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Simple Summary: Only about 15% of intrahepatic cholangiocarcinoma (ICC) patients meet the
criteria for resection at the time of diagnosis. For patients with advanced and/or metastatic disease,
the development of novel therapeutic strategies is urgently needed. The aim of our study was to
identify possible novel therapeutic targets and drugs for ICC by using transcriptomic profiles from
the Gene Expression Omnibus databases and The Cancer Genome Atlas. The weighted co-expression
gene network was constructed to screen hub genes. Potential drug candidates with promise in the
treatment of ICC were identified by analyzing key protein–protein interaction (PPI) networks of the
hub genes to identify potential interacting drugs based on the Connectivity Map database.

Abstract: Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy, and there is a need
for effective systemic therapies. Gene expression profile-based analyses may allow for efficient
screening of potential drug candidates to serve as novel therapeutics for patients with ICC. The
RNA expression profile of ICC and normal biliary epithelial cells were downloaded from the Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Function annotation
and enrichment pathway analyses of the differentially expressed genes (DEGs) were finished using
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A
weighted gene co-expression network (WGCN) was constructed by WGCN analysis (WGCNA). Key
genes from the DEGs and co-expression gene modules were analyzed to generate a protein–protein
interaction (PPI) network. The association between the top 10 screened hub genes and the overall
and disease-free survival of ICC patients was examined. The Connectivity Map (cMap) analysis
was performed to identify possible drugs for ICC using hub genes. A total of 151 key genes were
selected from the overlapping genes of 1287 GSE-DEGs, 8183 TCGA-DEGs and 1226 genes in the
mixed modules. A total of 10 hub genes of interest (CTNNB1, SPP1, COL1A2, COL3A1, SMAD3, SRC,
VCAN, PKLR, GART, MRPS5) were found analyzing protein–protein interaction. Using the cMap,
candidate drugs screened with potential efficacy for ICC included three tyrosine kinase inhibitors
(dasatinib, NVP-BHG712, tivantinib), two cannabinoid receptor agonists (palmitoylethanolamide,
arachidonamide), two antibiotics (moxifloxacin, amoxicillin), one estrogen receptor agonist (lev-
onorgestrel), one serine/threonine protein kinase inhibitor (MK-2206) and other small molecules. Key
genes from network and PPI analysis allowed us to identify potential drugs for ICC. The identification
of novel gene expression profiles and related drug screening may accelerate the identification of
potential novel drug therapies for ICC.
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1. Introduction

Intrahepatic cholangiocarcinoma (ICC) is an aggressive biliary tract cancer (BTC) origi-
nating from the biliary epithelium distal to the secondary biliary radicals. ICC is the second
most common liver malignancy, accounting for about 10% of all cholangiocarcinomas [1].
Over the past decade, there have been extensive efforts towards advancing the diagnosis,
staging, classification and treatment of ICC [2]. Complete surgical resection remains the
only curative treatment for ICC with an estimated median survival ranging from 27 to
36 months [3–5]. However, as an insidious malignancy with latent symptoms, only about
15% of ICC patients meet the criteria for resection at the time of diagnosis [1]. In addition,
for patients with advanced and/or metastatic disease, the development of novel therapeutic
strategies is urgently needed [4].

Cancer genomics such as transcriptomic analyses have accelerated the implementation
of precision medicine by identifying new therapeutic targets [6]. Establishing cancer-specific
differentially expressed gene profiles to screen potential drug candidates rapidly and effi-
ciently has been proposed to identify novel therapies. To this end, the Connectivity Map
is a database containing over 1.5 M gene expression profiles from ~5000 small-molecule
compounds and ~3000 genetic reagents that has been tested in multiple cell types [7].
Weighted correlation network analysis (WCGNA) can be used to identify co-expressed
gene modules and explore gene networks and the phenotypes of interest, as well as core
genes in a multi-profile network. WCGNA also facilitates network-based gene screening
to predict candidate diagnostic and prognostic biomarkers, as well as potential therapeu-
tic strategies [8,9]. Using a multi-database approach to validate key gene networks and
identify potential therapeutic targets has been employed in diseases such as head and neck
squamous cell carcinoma (HNSCC), hepatocellular carcinoma (HCC), esophageal carci-
noma and extrahepatic cholangiocarcinoma [10–14]. In addition, drug target prioritization
using mapping custom gene expression profiles in conjunction with drug-gene profile
cMap networks has become increasingly utilized [15].

Intrahepatic cholangiocarcinoma has a particularly poor prognosis, even among pa-
tients who undergo curative-intent resection [16,17]. To date, traditional systemic agents
such as gemcitabine, cisplatin, and oxaliplatin have only modest activity [18–20]. While
recent data have suggested some benefits with adjuvant capecitabine, novel systemic thera-
pies are urgently needed to improve the outcomes of patients with advanced ICC [21]. The
objective of the present study was to recognize possible innovative targets and drugs to
treat ICC by means of transcriptomic profiles from the Gene Expression Omnibus (GEO)
databases and The Cancer Genome Atlas (TCGA). The weighted co-expression gene net-
work was constructed to screen hub genes. Potential drug candidates with promise in
the treatment of ICC were identified by analyzing key protein–protein interaction (PPI)
networks of the hub genes to identify potential interacting drugs based on the cMap
database.

2. Materials and Methods
2.1. Database Selection and Preprocessing

The workflow is shown in Figure 1. The expression gene profile array associated with
ICC was obtained from GSE32225 on the GEO (Available online: http://www.ncbi.nlm.nih.
gov/geo (accessed on 20 March 2022)) [22]. The gene expression profile was acquired by
high-density single nucleotide polymorphism array using 149 formalin-fixed samples from
ICC patients and 6 normal biliary epithelial cell controls [22]. The raw data included data
from all platforms, samples and GSE records, and were acquired as MINiML formatted
family files. The data were processed by Log2 transformation and normalized by quantiles

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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function (preprocessCore package in R software). The platform annotation information
of the normalized data guided the probes conversion into gene symbols. The mean of
probes corresponding to two or more genes was calculated. The principal component
analysis (PCA) chart allowed the visualization of the batch effect, which was removed by
removeBatchEffect function of limma package of R software. Box plots were created to
evaluate the level of standardization of the data according to the results of preprocessing
[23–25].
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Figure 1. Study design and workflow.

The transcriptomic gene expression profiles and clinical data of ICC in the TCGA
database were downloaded by R package TCGAbiolinks from the TCGA-CHOL project [26].
A total of 44 samples with a primary site of liver and intrahepatic bile ducts were down-
loaded and classified into 35 ICC tumor samples and 9 non-tumor normal tissues. The
edgeR and EDAseq packages were used to complete data outlier filtering (correlation
cutoff = 0.6), normalization, and data filtering (quantile cutoff = 0.25).

2.2. Differentially Expressed Gene, Function Annotation and Enrichment Analysis

The R package limma and edgeR were applied to the GSE32225 and TCGA-CHOL,
respectively, to analyze the differentially expressed genes (DEGs) between ICC and normal
samples in each dataset. In GSE32225 DEG analysis, the Benjamini–Hochberg method was
used to adjust the p-value for a control of the false discovery rate (FDR). Genes with a cutoff
of |logFC| ≥ 1.0 and adj. p < 0.05 were defined as DEGs. In TCGA-CHOL dataset, glmLRT
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method was used, with cutoff |logFC| ≥ 1.0 and FDR < 0.05 to generate the DEGs. The
DEGs of both datasets were visualized as a volcano plot by using the ggplot2 package [27].

The reference for function annotation of the DEGs was Human gene GRCh38 [28]. The
functional and pathway enrichment knowledge of the DEGs were provided by Gene On-
tology (GO, available online: http://geneontology.org/ (accessed on 20 March 2022)) and
Kyoto Encyclopedia of Genes and Genomes (KEGG, available online: http://www.kegg.jp/
(accessed on 20 March 2022)) databases. Three items are classified by GO: molecular func-
tion (MF), biological process (BP), cell composition (CC). KEGG database includes a system-
atic analysis of genome information and the corresponding roles of genes. ClusterProfiler
was applied for GO annotation and KEGG enrichment analysis [29].

2.3. Co-Expression Modules by WGCNA

WGCNA identifies genes with very high correlation or sets of genes that share similar
functions, called modules, and allows correlation analysis of modules with phenotypic
data to uncover potential hub genes. The gene expression data profiles of GSE32225 were
selected for gene co-expression network construction using the WGCNA package [8]. A
soft-thresholding power β = 4 was built by the function powerEstimate. An intermediate
quantity called the co-expression similarity sij was first defined, and then the adjacency
matrix aij was decided by the formula aij = sij

β. A topological overlap matrix (TOM)
and hierarchical clustering dendrogram of the 1-TOM matrix was generated and gene
modules were identified by unsupervised clustering. Sample tree and log-log plot of whole-
network connectivity was generated to visualize the gene distribution in each module.
The module–trait relationships between modules and clinical trait (tumor vs. normal
sample) information were also determined by the method described by Wang et al. [30].
The modules with top 3 high correlation coefficients were considered most relevant to
clinical traits and were grouped together for downstream analysis.

2.4. Key Gene Selection, Protein–Protein Interaction Analysis, and Hub Gene Screening

The top 3 clinical trait-correlated modules were named the mixed modules. The
overlapping genes between GSE-DEGs, TCGA-DEGs and co-expression genes extracted
from mixed modules were used to screen key genes by a Venn diagram. The key genes were
put into Basic Local Alignment Search Tool (Blastx, available online: https://blast.ncbi.
nlm.nih.gov/ (accessed on 20 March 2022)) analysis to find the corresponding homologous
proteins. The interaction network among these proteins was then analyzed by the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (Available online:
https://string-db.org/ (accessed on 20 March 2022)) [31]. Importing the PPI data into
Cytoscape (version 3.8.2) software, genes with high interaction in candidate modules,
which is the most key gene subnetwork in the PPI map, were identified as hub genes [32].
The degree-based topology algorithm was used by CytoHubba to analyze the network
and choose the top 10 hub genes and their sub-networks to additionally create a key node
network [33].

2.5. Hub Gene Survival Analysis and Identification of Potential Drug Candidates

The differentially expressed profile of each hub gene in ICC was compared using
boxplot in Gene Expression Profiling Interactive Analysis (GEPIA) [30]. The association
with outcomes was examined by assessing overall (OS) and disease-free (DFS) survival
using the log-rank test. The different protein expression levels were compared between
ICC and cholangiocytes in normal liver using The Human Protein Atlas (HPA) (proteinat-
las.org). The median gene expression of all samples was set as the cohort threshold. The
cox proportional hazard ratio and the 95% confidence interval was also calculated. Po-
tential curative drugs for ICC were collected from the Connectivity Map (cMap, available
online: https://clue.io/ (accessed on 21 March 2022)) [7]. In order to explore the potential
efficacy of these drug candidates for ICC, the corresponding pharmacologic effects were
depicted by searching for the published clinical relevance on National Institutes of Health

http://geneontology.org/
http://www.kegg.jp/
https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
https://string-db.org/
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Cancers 2022, 14, 3284 5 of 20

database (Available online: https://pubchem.ncbi.nlm.nih.gov/compound (accessed on
7 April 2022)).

3. Results
3.1. Identification of Differentially Expressed Genes in GSE32225 and TCGA-CHOL

A threshold p-value of <0.05 and |log2FC| > 1 was set to recognize DEGs from
GSE32225 (GSE-DEGs). Duplicates were removed and the investigation of raw data of
18,402 genes was performed detecting genes upregulated and downregulated in the tumor
tissue (n = 582 and n = 705, respectively). PCA plot and a volcano map of the DEGs
were created to visualize the different patterns of profile expression between normal and
tumor tissues (Figure 2A,B). The details of DEGs clustering were identified by the heatmap
(Figure 2C).

DEGs from the TCGA-CHOL project (TCGA-DEGs) were identified based on a thresh-
old |logFC| ≥ 1.0 and FDR < 0.05. Raw data of 60,660 genes were processed, revealing
7662 up-regulated and 521 down-regulated genes. A volcano map of the TCGA-DEGs was
plotted to visualize the DEG distribution (Figure 2D).

3.2. Function Annotation and Enrichment Analysis of GSE-DEGs

A significant gene enrichment of DEGs between ICC and normal biliary epithelial
cells was demonstrated by KEGG and GO analyses of functional enrichment for 1287
GSE-DEGs. Therefore, bubble charts allowed to choose and visualize the top 20 pathway
entries with significant enrichment. Figure 3A,B display the most enriched GO annotations
related to cell component (CC) and biological process (BP). The results of CC reveal that the
GSE-DEGs were mostly linked to the collagen-containing extracellular matrix, cytoplasmic
vesicle lumen, vesical lumen, the apical part of the cell and secretory granule lumen.
The most enriched BP entries were associated with extracellular structure organization,
response to nutrient levels, the carboxylic acid biosynthetic process, the organic acid
biosynthetic process as well as extracellular matrix organization. No MF entries were
significantly enriched.

A total of 28 enriched KEGG pathways (12 associated with upregulated genes and
16 with downregulated genes) were identified by KEGG enrichment analysis and pathway
screening using a p-value < 0.01 (Figure 3C). The upregulated pathways were linked to
ECM–receptor interaction, NF-κB signaling pathway, focal adhesion, Salmonella infection
and Escherichia coli infection. The downregulated pathways included complement and
coagulation cascades, PPAR signaling pathway, metabolism of xenobiotics by cytochrome
P450, drug metabolism and glycine, serine and threonine metabolism.

3.3. Construction of Weighted Gene Co-Expression Modules

The weighted gene co-expression network was constructed from the GSE32225 dataset
with the WGCNA package to identify the functional clusters in ICC. A total of nine modules
were identified with each module assigned to a color (Figure 4A). The co-expression net-
work was visualized in the network heatmap plot (Figure 4B). Except for the gray module,
which represents genes that were not assigned into any cluster, the other eight modules
were plotted to the heatmap of module–trait relationships to evaluate the association be-
tween each module and the clinical traits (tumor and normal) (Figure 4C). The highest
correlation with tumor was identified in the black and blue modules, while the red module
had the highest correlation with normal tissues (black module: r = 0.43, p = 3 × 10−8; blue
module: r = 0.34, p = 1 × 10−5; red module: r = 0.34, p = 1 × 10−5).

https://pubchem.ncbi.nlm.nih.gov/compound
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defined as described. (C) Hierarchical cluster heatmap of GSE-DEGs. (D) Volcano plot of TCGA-DEGs.
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Figure 3. Analysis of function and enrichment of GSE-DEGs. (A) CC category of GO annotation
diagram of GSE-DEGs. (B) BP category of GO annotation diagram of GSE-DEGs. X-axis: enrichment
factor (ratio of number of entries in the foreground gene set to number of background genes enriched
in the same entry). Y-axis: enrichment pathways. The number of genes in the pathway determines dot
size in direct proportion. The color of the dots (from red to blue) corresponds to the q-value reduction
in sequence, although the difference is more significant. (C) Bar chart representing KEGG enrichment:
enriched pathways of up-regulated genes (red) and enriched pathways of down-regulated genes
(blue).
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clustering dendrograms. Darker color indicates higher co-expression and interconnection. (C) Module–trait relationships. X-axis: clinical trait of tumor or normal.
Y-axis: clustered modules. The correlation and p-values are labeled in each block.
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3.4. Survival Gene Screening, PPI Analysis, and Hub Gene Selection

In order to screen genes of interest, the overlapping genes among 1287 GSE-DEGs,
8183 TCGA-DEGs and mixed modules containing 1226 co-expression genes extracted from
the black, blue, and red modules were identified and visualized in the Venn diagram
(Figure 5A). A total of 151 key genes were selected. The means of the STRING with
confidence >0.4 and FDR stringency of 0.05 were used to assess the PPI network associated
with these key genes. A PPI network including 150 nodes, 118 edges and an average node
degree of 1.57 was produced. The STRING network was examined applying the Cytoscape
for hub genes screening (Figure 5B). The top 10 hub genes were calculated from the PPI
network using the degree algorithm plugin cytoHubba: CTNNB1, SPP1, COL1A2, COL3A1,
SMAD3, SRC, VCAN, PKLR, GART, MRPS5 (Table 1). Figure 5C shows the PPI connections
among the hub genes.

Table 1. Top 10 hub genes produced by protein–protein interaction network analysis.

Rank Name Score

1 CTNNB1 83
2 SPP1 66
3 COL1A2 50
3 COL3A1 50
5 SMAD3 39
6 SRC 25
7 VCAN 24
8 PKLR 17
9 GART 11
10 MRPS5 10

The differential expression of the 10 hub genes in the TCGA cohort were then compared
using GEPIA (Figure 6). Among these 10 hub genes, all but PKLR were up-regulated in
ICC, which was consistent with the different expression in the GSE32225 database. OS and
DFS related to these top hub genes from the TCGA clinical database were also analyzed by
GEPIA, respectively, to examine the prognostic value of these genes (Figures 7 and 8). No
gene demonstrated significant impact on OS or DFS relative to the expression levels. In
addition to exploration at the transcriptional level, the protein levels of the hub genes were
also searched in The Human Protein Atlas database to validate the relationship between
the protein product and ICC. SRC and MRPS5 had significantly higher expression in ICC
samples compared with normal cholangiocytes in liver (Figure 9).

3.5. Potential Drug Candidates of ICC-Related Gene Profile

The cMap database contains a wide range of small-molecule libraries, and their ex-
perimental effect is tested on various common cell lines, enabling the users to generate
a hypothetic compound list of research interest. According to the manual, the weighted
connectivity map score is an algorithm used to compute the potential gene expression
profile when each drug is treated on a specific cell line. In the query function, the user can
import a list of up- or down- regulated genes differentially expressed in each group (cancer
vs. normal, gene knockout vs. wildtype, etc.) under desired experiment design. A drug-cell
line combination that shares a highly similar gene expression profile with the input query
gives a high positive connectivity score, while a high negative score indicates a dissimilarity
or opposite effect. Thus, when it comes to DEGs in cancer, a high positive score of a drug
indicates its potential to induce the cell to have a cancer-like gene expression, while a high
negative score implicates a potential opposite therapeutic effect. In the cMap database, the
10 hub genes were input as an index of regulated genetic profile of ICC. Candidate drugs
with the top 27 highest negative scores by a cutoff raw score of 0.7 were screened (Table 2).
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genes generated by Cytohubba. Greater scores in degree algorithm and relevant location in the network are represented by darker colors.
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Figure 7. Kaplan–Meier curves of hub gene expression and overall survival for each of the top hub genes. Blue curve: low-expression group; red curve:
high-expression group.
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Figure 8. Kaplan–Meier curves of hub gene expression and disease-free survival for each of the top hub genes. Blue curve: low-expression group; red curve:
high-expression group.
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Figure 9. Immunohistochemistry of the MRPS5 and SRC genes in ICC and normal liver tissues.
(A) MRPS5 in normal liver (cholangiocyte staining: not detected; intensity: negative; quantity: none).
(B) MRPS5 in ICC (staining: low; intensity: weak; quantity: 75–25%; location: cytoplasmic and
membranous). (C) SRC in normal liver (cholangiocyte staining: not detected; intensity: negative;
quantity: none). (D) SRC in ICC (staining: medium; intensity: moderate; quantity > 75%; location:
cytoplasmic and membranous).

Table 2. Candidate drugs and their mechanism of action identified via connectivity mapping.

Drug Name Tested Cell
Line

Test
Dose

Test
Time Mechanism of Action

Raw
Connectivity

Score

Levonorgestrel A549 10 uM 24 h
Estrogen receptor agonist|Glucocorticoid
receptor antagonist|Progesterone receptor
agonist|Progesterone receptor antagonist

−0.79

Nicotinamide HEPG2 10 uM 6 h Protein synthesis stimulant −0.75

Palmitoylethanolamide A549 0.04 uM 24 h Cannabinoid receptor agonist −0.74

Arachidonamide HCC515 10 uM 6 h Cannabinoid receptor agonist −0.74

Moxifloxacin PC3 1.11 uM 24 h Bacterial DNA inhibitor −0.74

Anisodamine HELA 10 uM 24 h Lipid peroxidase inhibitor −0.74
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Table 2. Cont.

Drug Name Tested Cell
Line

Test
Dose

Test
Time Mechanism of Action

Raw
Connectivity

Score

Dasatinib SHSY5Y 0.04 uM 24 h
KIT inhibitor|Bcr-Abl inhibitor|Ephrin

inhibitor|PDGFR inhibitor|Src
inhibitor|Tyrosine kinase inhibitor

−0.73

NVP-BHG712 CD34 10 uM 24 h Ephrin inhibitor −0.73

Pyrimethamine HT29 10 uM 24 h Dihydrofolate reductase inhibitor −0.73

CO-101244 VCAP 10 uM 6 h Ionotropic glutamate receptor antagonist −0.72

MK-2206 HME1 20 uM 24 h AKT inhibitor −0.71

Phenamil HA1E 10 uM 24 h TRPV antagonist −0.71

Tivantinib A549 10 uM 24 h Tyrosine kinase inhibitor −0.71

Amoxicillin HCC515 10 uM 6 h Penicillin binding protein inhibitor −0.71

MDL-28170 HCC515 10 uM 6 h Calpain inhibitor −0.71

Pyrimethamine MCF7 10 uM 24 h Dihydrofolate reductase inhibitor −0.71

Salvinorin-A HT29 0.25 uM 24 h Opioid receptor agonist −0.71

Varenicline NPC 0.74 uM 24 h Acetylcholine receptor agonist −0.71

FR-180204 A549 10 uM 24 h MAP kinase inhibitor −0.71

Flunisolide A549 10 uM 24 h Cytochrome P450 inhibitor −0.71

PNU-22394 HT29 10 uM 6 h Serotonin receptor agonist −0.7

Tianeptine A375 10 uM 6 h Selective serotonin reuptake inhibitor (SSRI) −0.7

Dazoxiben MDAMB231 2.22 uM 24 h Thromboxane synthase inhibitor −0.7

CDC MCF7 10 uM 6 h Lipoxygenase inhibitor −0.7

BRL-37344 NPC 10 uM 24 h Adrenergic receptor agonist −0.7

Ursolic-acid A375 70 uM 24 h

11-beta-HSD1 inhibitor|Acetylcholinesterase
inhibitor|ATPase inhibitor|Caspase

inhibitor|HIV protease inhibitor|Lipid
peroxidase inhibitor|NFKB inhibitor|Quorum

sensing signaling modulator|STAT
inhibitor|Steryl sulfatase inhibitor|Tyrosine

phosphatase inhibitor

−0.7

Meglitinide YAPC 0.08 uM 24 h Potassium channel antagonist −0.7

4. Discussion

ICC is a highly lethal malignancy that has an increasing incidence [34–36]. Advances
in surgical management, locoregional therapy, as well as the development of some targeted
therapies have improved the treatment of patients with ICC. For example, for the subset
of patients with localized disease, surgical resection may be a curative-intent treatment
option [37,38]. Unfortunately, most patients present with advanced disease at the time
of diagnosis [39], and patients who undergo resection frequently experience early recur-
rence [16]. As such, improving outcomes for patients with ICC will require advances in
systemic therapy. To date, several targeted therapies have been approved for the treatment
of advanced ICC. In particular, targeted therapy has been approved for the roughly 15–20%
of patients with FGFR2 fusions/rearrangements/deletions, as well as a smaller subset of
patients with IDH1 mutations or dMMR [39–41]. Unfortunately, only a small minority
of patients with ICC have these specific targetable genetic perturbations and are eligible
for these therapies. As such, there is an ongoing need to identify pathogenic mechanisms
involved in ICC tumorigenesis to inform future novel systemic treatment options.
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The rapid advance of sequencing technology has allowed a deeper analysis and
understanding of the molecular mechanism of ICC, thus promoting progress in the research
on molecular diagnosis and targeted therapy. To that end, in the current study, we used a
bioinformatics gene mapping technique to identify deleterious genes specific to ICC. In
addition, we then screened drug candidates to identify potential pathways that warrant
further investigation of therapeutic effect in ICC. Specifically, differentially expressed
genes between ICC samples and normal biliary epithelial cells in GSE32225 and TCGA-
CHOL datasets were identified; these data were then used to construct a weighted co-
expression gene network by WGCNA. The function annotation and enrichment analysis
of the GSE-DEG were examined. Overlapping genes among the three blocks were picked
as key genes to establish a PPI network. A total of 10 hub genes were calculated from
the network and their association with OS and DFS of ICC patients was examined. In
addition, the gene–clinical trait connections were also validated in protein level by the IHC
staining of ICC and normal cholangiocytes in HPA. Hub genes were then selected based
on interacting perturbagens to generate a list of drug candidates. Of note, three of the top
scored drug candidates were tyrosine kinase inhibitors (dasatinib, NVP-BHG712, tivantinib)
and two were cannabinoid receptor agonists (palmitoylethanolamide, arachidonamide).
Other drug candidates included two antibiotics (moxifloxacin, amoxicillin), one estrogen
receptor agonist (levonorgestrel), and one serine/threonine protein kinase inhibitor (MK-
2206). The other two were related to cellular biochemical regulation processes, involving
one lipid peroxidase inhibitor (anisodamine) and one dihydrofolate reductase inhibitor
(pyrimethamine).

The tyrosine kinase family is a large multigene subtype with particular relevance to
multiple human diseases, especially cancer. Dasatinib is a multikinase inhibitor, which has
been demonstrated to have a favorable therapeutic effect in many malignant diseases [42].
In fact, dasatinib has been reported to have hypersensitivity in ICC with isocitrate dehydro-
genase (IDH1/IDH2) mutations [43]. This study identified SRC as a critical dasatinib target
in IDH mutant ICC. Collectively, data from the current study, as well as early clinical infor-
mation from previous reports, suggest that additional dasatinib may be a promising agent
in the treatment of ICC [43]. In separated studies, tivantinib, an antiproliferative agent, has
been proposed as second-line therapy for hepatocellular carcinoma following disease pro-
gression after sorafenib treatment based on receptor overexpression analyses [44]. In fact,
data from phase I and II trials have noted promising results [45,46]. In a phase II random-
ized placebo-controlled trial (NCT00988741), patients treated with tivantinib not only had
an increased median OS (7.2 vs. 3.8 months) and RFS (2.2 vs. 1.4 months) versus placebo,
but also had an increased median time to progression (TTP) (2.7 vs. 1.4 months) [46]. How-
ever, in a phase III study, tivantinib did not lead to improved overall survival [47]. Given
the findings of the current study, as well as preliminary HCC data, the clinical application
of tivantinib for ICC warrants additional studies to determine its therapeutic effect relative
to different targeted biomarkers.

Cannabinoids (CB) have demonstrated the effect to reduce tumor-associated symp-
toms such as neuropathic pain [48]. Some reports have explored the role of CBs in tumor
proliferation and progression, suggesting that CBs interact with CB-Rs, thereby inducing an
anti-cancer effect [49]. Endocannabinoids work via particular G-protein-coupled receptors
(GPRs), CB-Rs (CB1-R and CB2-R), in which CB2-R has an established role in carcinogenesis
and cancer progression [50]. In fact, CBs have been proposed as novel anti-tumor targets
in patients with non-small cell lung cancer (NSCLC) and breast cancer [50,51]. While
the mechanism remains poorly defined, palmitoylethanolamide (PEA) is an endogenous
fatty acid amide related to CB-Rs that facilitates an anti-inflammatory effect [52]. In fact,
ultra-micronized PEA (um-PEA) has been shown to inhibit tumor cell proliferation and
tumor cell migration both in vitro and in vivo [52]. As such, further investigation of CB-R
agonists and their therapeutic anti-proliferative effect relative to ICC may be a potential
area to explore.
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Estrogen receptors (ERs) are widely expressed in many cell types involved in both
innate and adaptive immune responses. ERs are composed of two subtypes: ERα and
ERβ. Both receptors interact similarly with endogenous estrogens and play a role in the
development and progression of multiple malignant diseases, including breast, prostate,
endometrial, ovarian, colorectal and lung cancers [53,54]. Levonorgestrel is usually ad-
ministered by an intrauterine device that releases consistent localized progestin for the
treatment of endometrial cancer [55]. Many studies have shown that ERs are generally
expressed in cholangiocytes and demonstrate up-regulation during cell proliferation [56].
The fact that female sex has been previously reported as risk factor for ICC is consistent
with the role of estrogen in ICC pathogenesis [57,58]. As such, the targeting of ER pathways
may mitigate ICC oncogenesis and future studies will be necessary to examine further the
inner connection between ERs and ICC progression.

Our study yielded a new hypothesis that some drug families including tyrosine ki-
nase inhibitor, cannabinoid receptor inhibitor and estrogen receptor inhibitor, may be
investigated as candidate drugs for ICC treatment. Due to the heterogeneity and com-
plexity of ICC as well as many other tumors, lack of response to targeted therapies, and
frequent existence of drug resistance, the need for novel drug candidate has been largely
increased [59]. Ideally, both computational methods and experimental methods should
be applied to screen potential drugs. In our study, WCGNA and drug-drug interactions
derived computational methods were utilized to help study molecular signature differences
between tumor and normal tissue, as well as different classes of drugs in the context of
ICC targeted therapy. The approaches we applied in our study can serve as more rapid
and effective means for screening and identifying candidate drug combinations for ICC.
To achieve better data quality, a series of bioinformatic and statistical methods have been
applied in sequencing data interpretation and connectivity map to overcome data noise in
biological networks and literature mining results [7,59].

Interpretation of data from the current study should be interpreted in light of several
limitations. While data from the current study are important to focus screening and identifi-
cation of candidate drug combinations to treat ICC, development of any new drug therapies
requires further experimental validation and preclinical tests before it can be applied to a
clinical scenario. While both computational methods and experimental methods ultimately
need to be applied to screen potential drugs, the current study provides the framework for
future experiments. In particular, computational screening allows for the identification of
potential therapies and better direction/application of future experiments in an informative
and cost-saving way. For example, WCGNA and drug-drug interactions derived from
computational methods can direct future studies aimed at molecular signature differences
between different classes of drugs in specific disease contexts.

5. Conclusions

In conclusion, using an integrated approach with DEGs of ICC from the GEO and
TCGA databases, together with clinical trait-associated gene modules, a key hub gene
network was generated to evaluate protein-level expression in ICC versus normal tissue
samples. Analyzing the hub genes, the drug candidate list of small molecules was created,
and these could possibly be used as classes of novel pharmacologic agents for future studies
to identify and develop innovative drugs for ICC treatment.
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