′

2

)
≤ 1 − �

(
c1 − d ′

2

)
.

(A.5)

7It is assumed here that p(AA|AA ∪ BB) = p(BB|AA ∪
BB) = 1/2 for clarity, but this assumption is not critical. To prove
this, we note from Eq. A.3 that p(“responding different”|AA) =
p(“responding different”|BB) = pAA. We have therefore p(F) =
(p(AA|AA ∪ BB) + p(BB|AA ∪ BB)) pAA = pAA (Eq. A.1),
because p(AA|AA ∪ BB) + p(BB|AA ∪ BB) = 1.
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This means that, starting at c1 ≤ 0, the right tail of the

normal distribution N
(
− d ′

2 , 1
)
has a greater area than the

left tail of the normal distribution N
(

d ′
2 , 1

)
.

∴ �

(
c1 + d ′

2

)
�

(
c1 − d ′

2

)
≤

(
1 − �

(
c1 − d ′

2

))
�

(
c1 − d ′

2

)
≤ 1

4
.

(A.6)

Using left-right symmetry, it can be similarly proved that(
1 − �

(
c2 + d ′

2

))(
1 − �

(
c2 − d ′

2

))
≤ 1

4
. (A.7)

Therefore,

p(F) = �

(
c1 + d ′

2

)
�

(
c1 − d ′

2

)

+
(
1 − �

(
c2 + d ′

2

))(
1 − �

(
c2 − d ′

2

))

≤ 1

2
. (A.8)

Appendix B: Proof that p(F) ≤ 1/2 in CC2a,
CC2s, and CC1

To ensure absolute clarify regarding how the CC2a
(covert classification with two asymmetric criteria) works
according to Petrov (2009), and to ensure that we have not
added any extra assumptions or conditions, we first quote
the relevant definition from Petrov (2009), page 1024:

The CC2a decision rule is a generalization of CC1
that uses three covert categories: “A,” “B,” and
“ambiguous”. This requires two criteria c1 ≤ c2 ...
The observer responds “different” iff one stimulus

is unambiguously classified “A” and the other “B”.

It should be emphasized that the condition c1≤c2 for the
two criteria was specified in Petrov (2009), and not enforced
by us. It should also be emphasized that the “different’’ response
is definitive and unambiguous, because this response is
made when and only when both stimuli are classified
unambiguously and differently, i.e., either “AB” or “BA”.

When a “different” response is correct, it is defined
as a hit. When a “different” response is incorrect, it is
defined as a false alarm. Since a “different” response is
defined unambiguously, a hit or false alarm is defined
unambiguously also. As a result, when c1 and c2 are defined
with c1 ≤ c2, the CC2a rule is completely defined.

To recap, in the CC2a rule and in each interval, a stimulus
x can be categorized with three possibilities: “a” when x ≤
c1, “b” when x > c2, and “ambiguous” when c1 < x ≤
c2. Obviously this decision is independent of the stimulus

sequence, which is why CC2a belongs to the case when
pAB = pBA. Given that the probability of both stimuli
being AA but classified as “different” is: pAA = aAbA +
bAaA = 2aAbA, and pBB = 2aBbB , from Eq. A.3, we know
that p(F) = 1

2 (pAA + pBB) = aAbA + aBbB .

aAbA = �

(
c1 + d ′

2

) (
1 − �

(
c2 + d ′

2

))
,

aBbB = �

(
c1 − d ′

2

) (
1 − �

(
c2 − d ′

2

))
,

∴ p(F) = �

(
c1 + d ′

2

) (
1 − �

(
c2 + d ′

2

))

+�

(
c1 − d ′

2

)(
1 − �

(
c2 − d ′

2

))
. (B.1)

∵ c1 ≤ c2,

∴ �

(
c1 + d ′

2

)
≤ �

(
c2 + d ′

2

)
,

∴ �

(
c1 + d ′

2

)(
1 − �

(
c2 + d ′

2

))

≤ �

(
c1 + d ′

2

)(
1 − �

(
c1 + d ′

2

))
(B.2)

≤
(
1

2

)2

.

∴ aBbB ≤ 1

4
.

∴ p(F) = aAbA + aBbB ≤ 1

2
.

Given that CC2s and CC1 are both special cases of CC2a,
it follows that this proof applies to CC2s (when −c1 = c2)
and CC1 (when c1 = c2) also. In particular, when c1 = c2 =
0, it is the optimal independence rule, which is now proved
to have a restricted p(F) ≤ 1/2.

This CC2a rule can also be extended mathematically to
overcome the restriction that p(F) ≤ 1/2. Recall that CC2a
was defined in Petrov (2009) as: If a stimulus x ≤ c1, then
x is labeled as “A”. Otherwise if x > c2, x is labeled as
“B” (c1 ≤ c2). A “different” response will be made iff
one stimulus is unambiguously labeled as “A” and the other
unambiguously as “B”. The proposed extension is two-fold:
(1) When c1 ≤ x < c2, respond “different” regardless of
how the other stimulus x2 is labeled (opposite to the original
definition). (2) When c2 ≤ c1 such that x is labeled both
as “A” and “B” when c2 ≤ x ≤ c1, then respond “same”
regardless of how x2 is labeled. Under these extensions,
one can see that, at one extreme, when c1 → −∞, and
c2 → +∞, then the response should always be “different”
such that p(F) → 1 and p(H) → 1. At the other extreme,
when c1 → +∞, and c2 → −∞, all stimuli will be double
labeled as both “A” and “B” such that p(F) → 0 and
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p(H) → 0. As a result, the ROC covers the entire range and
p(F) > 1/2 will be possible.

Such an extension may be mathematically “natural,”
but not necessarily so psychologically. For example,
Petrov (2009) considered it psychologically natural for two
uncertain stimuli to be perceived as “same”. As far as
we know, such an extension has not been proposed as a
psychological decision rule, possibly because of the “same”
response bias when stimuli were ambiguous. For example,
Bamber (1969) postulated that the “same” decision was
processed in parallel, whereas the “different” decision was
processed in serial. This is termed the “fast-same” effect and
suggests that “same” and “different” may not be symmetric
psychologically, even if they are symmetric mathematically
(see also Egeth (1966)). Testing this extension is hence
beyond the scope of the current study, but we will address
this in the future study when participants are trained in
multiple sessions.

Appendix C: Verifying CC2a and CC1model
fitting

Recall that the independence rule is a special case of
the covert classification model with one parameter. When
this parameter, which is the decision criterion for each
of the two stimuli, is unbiased, the model is called the
independence rule. When this parameter is systematically
varied in (−∞, +∞), a linear ROC is obtained in the
Z-space (or Z-ROC) whose slope is one (MacMillan &
Creelman, 2005). We have empirically verified (Figs. 2
and 3) that the slopes of the human Z-ROCs were smaller
than one for both the 8◦ and (after chance participants
were excluded) 4◦ participants. We can now, based on this
empirical result, independently verify whether our model
fitting will give rise to the same conclusion, with the covert
classification model with two parameters (CC2a) and with
one parameter (CC1).

Since we have proven that, for CC2a and CC1, p(F) ≤
1/2, we will only use the human data with p(F) ≤ 1/2 to fit
the models. It also turned out that, by adding an additional
Euclidean distance calculation between human and model
(pAA +pBB, pAB +pBA) that is equivalent to insisting that
(p(F), p(H)) fit well, the best and second best-fitting d ′
values could better separate apart. As a result, all subsequent
model fittings incorporated this additional constraint.

Since human data will be used only if p(F) ≤ 1/2,
where p(F) = 1/2(pAA +pBB), each of the 10 experimen-
tal sections had two to four 4-D data points that satisfied
this constraint. As a result, each participant contributed on
average 30 4-D data points for the model fitting. During the

model fitting, an exhaustive search was conducted within
the range of d ′ ∈ [0, 2.5], with a step size of �d ′ = 0.05.

The consequence of the model fitting was that residuals
were obtained as a function of the four pXY dimensions,
and of the rating criteria (two to four levels, since p(F)

needed to be ≤ 1/2). There are two ways to analyze
the residual data. The first is to check the magnitudes of
the residuals. Obviously, the larger the residuals are, the
poorer the fitting is. The second way is to check whether
the residuals are evenly distributed across different pXY

dimensions and rating criteria. One can argue that even
if residual magnitudes are large, but if the residuals are
reasonably evenly distributed across various dimensions,
then the model fitting is unbiased and has captured the mean
values of human performance.

Since the participants in the current study were non-
experts, we expected that the residuals could be large.
Consequently, we focused our analysis on the second aspect,
namely whether the residuals were evenly distributed across
pXY dimensions and rating criteria. To accomplish this, we
restricted the rating data to the two smallest p(F) values
so that there would be nearly no empty entries and an
ANOVA was possible. Because there were only two levels
of rating data used, our emphasis would be on the four
pXY dimensions to see whether residuals evenly distributed
across these four dimensions. Figure 8 shows the means of
residuals across the four dimensions of pXY , X, Y ∈ {A, B}
and the two lowest rating criteria for the two models, CC2a
and CC1.

Since this is verification of the results in
“Human behavioral results”, where data from 26 8◦ par-
ticipants, and 18 4◦ participants (whose accuracies were
> 0.52) were used, the same participants’ data were
used here. We first analyzed the residuals from the CC2a
model fitting to a 4 × 2 ANOVA with pXY and rating
criterion as the main factors. The main effect of pXY

was significant, F(3, 129) = 10.64, p = 3 × 10−6. The
main effect of rating criterion did not reach significance,
F(1, 43) = 2.02, p = 0.16. The interaction was significant,
F(3, 129) = 5.67, p = 0.0011.

A similar analysis using the residuals from the
CC1 model fitting gave rise to all significant effects:
pXY , F (3, 129) = 33.85, p = 3.33 × 10−16; rating
criterion, F(1, 43) = 9.52, p = 0.0035; interaction,
F(3, 129) = 2.95, p = 0.035. Taken together, the resid-
uals in both CC2a and CC1 model fittings were unevenly
distributed across the four pXY dimensions. The results sug-
gest that these two models could not well explain the human
data. Such conclusion is consistent with that obtained
in “Human behavioral results” using completely different
analysis methods.
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Fig. 8 Means of the residuals of model fitting across the four pXY dimensions (X, Y ∈ {A, B}) and the two lowest rating criteria (so that p(F) is
ensured to be ≤ 1/2). Left: CC2a model fitting residuals. Right: CC1 model fitting residuals

Appendix D: Comparing between CC2s
and DF1model fittings

In Petrov (2009), the best fitting d ′ using the CC2s model
was mathematically predicted to be smaller than that using
the DF1 model (d ′

CC2s<d ′
DF1), since CC2s closely approxi-

mates the optimal model (and is therefore more efficient using
the signal). Here, we verified this mathematical prediction,
independently from the mathematical constraint that p(F) ≤
1/2 for the CC2s model, which is a special case of CC2a.

Figure 9 shows, the best fitting human ROC in p-
coordinates (since all data are within the 1 × 1 square), the
best fitting CC2s ROC, human data, and the resultant CC2s
d ′. There were 11 panels because 11 participants’ data were
potentially explainable by CC2s and DF1. A similar fitting
procedure was applied using the DF1 model. Importantly,
the corresponding best fitting DF1 d ′ was also obtained.
According to the mathematical prediction, d ′

CC2s < d ′
DF1.

Among the 11 participants, eight confirmed this inequality.
The remaining three showed zero difference, the d ′ fittings
for two of the three were both d ′ = 0. We conclude, separate
from the p(F) ≤ 1/2 constraint, that the mathematical

prediction that d ′
CC2s < d ′

DF1 was consistent with the
human data.

Appendix E: Comparing RC2a and LR2 rules

We demonstrate here that the conjectured approximate
equality between the RC2a and LR2 models is very limited,
both mathematically and experimentally, not to say p(F) ∈
[0, 1/2] for RC2a whereas p(F) ∈ [0, 1] for LR2.

Petrov (2009) stated that the LR2 rule could be
approximated by the RC2a rule. However, this should only
be the case when the two rules give rise to similar hit and
false alarm rates. As proved earlier, p(F) ≤ 1/2 for RC2a.
Yet, LR2’s p(F) covers the full range of [0, 1]. This full
range can be seen by the following example:

p(F) = 1 − �2
i=1

(
1 − �

(
ln(β)

d ′ + (−1)i d ′
2

))2
, where

β > 1. Assuming that d ′ > 0, when β → +∞,
ln(β)
d ′ ±

d ′
2 → +∞, then �

(
ln(β)
d ′ ± d ′

2

)
→1. Therefore, p(F) → 1.

Figure 10 shows direct comparison between ROC’s of
RC2a and LR2 when they share the same d ′.

Fig. 9 Model comparison between the CC2s (left) and DF1 (right)
models in fitting the human data. The fitted d ′s were con-
sistent with the mathematical prediction in Petrov (2009) that

d ′
CC2s < d ′

DF1. The proportion correct, Pc, as predicted by this opti-
mal rule, and the actual human Pc are also shown per participant, as in
other figures
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Fig. 10 Model comparison between the RC2a (in red) and LR2 models in fitting the human data. Apparently, the RC2a model covers only a
limited range of p(F). Hence, this approximation cannot be close in the full range

Appendix F: Comparing CC1 and CC2a
model fittings with human data

Despite the fact that p(F) ≤ 1/2 for both the CC1 and
CC2a models, we nevertheless fitted the four candidate
participants’ data with the models, as shown in Fig. 11. The

purpose was to verify that the best fitting d ′s by the two
models were similar to each other for any given participant’s
data, since CC1 is a special case of CC2a (when c1 =
c2). These four pairs of d ′ values were indeed similar to
each other, attesting to the reasonable model fittings even
though p(F) ≤ 1/2 for both models — (CC1, CC2a):

Fig. 11 Model fittings for the CC1 (left) and CC2a (right), with human
data as reference. CC1 as a one-parameter model has a single ROC
curve. CC2a as a two-parameter model has a cloud of model datum
points. CC1 can be considered as a special case of CC2a when c1 = c2
and therefore, was predicted to share the same d ′ as CC2a in Petrov
(2009). Among the four participants’ data here, the CC1’s d ′ fittings

were numerically smaller than the CC2a’s in the top row, and the other
way around in the bottom row. (On top of this cloud is the special case
of CC2s, when −c1 = c2. However, CC2s was not supposed to be
able to account for the human data due to the symmetry constraints of
human responses)
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(2.125, 2.175), (2.150, 2.225), (0.600, 0.537), and (0.475,
0.450) (χ2 = 1.00 < χ2

criticalvalue = 9.49). Note also
that when c1 = c2 = 0, both models become the optimal
independence rule.

In addition, for these two models, Petrov (2009) stated
that (pAB − 0.5)2 = (pAA − 0.5)(pBB − 0.5). Given that
pAB = pBA, the equation becomes (pAB − 0.5)(pBA −
0.5) = (pAA − 0.5)(pBB − 0.5). We also checked this
equality among the four participants’ data, as follows. We
checked the χ2 by assuming that either all five criteria were
used or only the middle criterion was used, per experimental
block. Two of the four participants data, HJL and LJJ,
rejected the equality in both χ2 tests.

Appendix G: Model comparison between
CC2s, CC2a, and CC1

Via model simulations, we observed that, as a model with
two parameters (c1, c2), CC2a takes up a cloud of model
datum points. One of its special cases, CC2s—defined as the
two criteria c1+c2 = 0, has its ROC on the top boundary of
the cloud. The other of CC2a’s special case, CC1—defined
as c1 = c2, has its ROC at the bottom boundary of the same
cloud. Figure 12 shows the three models’ ROCs with d ′ = 1,
1.5, and 2.

Fig. 12 Model fittings with d ′ = 1 (left), d ′ = 1.5 (middle), and d ′ = 2 (right) between the CC2s (top ROC), CC2a (model data cloud), and CC1
(bottom ROC) in each panel

Fig. 13 Model fittings with d ′ = 1 (left), d ′ = 1.5 (middle), and d ′ = 2 (right) between the RC2s (top ROC) and RC2a (data clouds) in each panel

Appendix H: Model comparison between
RC2s and RC2a

Similar to the last section, we also compared model
performance between RC2s and RC2a, where RC2s is a
special case of RC2a, which has two symmetric criteria
about the midpoint between the two distributions. Figure 13
shows these models’ performance with d ′ = 1, 1.5, and 2.
Note that in each panel, the RC2s ROC is on top of the RC2a
data clouds (RC2s = CC2s).
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