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Abstract

Pseudaminobacter manganicus JH-7T (= KCTC 52258T = CCTCC AB 2016107T) is a Gram-staining-negative, aerobic
and non-motile strain that was isolated from a manganese mine. The strain JH-7T shows multiple heavy
metal resistance and can effectively remove Mn2+ and Cd2+. In addition, it is able to produce exopolysaccharides (EPS),
which may contribute to metal remove/adsorption. Thus, strain JH-7T shows a great potential in bioremediation
of heavy metal-contaminated environment. In this study, we report the draft genomic sequence of P. manganicus
JH-7T and compare it to related genomes. Strain JH-7T has a 4,842,937 bp genome size with a G + C content of
61.2%, containing 4504 protein-coding genes and 71 RNA genes. A large number of putative genes associated
with heavy metal resistance and EPS synthesis are found in the genome.
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Introduction
Genus Pseudaminobacter was established by Kämpfer
et al. in 1999 and contains three species represented
by Pseudaminobacter salicylatoxidans BN12T (type
species) [1], Pseudaminobacter defluvii THI 051T [1]
and Pseudaminobacter manganicus JH-7T [2]. The
common characteristics of Pseudaminobacter strains
are Gram-staining-negative, rod-shaped and aerobic
[1, 2]. P. salicylatoxidans BN12T contains a peculiar
ring-fission dioxygenase with the ability to cleave sali-
cylate in 1, 2-position to 2-oxohepta-3, 5-dienedioic
acid [3].
P. manganicus JH-7T was isolated from a sludge

sample of a wastewater ditch in Dalong manganese
mine in 2015 [2]. It shows multiple heavy metal re-
sistance and can effectively remove Mn2+ and Cd2+.
In addition, the strain produces EPS, which may fa-
cilitate heavy metal resistance and adsorption [4–6].
These features show great interests because of its
potential applications in bioremediation of heavy
metal contaminated environments. So far, only the

genome of an atypical Pseudaminobacter strain Pseu-
daminobacter salicylatoxidans KCT001 has been se-
quenced [7]. Strain KCT001 can utilize tetrathionate
as the substrate for sulfur-oxidizing chemolitho-
trophic growth [8]. For better understanding the
mechanism of bacterial resistance and removal of
heavy metals, here we analyze the genome of P.
manganicus JH-7T.

Organism information
Classification and features
The phylogenetic relationship of P. manganicus
JH-7T to the related members is shown in a 16S
rRNA gene based neighbor-joining tree. Strain JH-7T

is closely related to P. salicylatoxidans BN12T, P.
defluvii THI 051T and P. salicylatoxidans KCT001
(Fig. 1). Strain JH-7T is Gram-staining-negative, aer-
obic, non-motile and rod-shaped (0.3–0.8 × 1–2 μm)
(Fig. 2). The colonies are white, circular, entire,
slightly raised and smooth on LB agar plates. It is
positive for oxidase and catalase activities and hy-
drolysis of casein [2]. The major fatty acids are C18:1

ω7c, C19:0 cyclo ω8c and C16:0 and the G + C content
is 61.2 mol% [2]. The major polyamine is
sym-homospermidine and the respiratory quinone is
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ubiquinone-10. The polar lipids are phosphatidylmo-
nomethylethanolamine, diphosphatidylglycerol, phos-
phatidylglycerol, phosphatidylcholine, two aminolipids
and two lipids [2]. Table 1 shows the general features
of P. manganicus JH-7T.
The resistant levels of P. manganicus JH-7T to mul-

tiple metal(loid)s were tested with the MIC on LB agar

plates incubated at 28 °C for 7 days. The MICs for
MnCl2, CdCl2, PbCl2, CuCl2, ZnSO4 and NiSO4 are100,
2, 10, 5, 5 and 5 mmol/L respectively. The MICs for
K2CrO4 and Na3AsO3 are both 0.1 mmol/L that are
lower than the above six metals. Specifically, strain
JH-7T could remove nearly 60% of 5 mmol/L Mn2+ and
nearly 80% of 0.1 mmol/L Cd2+ (Fig. 3), respectively. In
addition, strain JH-7T could produce EPS based on the
aniline blue reaction incubated on LB agar in 3–7 days
[9] (data not shown). This phenomenon is consistent
with the cell image observed by TEM (Fig. 2). A lay of
shadow around the strain was similar to the EPS ob-
served in strain Bifidobacterium longum 35,624 [10].

Genome sequencing information
Genome project history
This organism was selected for sequencing particularly
due to its multiple heavy metals resistance and heavy
metal removal ability. Genome sequencing was per-
formed by Wuhan Bio-Broad Co., Ltd., Wuhan, China in
2016. The draft genome sequence of strain P. mangani-
cus JH-7T has been deposited at DDBJ/EMBL/GenBank
under accession number MDET00000000. The project
information is summarized in Table 2.

Growth conditions and genomic DNA preparation
P. manganicus JH-7T was grown under aerobic condi-
tions in LB medium at 28 °C for 40 h. DNA extraction

Fig. 1 Phylogenetic tree highlighting the phylogenetic position of Pseudaminobacter manganicus JH-7T. The phylogenetic tree was
constructed based on the 16S rRNA gene sequences. The analysis was inferred by MEGA 6.0 [41] with neighbor-joining algorithm and
1000 bootstrap repetitions were computed to estimate the reliability of the tree. Bar, 0.005 substitutions per nucleotide position

Fig. 2 Transmission electron micrograph image of strain JH-7T.
Bar, 0.5 μm
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Fig. 3 Mn2+ and Cd2+ removed by P. manganicus JH-7T. Control stands for null LB medium. Strain JH-7T was incubated until OD600 reach 1.0, and
then amended with 5000 μmol/L MnCl2 (a) and 100 μmol/L CdCl2 (b), respectively. The cultures were removed at 24 h intervals. After centrifuging at
12,000 rpm for 10 min, the supernatant was used to determine the residual concentration of Mn2+ and Cd2+ by the atomic absorption
spectrometry AAS (AAS; 986A, Beijing Puxi General Instrument 197 Co., Beijing, China). Bars represent the mean ± SD of three biological replicates

Table 1 Classification and general features of P. manganicus JH-7T [42]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [43]

Phylum Proteobacteria TAS [44, 45]

Class Alphaproteobacteria TAS [46]

Order Rhizobiales TAS [46, 47]

Family Phyllobacteriaceae TAS [46, 47]

Genus Pseudaminobacter TAS [1, 2]

Species manganicus TAS [2]

Type strain JH-7T (= KCTC 52258T = CCTCC AB 2016107T) TAS [2]

Gram stain negative TAS [2]

Cell shape rod-shaped TAS [2]

Motility no TAS [2]

Sporulation no TAS [2]

Temperature range 15–40 °C TAS [2]

Optimum temperature 28 °C TAS [2]

pH range; Optimum 5–9; 7 TAS [2]

Carbon source D-glucose, L-arabinose, D-fructose and D-mannose TAS [2]

MIGS-6 Habitat Mine sludge TAS [2]

MIGS-6.3 Salinity 0–6% NaCl (w/v) TAS [2]

MIGS-22 Oxygen requirement aerobic TAS [2]

MIGS-15 Biotic relationship free-living TAS [2]

MIGS-14 Pathogenicity non-pathogen NAS

MIGS-4 Geographic location Tongren city, Guizhou province, P. R. China TAS [2]

MIGS-5 Sample collection 2015 TAS [2]

MIGS-4.1 Latitude N27° 43′ 8" TAS [2]

MIGS-4.2 Longitude E108° 31′ 42" TAS [2]

MIGS-4.4 Altitude not reported

These evidence codes are from the Gene Ontology project [48]
IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly
observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence)
aEvidence codes
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was performed using the QiAamp kit (Qiagen, Germany)
as the manufacturer’s instructions. A NanoDrop Spec-
trophotometer 2000 was used to determine the quality
and quantity of the DNA. Seven microgram of DNA was
sent to Bio-broad Technogoly Co., Ltd., Wuhan, China
for sequencing.

Genome sequencing and assembly
The genome of strain JH-7T was sequenced on Illumina
Hiseq2000 [11] and assembled by Bio-broad Technogoly
Co., Ltd., Wuhan using SOAPdenovo v2.04 [12]. An Illu-
mina standard shotgun library was constructed and se-
quenced, which generated 19,404,755 reads totaling
2,885,684,230 bp and average of 625 times genome
coverage. The total size of the genome is 4,842,937 bp
and a total of 60 scaffolds were obtained after arranging
68 contigs together. The part gaps of assembly were
filled and the error bases were revised using GapCloser
v1.12 [13].

Genome annotation
The draft genome was annotated through the NCBI Pro-
karyotic Genome Annotation Pipeline (PGAP), and

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality High-quality draft

MIGS-28 Libraries used Illumina Paired-End library (300 bp in-
sert size)

MIGS-29 Sequencing
platforms

Illumina Miseq 2000

MIGS-
31.2

Fold coverage 624.94×

MIGS-30 Assemblers SOAPdenovo v2.04

MIGS-32 Gene calling method GeneMarkS+

Locus TAG BFN67

Genbank ID MDET00000000

Genbank Date of
Release

31, March, 2017

GOLD ID Gp0291525

Bioproject PRJNA338732

MIGS-13 Source material
identifier

CCTCC AB 2016107T

Project relevance Bioremediation

Table 3 Genome statistics

Attribute Value % of totala

Genome size (bp) 4,842,937 100

DNA coding (bp) 4,238,496 87.5

DNA G + C (bp) 2,963,726 61.2

DNA scaffolds 60 100

Total genesb 4685 100

Protein-coding genes 4504 96.2

RNA genes 71 1.7

Pseudo genes 110 2.3

Genes in internal clusters 1725 38.3

Genes with function prediction 3228 68.9

Genes assigned to COGs 3729 79.6

Genes with Pfam domains 3926 83.8

Genes with signal peptides 392 8.4

Genes with transmembrane helices 1119 23.9

CRISPR repeats 5
aThe total is based on either the size of the genome in base pairs or the total
number of protein coding genes in the annotated genome
bAlso includes 110 pseudogenes, 54 tRNA genes, 12 rRNAs and 5 ncRNA

Table 4 Number of genes associated with the 25 general COG
functional categories

Code Value % of
totala

Description

J 181 4.02 Translation

A 0 0.00 RNA processing and modification

K 299 6.64 Transcription

L 233 5.17 Replication, recombination and repair

B 3 0.07 Chromatin structure and dynamics

D 39 0.87 Cell cycle control, mitosis and meiosis

Y 0 0.00 Nuclear structure

V 46 1.02 Defense mechanisms

T 134 2.98 Signal transduction mechanisms

M 217 4.82 Cell wall/membrane biogenesis

N 35 0.78 Cell motility

Z 0 0.00 Cytoskeleton

W 0 0.00 Extracellular structures

U 106 2.35 Intracellular trafficking and secretion

O 156 3.46 Posttranslational modification, protein turnover,
chaperones

C 240 5.33 Energy production and conversion

G 312 6.93 Carbohydrate transport and metabolism

E 482 10.70 Amino acid transport and metabolism

F 87 1.93 Nucleotide transport and metabolism

H 158 3.51 Coenzyme transport and metabolism

I 153 3.40 Lipid transport and metabolism

P 209 4.64 Inorganic ion transport and metabolism

Q 91 2.02 Secondary metabolites biosynthesis, transport
and catabolism

R 453 10.06 General function prediction only

S 444 9.86 Function unknown

– 775 17.21 Not in COGs
aThe total is based on the total number of protein coding genes in the
annotated genome
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genes were identified using the gene caller GeneMarkS+

with the similarity-based gene detection approach [14].
The predicted CDSs were translated and were submitted
to the Pfam protein family database [15] and KEGG
database [16]. The genes in internal clusters were per-
formed by OrthoMCL [17, 18]. The protein function
classification, transmembrane helices and signal peptides
were predicted by WebMGA [19], TMHMM v. 2.0 [20]
and SignalP 4.1 [21], respectively. In addition, the
CRISPRfinder program [22] was used to predict
CRISPRs in the genome.

Genome properties
The draft genome size of strain JH-7T is 4,842,937 bp
with 61.2 mol% G + C content and contains 60 scaffolds.
The genome properties and statistics are shown in
Table 3. From a total of 4685 genes, 4504 (96.2%) are
protein coding genes, 110 (2.3%) are pseudo genes and
the rest are 71 predicted RNA genes, including 54 tRNA,
12 rRNAs and 5 ncRNA. In addition, 3729 (82.8%) pro-
tein coding genes are distributed into COG functional
categories (Table 4).

Insights from the genome sequence
Strain JH-7T could tolerant multiple heavy metals (Mn2+,
Cd2+, Pb

2+, Cu2+, Zn2+ and Ni2+) and remove Mn2+ and
Cd2+, suggesting that it has developed a number of evo-
lutionary strategies to adapt the mine environment. Ac-
cording to the genome annotation results, strain JH-7T

harbors various putative proteins related to heavy met-
al(loid)s resistance including transporters, resistance
proteins and metal reductases (Additional file 1: Table
S1). MntH [23] and metal ABC transport system [24]
are involved in cation uptake. Heavy metal-transporting
ATPase is responsible for the efflux of Pb2+, Zn2+, Cd2+

and Ni2+ [25–28]. The genome contains Cu2+ efflux sys-
tem CopABC [29], mercuric reductase MerA and regula-
tor MerR [30]. Athough the MICs for Cr6+ and As3+ are
not high, the Cr6+ efflux protein ChrA [27, 31] and As3+

resistant proteins (ArsRHC and ACR3) [32–34] are
present.
EPS are long-chain polysaccharides consisting of

branched, repeating units of sugars or sugar derivatives
[35]. Stain JH-7T could produce EPS and all essential
proteins for EPS production are found in the genome.

Fig. 4 Putative nucleotide sugars biosynthesis pathway and EPS synthesis gens in P. manganicus JH-7T. a The predicted nucleotide sugars
biosynthesis pathway. The numbers refer to the enzymes involved: 1, Glucokinase; 2, α-D-glucose phosphate-specific phosphoglucomutase; 3,
UTP--glucose-1-phosphate uridylyltransferase; 4, UDP-glucose 4-epimerase GalE; 5, Glucose-6-phosphate isomerase; 6, Fructokinase; 7, Glutamine--
fructose-6-phosphate aminotransferase; 8, Phosphoglucosamine mutase; 9, UDP-N-acetylglucosamine; 10, Glucose-6-phosphate isomerase; 11,
Mannose-6-phosphate isomerase; 12, PTS-Man-EIIA, ManX; 13, Phosphoglucomutase; 14, Mannose-1-phosphate guanylyltransferase. b The EPS
synthesis gene cluster in strain JH-7T
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Four complete nucleotide sugar synthesis (EPS precur-
sor) pathways are identified based on KEGG analysis
(Additional file 1: Table S2) including the syntheses of
UDP-glucose, UDP-galactose, UDP-GlcNAc and
GDP-D-mannose (Fig. 4a). EPS assembly gene clusters
were also found in the genome of strain JH-7T [36]
(Additional file 1: Table S3, Fig. 4b). Based on gene ana-
lysis, it is suggested that the EPS assembly in strain
JH-7T might belong to Wzx/Wzy-dependent pathway
[37], e.g., repeat units are assembled by glycosyltransfer-
ases (EpsI) and translocated across the cytoplasmic
membrane to periplasm by flippase (Wzx) [37] and
WbaP [38]. Next, Wzy (RfaL), polysaccharide
co-polymerase (GumC) and the outer membrane poly-
saccharide exporter (GumB) transports the polymerized
repeat units to cell surface [37, 39]. EPS has been re-
ported to contribute to heavy metal removal/adsorption
in bacteria [3–6]. Hence, the ability of EPS may contrib-
ute to Mn2+ and Cd2+ removal.
To gain more insight, the genomic features of strain

JH-7T is compared with the available genome P. salicyla-
toxidans KCT001 [7]. Strain JH-7T has similar genome

size (4.84 Mbp) and G + C content (61.2 mol%) com-
pared to strain KCT001 (4.61 Mbp; 62.8 mol%). A total
of 2408 core proteins are shared between the two
strains. Strain JH-7T has 1724 strain-specific CDSs.
Figure 5 shows the genome comparison results of strain
JH-7T and strain KCT001 using CGview comparison tool
[40]. Comparing to P. salicylatoxidans KCT001, strain
JH-7T was unable to utilize tetrathionate for chemo-
lithoautotrophy (data not shown). However, it harbors
high quantitative and diverse heavy metal resistance
genes.

Conclusions
To the best of our knowledge, this study provides the
first typical strain genomic information of the genus
Pseudaminobacter and revealed a consistency of import-
ant characters between genotypes and phenotypes. Strain
JH-7T is resistant to multiple heavy metals and capable
of removal Mn2+/Cd2+. Genome analysis reveal various
genes responsible for multiple heavy metal resistance,
which provides the genomic basis for this strain to adapt
the harmful environment.

Fig. 5 A graphical circular map of the comparison between strain P. manganicus JH-7T and P. salicylatoxidans KCT001. From outside to center,
rings 1, 4 show protein-coding genes colored by COG categories on forward/reverse strand; rings 2, 3 denote genes on forward/reverse strand;
rings 5 show the CDS vs CDS BLAST results of strain JH-7T with strain KCT001; ring 6 shows G + C % content plot and the innermost ring shows
GC skew
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Additional file

Additional file 1: Table S1. Putative heavy metal(loid)s resistance
proteins. Table S2. Putative nucleotide sugars biosynthesis proteins for EPS
production. Table S3. Putative proteins for EPS production. (XLSX 11 kb)
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