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Abstract

In order to record the stream of autobiographical information that defines our unique per-

sonal history, our brains must form durable memories from single brief exposures to the pat-

terned stimuli that impinge on them continuously throughout life. However, little is known

about the computational strategies or neural mechanisms that underlie the brain’s ability to

perform this type of "online" learning. Based on increasing evidence that dendrites act as

both signaling and learning units in the brain, we developed an analytical model that relates

online recognition memory capacity to roughly a dozen dendritic, network, pattern, and task-

related parameters. We used the model to determine what dendrite size maximizes storage

capacity under varying assumptions about pattern density and noise level. We show that

over a several-fold range of both of these parameters, and over multiple orders-of-magni-

tude of memory size, capacity is maximized when dendrites contain a few hundred synap-

ses—roughly the natural number found in memory-related areas of the brain. Thus, in

comparison to entire neurons, dendrites increase storage capacity by providing a larger

number of better-sized learning units. Our model provides the first normative theory that

explains how dendrites increase the brain’s capacity for online learning; predicts which com-

binations of parameter settings we should expect to find in the brain under normal operating

conditions; leads to novel interpretations of an array of existing experimental results; and

provides a tool for understanding which changes associated with neurological disorders,

aging, or stress are most likely to produce memory deficits—knowledge that could eventu-

ally help in the design of improved clinical treatments for memory loss.

Author summary

Humans can effortlessly recognize a pattern as familiar even after a single presentation

and a long delay, and our capacity to do so even with complex stimuli such as images has

been called "almost limitless". How is the information needed to support familiarity judge-

ments stored so rapidly and held so reliably for such a long time? Most theoretical work

aimed at understanding the brain’s one-shot learning mechanisms has been based on

drastically simplified neuron models which omit any representation of the most visually
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prominent features of neurons—their extensive dendritic arbors. Given recent evidence

that individual dendritic branches generate local spikes, and function as separately thre-

sholded learning/responding units inside neurons, we set out to capture mathematically

how the numerous parameters needed to describe a dendrite-based neural learning sys-

tem interact to determine the memory’s storage capacity. Using the model, we show that

having dendrite-sized learning units provides a large capacity boost compared to a mem-

ory based on simplified (dendriteless) neurons, attesting to the importance of dendrites

for optimal memory function. Our mathematical model may also prove useful in future

efforts to understand how disruptions to dendritic structure and function lead to reduced

memory capacity in aging and disease.

Introduction

To function well in a complex world, our brains must somehow stream our everyday experi-

ences into memory as they occur in real time. An “online” memory of this kind, once termed a

“Palimpsest” [1], must be capable of forming durable memory traces from a single brief expo-

sure to each incoming pattern, while preserving previously stored memories as long and faith-

fully as possible (Fig 1). This combined need for rapid imprinting and large capacity requires

that the memory system carefully manage both its learning and forgetting processes, but we cur-

rently know little about how these processes are implemented and coordinated in the brain.

A number of quantitative models have been proposed for palimpsest-style online memo-

ries, and have addressed a variety of different issues, including: how memory capacity scales

with network size, how metaplastic learning rules can increase memory capacity, and the

tradeoff between initial trace strength and memory lifetimes [1–8]. A few studies with a more

empirical focus have addressed the biological mechanisms underlying recency vs. familiarity

memory [9]; the coordination of online learning with long-term memory processes; and the

details of memory-related neuronal response properties during online learning tasks [10–12].

Nearly all previous models of online learning have assumed that the neurons involved in

memory storage are classical "point neurons”, that is, simple integrative units lacking any

representation of a cell’s dendritic tree. This simplification is notable, given the now substantial

evidence from both modeling and experimental studies that dendritic trees are powerful, func-

tionally compartmentalized information processors that can augment the computing capabili-

ties of individual neurons in numerous ways [7,13–59].

Beyond their contributions to the computing functions of neurons, it is also increasingly

apparent that dendrites help to organize and spatially compartmentalize synaptic plasticity

processes [7,40,60–86].

Thus, given that dendrites can act as both signaling and learning units within a neuron, it is

important to understand how having dendrites could affect the brain’s online learning and

memory processes. In this paper, we focus on the role that dendrites may play in familiarity-

based recognition, a function most closely associated with the perirhinal cortex [87,88].

Here, we introduce a mathematical model that allows us to calculate online storage capacity

from the underlying parameter values of a previously proposed dendrite-based memory circuit

[7]. The model includes biophysical parameters (dendritic learning and firing thresholds, net-

work recognition threshold), wiring-related parameters (number of axons, number of den-

drites, number of synapses per dendrite), and input pattern statistics (pattern density, noise

level) (see Table 1). As an example of the model’s use, we study the interactions between mem-

ory capacity, dendrite size, and pattern statistics, and cross-check the results using full network
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simulations. We found that dendrites containing a few hundred synapses (as opposed to a few

tens or a few thousand) maximize storage capacity, providing the first normative theory that

accounts for the actual sizes of dendrites found in online memory areas of the brain.

Fig 1. Online learning in a familiarity-based recognition memory. Novel patterns are streamed continuously into

the memory and "one-shot" learned. Memory responses to trained patterns are shown as a distribution in light blue;

distribution of responses to untrained (random) patterns is shown in light red. Recognition threshold separating the

two distributions is shown as a green dashed line, set to produce a 1% false positive error rate. As stored patterns

approach the end of their lifetimes, their traces decay and begin to merge with the untrained background distribution,

leading to an increase in the false negative error rate (i.e. "misses"). Capacity is operationally defined as the pattern age

at which the miss rate (averaged over all patterns up to that age) becomes unacceptably high (chosen to be 1% here).

https://doi.org/10.1371/journal.pcbi.1006892.g001

Table 1. List of parameter categories, and specific parameters, used in the analysis and simulations.

Parameter Categories (in order of increasing flexibility) Parameters

Task parameters (fixed across simulations) θ±
Network parameters (mostly fixed across simulations) NA, NS, fs, Dj
Signal parameters (explored across simulations) fA, Nburst, Pburst
Threshold parameters (optimized per simulation) θF, θLpost, θLpre, θR
Main parameters of interest (optimized per simulation) K,M
Learned parameters (altered during learning events) wij, αij

https://doi.org/10.1371/journal.pcbi.1006892.t001
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Results

We modeled the memory network depicted in Fig 2a, consisting of a set of axons that form

sparse random connections with the dendrites of a population of target neurons. An “infinite”

sequence of random binary patterns is presented by the axons to the dendrites, each one caus-

ing one-shot changes to certain synapses within the network, where the goal of the network is

to respond weakly to any pattern on its first presentation, and strongly for as long as possible

to patterns that have been previously experienced. We define capacity as the number of conse-

cutive training patterns stretching from “now” back into the past that can be classified as famil-

iar with a low false negative (i.e. “miss”) rate, while maintaining a low false-positive (i.e. “false

alarm”) rate to randomly drawn distractors (Fig 1).

The network

The network structure and plasticity rules have been previously described in [7], but are

repeated here for clarity. A population of neurons with a total ofM separately thresholded den-

drites receives inputs from NA input axons (Fig 2b). Each dendrite receives K synaptic contacts

randomly sampled from the NA axons, for a total number of synapses NS ¼ M � K. The con-

nectivity matrix is assumed to be fixed.

Input patterns are binary-valued vectors x = {x1,. . .,xNA} for which component xi is 1 if the

ith axon is “firing” and 0 otherwise. We quantify density/sparsity of the patterns by the fraction

of axons fA firing in each pattern; the value of fA ranged from 0.008 to 0.18 in this study, as we

found empirically in previous work that sparse patterns maximize capacity in this type of

memory [7]. To model a biologically realistic form of input variability, we assumed that each

active axon (xi ¼ 1) produces a burst of spikes, where the number of spikes in the burst is

drawn from a binomial distribution with mean mburst ¼ Nburst � Pburst ¼ 4 spikes/burst. Pburst
ranged from 1 (no noise) to 0.4 (high noise), with Nburst varying inversely. Inactive axons

(xi ¼ 0) were assumed to produce no spikes. We denote the noisy spike count version of an

input component ~xi e xi � BinomðNburst; PburstÞ.
Synapses are characterized by both a weight wij, where the subscript indicates a connection

between axon i and dendrite j, and an additional scalar parameter aij, representing the synap-

se’s “age”. The weight of each synapse is binary-valued, and can change between weak (w = 0)

and strong (w = 1) states when the dendrite containing the synapse undergoes a learning

event; the conditions that trigger a learning event are discussed below. The age variable at each

synapse tracks the number of learning events that have occurred in the parent dendrite since

the synapse last participated in learning.

Two different measures of a dendrite’s activation level determine how the dendrite responds

to an input, and whether it undergoes a learning event. The “presynaptic” activation measure is

based on the activity levels of the set of axons Dj that make contact with the jth dendrite

aðjÞpre ¼
X

i�Dj

~xi:

In words, aðjÞpre is the total number of presynaptic spikes arriving at all the synapses impinging on

the jth dendrite, regardless of their postsynaptic weights, and is thus a measure of the maximum

response the dendrite couldmuster to that input pattern assuming all of the activated synapses

were strong (w ¼ 1).
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Fig 2. Architecture of the memory circuit. (a) A set of input axons makes sparse random contacts with the dendrites of a set of post-synaptic

neurons. Only a subset of axons and neurons are shown. Patterns are stored by modifying synaptic weights, indicated by black circles. (b)

Abstraction of the memory network shown in (a). Neurons are assumed to linearly combine dendritic outputs, so that the overall network

response r is effectively a sum over all dendritic responses. The assumption of linear summation at the soma is included for simplicity, but is of

little practical importance: the probability that any given dendrite fires in response to a particular pattern is very low, so that a neuron almost

never contains more than a single firing dendrite (making the summation rule moot).

https://doi.org/10.1371/journal.pcbi.1006892.g002
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The more conventional “postsynaptic” activation level takes account of the synaptic weights

in the usual way:

aðjÞpost ¼
X

i�Dj

wij � ~xi:

When the postsynaptic activation level exceeds the “firing” threshold yF , the dendrite is said

to fire, that is, generates a response rj = 1. The responses of all dendrites within a neuron sum

linearly to produce the neuron’s response (Fig 2b), and the responses of all neurons in the net-

work sum linearly to produce the overall network response r. The overall response of the net-

work can therefore be written directly as a sum over all theM dendritic responses:

r ¼
X

j�½1;M�

rj

so that the network can be viewed as a single “super neuron” withM dendrites.

Finally, an input pattern is classified as “familiar” if r � yR, and “novel” if r < yR, where θR
is the recognition threshold (Fig 2b).

The synaptic learning rule

The goal of learning is to ensure that learned patterns going back as far as possible in time pro-

duce suprathreshold network responses ðr � yRÞ, while randomly drawn patterns do not.

Learning of any given pattern occurs in only the small fraction of dendrites that cross both the

presynaptic and postsynaptic learning thresholds (aðjÞpre > yLpre and aðjÞpost > yLpost). When this

occurs, a “learning event” is triggered in the dendrite, and all active synapses belonging to that

dendrite “learn”, as follows. If an active synapse is currently in the weak state, it is “potenti-

ated” (i.e. both strengthened and “juvenated”: wij ! 1; aij ! 0), or if it is already in the strong

state, then it remains strong but is juvenated (wij ¼ 1; aij ! 0). All strong synapses in the

dendrite that are not active during the learning event remain strong but grow older

(wij ¼ 1; aij ! aij þ 1Þ. Thus aij counts the number of learning events that have occurred in

the dendrite since the synapse last learned, and thus represents the age of the most recent

information that that synapse is involved in storing. Note that a synapse’s age variable counts

learning events within its parent dendrite only, and any given dendrite learns only rarely, so

the counter need have only a small number of distinct values, on the order of ~12 under the

simulation conditions explored in this paper. To maintain a constant fraction of strong synap-

ses (we used fs ¼ 0:5), and thereby to prevent saturation of the memory, in each dendrite

undergoing learning, a number of strong synapses are depressed (wij ! 0) equal to the num-

ber of weak synapses potentiated during that learning event. A key feature of the learning rule

is that the synapses targeted for depression are those that learned least recently (i.e. having the

largest values of aij), so that the information erased during depression is the “oldest” stored

information. This “age-ordered depression” strategy substantially increases online storage

capacity [5], especially in a 2-layer dendrite-based memory where the very sparse use of synap-

ses during pattern storage gives each strong synapse, and the information it represents, the

opportunity to grow old [7].

Calculating memory capacity

One of the key quantities involved in calculating storage capacity is L, the length of the age

queue within a dendrite (see Fig 3). An approximate expression for L is given here; the
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derivation can be found in the Methods.

L ¼
logð1 � fSÞ

log 1 �
yLpre
K�mburst

� � � 1

2

4

3

5 ð1Þ

L is a measure of the time a pattern feature persists in a dendrite, and given that age queues

progress at roughly equal rates in all the dendrites involved in storing a pattern, it also effec-

tively measures a pattern’s lifetime in memory–counted in units of dendritic learning events. L
can be understood intuitively through an oversimplified example: If 10 synapses are strength-

ened on a dendrite during a learning event, and there are 120 strong synapses on the dendrite,

then L would be ~12. That is, after ~12 learning events have elapsed since a pattern was first

stored, the 10 synapses involved in storing the pattern are now the oldest on the dendrite and

must be depressed, and the memory is lost. The actual expression for L is more complex as it

Fig 3. Synapse ages and the associated markov model. Conceptual bar graph at top shows steady state probabilities of

synapse ages within a typical dendrite; age is counted in learning events. Markov model shows the L age states of a

strong synapse and the one weak state, with transitions of four types as indicated in the legend. Transition probabilities

are shown on the arrows.

https://doi.org/10.1371/journal.pcbi.1006892.g003
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takes into account the fact that strong synapses do not inexorably progress to the ends of their

age queues–they can be rejuvenated one or more times during the course of their lifetimes, in

which case the same strong synapse participates in the representation of more than one

pattern.

To convert from L to a number of training patterns, we must multiply L by the approximate

number of patterns per dendritic learning event, or “learning interval” 1

PL
, where PL is the proba-

bility that an arbitrary dendrite learns a particular pattern. This gives an expression for capacity:

C �
L
PL
¼

1

PL

logð1 � fSÞ

log 1 �
yLpre
K�mburst

� � � 1

2

4

3

5 ð2Þ

Although PL is conceptually simple, its expression is complicated since it depends on pattern

density, noise level, two learning thresholds, dendrite size, and fS, and so it is omitted here for

clarity (see in the Methods section for the full expression and some discussion).

Calculating memory capacity

The expression for Cmeasures how long patterns persist in memory, but a different calcula-

tion is needed in order to predict the memory’s recognition performance, that is, the false posi-

tive and false negative error rates �þ and �� that we can expect to obtain during a pattern’s

lifetime. These error rates depend on the separation of the distributions of responses to trained

vs. untrained patterns (Fig 1). These two distributions can be computed from the network

parameters to determine whether the allowable error rate tolerances yþ and y� will be met dur-

ing the lifetime calculated in Eq 2 (see Methods).

Determining optimal dendrite size

How can the expression for online storage capacity (Eq 2) be exploited? Given that one of the

unique features of our model is that dendrites are the learning units, we used the model to

determine how capacity varies with dendrite size, which in turn allows us to determine the

optimal dendrite size. In particular, we asked: for a fixed total number of synapses in the mem-

ory network (NS ¼ M � K), if the goal is to maximize online storage capacity, is it better to

have many short dendrites (i.e. largeM, small K), a few long dendrites (smallM, large K), or

something in between? Furthermore, how does the optimal dendrite size vary with properties

of the input patterns, such as pattern density and input noise level? To address these questions,

we fixed network parameters Ns and fs and then for varying combinations of the pattern-

related parameters (fA; Nburst; PburstÞ, we computed C as a function of dendrite size K, using

values of the learning, firing, and recognition thresholds (yLpost; yLpre; yF; yR) optimized for

each value of K through a semi-automated grid search. The “optimal” dendrite size under a

particular set of input conditions was the value of K that maximized capacity, subject to the

constraint that immediately after training, responses to trained patterns were strong enough,

and responses to random patterns were weak enough, that both the false positive (�þ) and false

negative (�� ) error rates fell below specified tolerances (we used 1% for both). Note that though

K appears explicitly only once in Eq 2, as a result of the capacity optimization process, all of

the thresholds, and consequently yLpre and PL in Eq 2 depend implicitly on K. The net effect of

these dependencies is analyzed in detail in the sections below on penalties for long and short

dendrites.

Capacity is plotted in Fig 4a as a function of K for pattern density values ranging from 0.8%

to 18%. In the case with fA ¼ 1:5%, capacity peaked at ~30,000 patterns when dendrites each
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Fig 4. Capacity as a function of dendrite size. (a) Capacity curves are plotted for pattern densities ranging from 0.8% to 18%. Dendrite size is plotted

on a log scale. Peak capacities lie in the range of 100–500 synapses per dendrite. Sparser patterns lead to a preference for longer dendrites and produce

higher storage capacities (but not because sparse patterns contain less information–see main text and S1 Text). “Jagged” capacity curves for short

dendrites and/or low pattern densities are due to a combination of (1) small numbers of synapses active per dendrite, and (2) quantization of dendritic

learning and firing threshold to integer values, which may be optimal for some dendrite sizes but suboptimal for others. (b) Capacity curves for

increasing values of input burst noise. Distributions of spike counts per burst are shown as bar plots. Dashed magenta curve corresponds to the solid

magenta curve in (a); this curve represented a medium noise condition with Pburst ¼ 4=7; N ¼ 7. Noisier inputs reduce capacity, and lead to a

How Dendrites Affect Online Recognition Memory
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contained 256 synapses, and declined substantially for both short (K<100) and long

(K>1000) dendrites. As the pattern density increased (to 18%) or decreased (to 0.8%), peak

capacity varied nearly 5-fold, favoring sparser patterns, but over the more than 20-fold range

of pattern densities tested, peak capacity always occurred for dendrites ranging from 100–500

synapses (grey shaded area). Focusing on the high-capacity (sparse) end of the range with

fA < 3%, peak capacity was confined to the narrower range of 200–500 (i.e. “a few hundred”)

synapses. We also observed that sparser patterns led to a preference for longer dendrites, an

effect we unpack below using full network simulations. It is important to clarify that the higher

recognition capacity seen for sparser patterns does not result from the fact that sparser patterns

contain less information, thereby reducing storage costs per pattern (see S1 Text). We also

note that in the more realistic conditions modeled in the full network simulations (see below

and Fig 5), peak capacity saturates at slightly higher pattern activation densities (around 1.5%)

than is predicted by the analytical model, and the optimal pattern density may be higher still

under conditions of increased background noise (S1 Fig shows strong susceptibility to back-

ground noise even at 3% pattern density).

To test the effect of pattern noise on capacity, we varied the input noise level by choosing

combinations of Nburst and Pburst whose product was always mburst ¼ 4 spikes, but that yielded

narrow or broad spike count distributions for each active pattern component (Fig 4b, see his-

togram insets). In this way, we varied the degree to which a trained pattern resembled itself

upon repeated presentations. The variation in event counts arising from the above scheme

could be viewed as representing either variation in the number of action potentials arriving at

the presynaptic terminal from trial to trial, or variation in the number of synaptic release

events caused by a given number of action potentials, or a combination of both effects. As

expected, higher noise levels reduced peak capacity (Fig 4b), except in the long dendrite range

(K>1000) where central limit effects rendered dendrites insensitive to this type of noise. In

keeping with this effect, optimal dendrite size increased slightly as the noise level increased,

but again, peak capacity was consistently seen for dendrites in the “few hundred” synapse

range. Even higher levels of noise were not considered because a simple, biologically available

saturation strategy that maps multiple release events into a relatively constant post-synaptic

response can largely mitigate the effects of this type of noise. (We did not include a multi-

input saturation mechanism in our model to avoid the added complexity).

Optimal dendrite size depends little on network size

To verify that the preference for dendrites in the few hundred synapse range was not an artifact

of “small” network size, we generated capacity curves from Eq 2 for networks scaled up

256-fold from a base size of N = 5.12 million synapses to ~1.3 billion synapses. The results are

shown on a log plot in Fig 4c. As shown in Fig 4d, the scaling power for dendrite sizes K = 64,

256, and 1024 were, respectively, 0.98, 0.97, and 0.97, confirming earlier observations that stor-

age capacity in an optimized dendrite-based memory grows essentially linearly with network

size [7]. All the while, the preference for dendrites containing a few hundred synapses

remained essentially invariant.

preference for longer dendrites. (c) Capacity curves for increasing number of synapses. Capacity is plotted on a log scale. Magenta curves are vertically

shifted (therefore scaled) versions of the 1x curve, to show that the dependence of storage capacity on dendrite size remains stable over a wide range of

network scales. (d) Capacity scales nearly linearly for increasing network sizes, shown for three dendrite sizes (corresponding to vertical dashed lines in

c). Dashed diagonal shows slope of 1 (representing perfect linear scaling) for comparison.

https://doi.org/10.1371/journal.pcbi.1006892.g004
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Fig 5. Validating the analytical model with full network simulations. (a) Dots show trace strengths of individual

trained (blue) and untrained (red) patterns. The time at which the false-negative "miss" rate climbs to 1% (at a fixed 1%

false negative rate) is called the capacity (analogous to Fig 1). (b) Histogram of synapse ages within a dendrite. Red line

shows exponential decay. Synapses reach the end of the age queue at 10–12 learning events in this example. (c-d).

Capacity graphs comparable to those produced by the analytical model in Fig 4a and 4b. (e). Synapse usage and

dendrite usage during the storing of one pattern, as a function of dendrite size. Plots are linked by color to overlying

capacity plots. (f). Capacity for 3 levels of pattern “correlation”, quantified by redundancy factor r (solid lines). Peak
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Validating the analytical model with full network simulations

To cross-check the results of the analytical model, we simulated a full memory network, and

measured capacity empirically as a function of K. Unlike the analytical case, in which capacity

was assumed to be proportional to the calculated length of dendritic age queues, in the net-

work simulations we performed explicit old-new recognition memory tests, and optimized

system parameters to achieve false positive and false negative error rates of 1%. In the interests

of greater biological realism, we replaced the hard dendritic firing threshold and binary input-

output function with a continuous sigmoidal input-output function given by 1

1þe� s x� yFð Þ, and

optimized over the slope parameter s along with the 4 threshold parameters. In addition, we

relaxed the strict assumption of the analytical model that every input to the network was statis-

tically independent of every other, and instead arranged for each input axon to form r synaptic

contacts within the memory area, rather than just one. This “redundancy” factor, r, set by

default to 200, introduced some degree of correlation in the input patterns, and lowered peak

capacity somewhat, but had no effect on our main conclusions.

Fig 5a depicts one such simulation with 5.12 million synapses. In the top panel, blue dots

show responses to trained patterns, red dots show responses to randomly drawn (untrained)

patterns that establish the baseline trace strength (green dashed line) above which stored pat-

tern traces must rise to be recognized. Consistent with the analytical model, responses to

trained patterns remain essentially constant during an extended post-training period, in this

example spanning ~10,000 patterns. After the flat post-training phase, in contrast to the rela-

tively abrupt fall in trace strength envisioned by the analytical model, a more gradual decline is

seen, reflecting the variable times at which the synapses encoding each pattern reach the end

of their age queues in different dendrites. Note that the false negative error rate begins to climb

during this trace decay period, as the lower fringe of the trained response distribution (blue)

progressively merges with the untrained background distribution (red). In this simulation,

capacity was reached at ~21,000 patterns, which by our specification is the point where both

false positive and false negative error rates equaled 1%. Mirroring the approach taken with the

analytical model, multiple simulations were run with varying firing, learning, and recognition

thresholds to find the combination of parameters that maximized capacity for each value of K,

subject to the same error rate constraints as before. As an additional check of the analytical

model, we histogrammed synapse ages within a dendrite (for many dendrites) (Fig 5b), and

found that they conformed to a geometric distribution as predicted (red line shows a fitted

exponential decay), up to the “cliff” at the end of the age queue (blue dashed line).

Capacity was measured for dendrite sizes between 32 and 4,096 synapses, and the results

are shown in Fig 5c and 5d, which are the analogues of Fig 4a and 4b, respectively. When com-

pared to the curves produced by the analytical model, the capacity curves produced by full net-

work simulations had similarly placed capacity peaks and similar qualitative dependence on

pattern density and noise levels. In one minor difference, we noted that under the more realis-

tic conditions modeled in the full network simulations, peak capacity saturated at slightly

higher pattern activation densities (around 1.5%) than was predicted by the analytical model

(Fig 4a).

To determine whether the predictions regarding optimal dendrite size would survive under

even more challenging “real world” operating conditions, we added increasing amounts of

background noise (spurious spikes added to nominally inactive pattern components), on top

capacity was still found for dendrites in the range of “a few hundred synapses”. Avoiding duplication of synapses on

dendrites almost completely eliminated the deleterious effects of pattern correlations (dashed lines).

https://doi.org/10.1371/journal.pcbi.1006892.g005
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of the pre-existing burst noise and pattern correlations. As in the case of burst noise, the back-

ground noise level varied between 2 extremes: zero noise, which maximized capacity, and a

“high noise” level that reduced storage capacity by roughly a factor of 2 compared to the no-

noise case. As in the case of burst noise, we did not consider very high noise levels on the

grounds that the deleterious effects of background noise can be compensated by a relatively

simple mechanism, for which there is evidence: pre-synaptic terminals with low release proba-

bility for “singleton” spikes, along with paired pulse facilitation [89], would allow the effects of

sporadic background spikes to be suppressed while maintaining strong responses to signal-

carrying bursts. Even at background noise levels capable of causing a significant reduction in

peak capacity, the effect of background noise on optimal dendrite size was negligible (S1 Fig).

Only at very high levels of background noise, where capacity was reduced more than twofold,

did optimal dendrite size change significantly, moving outside of the of the “few hundred” syn-

apses per dendrite range (S1 Fig).

Next we examined the effect of increasing correlations in the input patterns. Given that a

single axon can in fact form many thousands of synaptic contacts, corresponding to a much

higher redundancy factor than we used in our base simulation, we ran simulations using

redundancy factors r ¼ 5; 000 and r ¼ 10; 000 (Fig 5f), which meant that groups of 5,000

or 10,000 synapses scattered across the memory were activated identically. Given previous

reports that input correlations can be very deleterious to capacity [10], we speculated that

these drastic reductions in the effective dimensionality of the input patterns would severely

challenge a memory architecture that was designed to perform optimally with random inputs,

or at least significantly alter its behavior. As shown in Fig 5f, however, even in the high-redun-

dancy case (with a 10,000-fold reduction in input space dimensionality), peak capacity

dropped by only a factor of ~2 compared to the case with r ¼ 200, with little to no change in

optimal dendrite size.

We next took advantage of the full network simulations to probe the mechanisms that lead

to the capacity costs associated with both short and long dendrites. Fig 5e shows two important

quantities: the average number of dendrites (mLD) and synapses (mLS) used to store a single pat-

tern in the simulations from Fig 5c. The significance of these quantities is discussed below as

we work through the distinct capacity penalties for long and short dendrites.

Penalty for long dendrites

As shown in Fig 5e, as dendrites grow longer, dendrite usage per stored pattern drops from a

value around 10 (at peak capacity) to a “floor” of roughly ~7 dendrites at the long-dendrite

end of the range, whereas synapse usage climbs steeply from a baseline of around 150 synapses.

To understand the source of the lower bound of ~7 on the average number of dendrites used

to store each pattern, it is useful to consider the situation that holds when, in the interests of

resource efficiency, we attempt to store each pattern with the minimum possible trace strength:

one dendrite. One dendrite firing in response to a familiar pattern is in principle sufficient for

recognition, if it is reliable (i.e. occurs > 99% of the time), and if the network’s response to

untrained patterns is reliably zero (i.e. > 99% of the time). In a large network, given that each

dendrite participates in learning with equal (small) probability, the distribution of the number

of dendrites that undergoes a learning event is approximately Poisson with mean

mLD ¼ PL �M. Given that a Poisson distribution is characterized fully by its mean, setting

mLD ¼ 1 by adjusting the learning thresholds, which control PL , means that one dendrite will

undergo a learning event for each presented pattern–on average–which is the goal. However,

with a mean of 1, the probability that zero dendrites learn is surprisingly high: ~37% (Fig 6a,

top plot). Thus, in aiming to use a single dendrite to encode a pattern on average, more than a
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third of all patterns presented to the network would produce no memory trace at all, leading to

a false negative error rate far above the 1% acceptable threshold. To avoid this pitfall, it is criti-

cal to reduce the probability to below 1% that zero dendrites learn, which according to the

Poisson distribution requires a mean mLD ¼ 5 dendrites. This requires a remarkable 5-fold

increase in PL relative to the theoretical minimum, with a corresponding 5x increase in syn-

apse resource consumption (Fig 6a, middle plot). Worse, given increased variability in the

number of learning dendrites as well as increased readout failures due to input noise and cor-

relations, storage capacity turns out to be maximized when an even higher value of PL is used,

achieved by further loosening the learning thresholds, which for our combination of system

parameters leads to the empirically obtained optimal value of mLD ¼ e7 dendrites at the long-

dendrite end of the range. Given this floor of ~7 dendrites, it becomes clear why synapse usage

increases as dendrites grow longer: the number of synapses used in a dendrite that undergoes

a learning event is roughly proportional to the dendrite length K, since the number of synapses

that learn is roughly proportional to the number of synapses activated in the dendrite, which is

proportional to dendrite size. Tied to this increase in synapse usage per pattern, as the total

number of dendritesM in the system decreases (because each one contains a larger fraction of

the synapses), the frequency with which each dendrite must participate in learning increases,

which speeds the per-pattern rate at which synapses move along their age queues. Thus, from a

capacity standpoint, it is ideal to choose system parameters such that the minimum encoding

bound of 7 dendrites is actually used (or whatever minimum number of dendrites is needed,

given the settings of the error rate thresholds and noise level), but having met this lower

bound, dendrites should be kept as short as possible.

Penalty for short dendrites

The reasons capacity declines as dendrites grow shorter are complex, and are discussed only

briefly here (see the S1 Text and S3 and S4 Figs for more details). We first consider why

Fig 6. Why a recognition memory of this type must learn in at least 5 dendrites on average to store each pattern. (a) Poisson distributions of actual

numbers of dendrites that learn for a range of average rates, assuming no spiking noise. Fraction of cases where no dendrites learn establishes the immediate

false-negative rate (again assuming no noise). The case with an average usage of 5 dendrites leads to an false negative (FN) rate of 1% immediately after

storage. Including input burst noise pushes the optimized dendrite usage slightly higher to ~7 dendrites for a 1% FN error rate (see main text and SI). (b) False

negative (FN) error rates as a function of average dendrite usage rate. Three stars represented cases from (a).

https://doi.org/10.1371/journal.pcbi.1006892.g006
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dendrite usage increases for short dendrites, rather than remaining at the minimal encoding

bound. Short dendrites are intrinsically more susceptible to variability in crossing their learn-

ing and firing thresholds, since fewer active synapses are involved. As dendrites become very

short, this requires the network to increase dendrite usage far above the nominal lower bound

of mLD ¼ 5. For example, under sparse activation (fA ¼ 1%), medium noise conditions

(Pburst ¼ 4

7
;Nburst ¼ 7Þ with dendrites containing ~200 synapses, when the system is opti-

mized for capacity, mLD � 15 (blue solid curve in Fig 5e), substantially more than the number

of dendrites used under maximum capacity conditions. While this increase in dendrite usage

is more than offset by the reduced dendrite size, which tends to reduce synapse usage, the total

number of synapses altered during learning in fact remains approximately constant, implying

that a larger fraction of synapses is modified within each short dendrite that engages in learn-

ing. This higher synapse burn rate in short dendrites leads to shorter age queues, and in the

end lowers capacity.

Discussion

The memory architecture we have studied is ordinary, in the sense that it consists of axons

making contacts directly onto the neurons whose firing represents the memory trace, but is

out-of-the-ordinary among online learning models in that it includes a layer of thresholded

dendritic units interposed between the input axons and the final common output of the

network.

The main contributions of this paper are (1) Eq 2, which captures the interactions between

key variables that influence storage capacity in a dendrite-based online recognition memory,

and (2) our showing that over a wide range of input pattern statistics and network sizes, mem-

ory capacity is maximized when dendrites contain a few hundred synapses, which corresponds

to the typical dendrite size found in medial temporal lobe memory areas [90]. To our knowl-

edge, ours is the first theory that accounts for dendrite size in terms of its role in optimizing

online learning capacity.

Beyond the uses we have shown here, our model could potentially be used (1) to help

explain why different combinations of parameter settings co-occur in different recognition

memory-related brain areas, for example in different animal species whose brains may be

larger or smaller, whose sensory codes may be sparser or denser, or whose error tolerances

may be tighter or looser; (2) to help distinguish brain areas involved in online familiarity-

based recognition memory, the task we study here, from areas such as the hippocampus that

(also) contribute to explicit recall [87,88]; and (3) to help identify which changes (e.g., spine

loss, dendrite retraction, hyperexcitability, etc.) that occur in neurological disorders, aging and

stress, are most directly responsible for producing memory deficits–knowledge that may even-

tually aid in the design of clinical interventions for those suffering from memory loss.

Why mid-sized dendrites are optimal for recognition memory

Why are dendrites of “medium” size optimal for storage capacity in the context of an online

familiarity-based recognition memory? The simplest explanation is that short dendrites suffer

from one set of disadvantages, and long dendrites suffer from another, leaving the optimal

dendrite size somewhere in the middle. Short dendrites have relatively noisier post-synaptic

response distributions because fewer synapses contribute to the response. As a result, a larger

fraction of the synapses on a short dendrite must be modified during learning to ensure that

the dendrite’s response to previously trained patterns remains comfortably at the upper tail of

the untrained pattern response distribution. Increasing the fraction of synapses used within a
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dendrite during each learning event shortens the dendrite’s age queue, which comes at a capac-

ity cost. This effect leads to a preference for longer dendrites.

But long dendrites also have their disadvantages. An online recognition memory should aim

to store the weakest possible trace of each learned pattern, which in our framework corresponds

to learning in a small number of dendrites near the "minimum encoding bound" (corresponding

to ~7 dendrites under the conditions used in our study; see Fig 5e). This means that the longer

the dendrites become, the more synaptic resources are consumed by each dendrite that learns,

since the number of synapses used per dendrite during a learning event is roughly proportional

to dendrite size. Clearly from this perspective, it’s best to keep dendrites as short as possible.

The compromise between the need to keep dendrites long enough to avoid noise and age

queue problems, and short enough to avoid excessive synapse use per learning dendrite, puts the

optimal size around a few hundred synapses for biologically reasonable values of pattern activa-

tion density and noise. Of course, our assumptions regarding "biologically reasonable" pattern

activation densities and noise levels are informed guesses rather than certain knowledge, and are

not likely to be universal constants across brain areas, species and operating conditions. It is

therefore possible that the natural dendrite sizes found in medial temporal lobe memory areas

are determined in part by factors other than capacity optimization according to Eq 2. For exam-

ple, developmental constraints, energy constraints, space constraints, and combinations thereof,

may have been responsible for pushing the actual dendrite size in one direction or another, away

from the optimal length as determined by capacity considerations alone. Nonetheless, it is useful

to capture basic relationships between biophysical parameters, wiring parameters, input pattern

statistics, and capacity, as a starting point for a more complete online memory model.

That mid-sized dendrites optimize capacity can be understood from another perspective.

Eq 2 shows capacity is given by the ratio of L, the length of a dendrite’s age queue, to PL, the

probability that a dendrite learns. PL, in the denominator, grows larger as dendrites grow in

size because the same average number of dendrites is always used to learn, but when dendrites

are long, there are fewer of them to choose from. L, in the numerator, grows smaller as den-

drites shrink in size because of the higher value of fpot needed to compensate for noise effects.

Balancing these two effects, capacity is maximized for dendrites of intermediate size, for which

L is not too small, and PL is not too large.

Thus, among the many roles that dendrites may play in the brain, in the context of an

online familiarity-based recognition memory, separately thresholded dendrites play the critical

role that they downsize the learning units from neuron-sized units (~20,000 synapses) to units

containing a few hundred synapses, which are much more numerous, while still containing

enough synapses to avoid the capacity costs associated with noise effects and shortened age

queues. Simply put, having separately thresholded dendrites provides the memory system with

more learning units of a better size. If dendrite-sized learning units were not available, so that

it was necessary to construct an online recognition memory from neuron-sized units, storage

capacity would be cut by an order of magnitude or more (see Fig 5c).

Response variability is bad, so response normalization mechanisms are

good

A general theme that emerges from our study is the importance of variability control for a recog-

nition memory. The goal of a neural-style online recognition memory is to store a trace of each

learned pattern that consumes as few synaptic resources as possible, but that nonetheless allows

the network to produce a reliable recognition response on future encounters with a stored pattern.

Variability in the magnitude of network responses to either learned or unlearned patterns, such as

that produced by burst noise, or low pattern density, complicates this goal in at least two ways.
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First, increased variability in the responses to unlearned patterns raises the level of background

noise, and thus the required minimum encoded signal strength that learned patterns must obtain.

This in turn increases the number of synapses that must be devoted to storing each new memory.

Second, increased variability in signal strength for learned patterns increases the rate of readout

failures (for fixed firing and recognition thresholds). This increase in false negative errors must

again be compensated for by increasing memory trace strength for all patterns, which wastefully

strengthens patterns whose traces were already well above the recognition threshold.

These effects imply that a brain system devoted to recognition memory is under intense

pressure to include response normalization mechanisms, presumably involving local inhibi-

tory circuits [91–99].

It is intriguing to note that if network behavior could be perfectly normalized, so that every

pattern is stored by learning in the exact same number of dendrites, e.g. 1 dendrite, then this

would represent a 7-fold resource savings, presumably leading to a corresponding boost in

capacity compared to the peak capacity conditions shown in Fig 5 (where an optimized high

capacity network chooses to learn using 7 dendrites).

Existing experimental results that are consistent with our model

Several of the mechanisms and processes in our dendrite-based learning scheme are consistent

with known biological mechanisms, including that:

1. Strong stimulation of dendrites can trigger local learning processes, independent of somatic

firing [61,65,66,68,74,78–80,86];

2. Under in vivo-like conditions, a local spike in a single dendrite can drive a burst of action

potentials at the soma [100];

3. Dendrites have dissociable learning and firing thresholds, ordered such that strong stimula-

tion of the dendrite can trigger LTP, while remaining below the local dendritic firing

threshold [86].

4. Individual synapses transition between two (strong and weak) stable states [68,101–105];

5. LTP and LTD occur hand in hand within the same dendritic compartment when a learning

event has been triggered (in keeping with the synaptic tagging/cross-tagging hypothesis

[68,80,106,107];

6. Synaptic depression can be triggered heterosynaptically when a nearby synapse undergoes

LTP, suggestive of a competitive, zero-sum mechanism within a dendritic locale [68,78];

7. LTP and LTD, rather than producing long term stable finely-graded weight changes, appear

to primarily (and oppositely) affect synapse survival time [105].

8. Memories encoded by LTP have designated lifetimes, at the end of which they are erased by

an active synaptic weakening process involving removal of GluA2/AMPARs [108–110].

Furthermore, blocking this depression process increases memory persistence (108).

A weak prediction: The compound learning threshold

The main speculative/predictive features of our model pertain to the specific conditions for

LTP and LTD. First, following [7] we assumed here that the triggering of a learning event in

a dendrite, which induces both LTP and LTD, depends on a compound threshold: in order

to learn, a dendrite must both (1) receive an unusually strong presynaptic input, that is,
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unusually many axons impinging on the dendrite must be firing and releasing glutamate;

and (2) experience an unusually strong post-synaptic response, that is, unusually many of

the firing axons must be driving synapses that are already in a strong state. Note that a tradi-

tional Hebbian learning rule would tie learning to the post-synaptic response alone

(
P
wixi), placing no explicit condition on the number of axons participating (

P
xi). The

pre-synaptic condition was incorporated into our model opportunistically, when we

observed that doing so doubled the memory’s storage capacity [7]. We call the existence of a

compound learning threshold a "prediction" of our model on the grounds that the brain

would have been under evolutionary pressure to discover any small functional modifica-

tions that significantly boost storage capacity, and so the brain might have “discovered” this

optimization–as we did. The prediction is weak, however, given that the memory can func-

tion in basically the same fashion with a single, conventional post-synaptic threshold, albeit

with reduced capacity.

A strong prediction: Synapses should have age counters

Unlike our weak prediction of a compound dendritic learning threshold, which could be

falsified without dire consequences for the model, the prediction that synapses involved in

an online familiarity memory should have a prescribed lifetime in the potentiated state,

after which they are actively depotentiated, is a more deeply rooted feature of our model.

This prediction is also a nearly inevitable consequence of the statement of the learning

problem itself: any online recognition memory whose memory retention is much shorter

than the animal’s lifetime will be "full" at all times, except for a transient period at the begin-

ning of the animal’s life when the memory is first filling up. Once it reaches its chronically

full state, each time a new pattern is written into the memory by strengthening synapses, as

a matter of homeostatic necessity the equivalent of one stored pattern must be erased by

weakening synapses, and in the interests of optimal performance, that one erased pattern

should be the oldest stored pattern. The alternative–partially degrading many patterns of

varying ages–is a poor strategy for a recognition memory, since any pattern whose signal

strength is prematurely degraded to the point where it falls below the recognition threshold

is functionally lost, yet its unerased detritus continues to uselessly consume space in the

memory. Furthermore, since it is most efficient from a resource allocation point of view to

store memory traces that are just strong enough to cross the recognition threshold, and no

stronger, the system cannot abide gradual attrition of pattern traces. Thus the problem

statement itself, and simple logic, dictate that a memory network in the brain devoted to

online familiarity/recognition memory should attempt to target the oldest information for

erasure as each new pattern is stored. It is difficult to imagine how selective erasure of old

information could occur unless synapses keep track of their ages, and unless a dendrite is

able to target its oldest synapses for depression as it undergoes each new learning event.

Age-based depression of synapses was previously explored as a strategy for increasing

online learning capacity in the context of a 1-layer Willshaw network [5]. It is only in the con-

text of a 2-layer memory, however, in which synaptic learning probabilities can be driven

down to extremely low values without compromising signal strength, that synapses are given

the opportunity to actually grow old [7].

Comparison to online learning models that rely on complex synapses

In the 2-layer dendrite-based memory scheme we have studied, storage capacity is increased

(~linearly) by increasing the number of dendrites, without altering the synapse model or the

plasticity rule. As an alternative, Stefano Fusi and colleagues have developed two elegant
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models of online learning that boost capacity instead by increasing the complexity of individ-

ual synapses [4,8]. Both models share the following basic framework: the memory consists of

N synapses abstracted away from any particular network architecture; by default, every syn-

apse is modified during the storage of every pattern; to store a pattern, synapses are strength-

ened and weakened in equal numbers; and all instructed weight changes during pattern

storage overwrite previously stored information. The goal of these models is to carefully man-

age the plasticity-stability tradeoff that exists when each synapse is asked to encode informa-

tion about many patterns that have been stored over time: synapses that are very plastic are

good at rapidly storing new information but poor at preserving old information, whereas syn-

apses that are very stable are good at preserving old information but poor at rapidly storing

new information (synopsis adapted from [8]).

In the "Cascade" model [4], synaptic weights are binary valued (strong and weak), but can

exist in states of varying lability/stability. The state diagram within each synapse operates

according to two main principles. First, repeated potentiation instructions push a strong syn-

apse into an increasingly stable strong state, that is, a state that shows an increasing resistance

to depression. Similarly, repeated depression instructions by the learning rule have the effect

of pushing a weak synapse into an ever more stable weak state, one that increasingly resists

potentiation. Second, at "deeper" levels of the cascade, corresponding to more stable strong

and weak states, the transitions to even deeper levels corresponding to even more stable states,

and the transitions in synaptic weight value from strong to weak or weak to strong, all become

increasingly improbable, so that synapses in deeper cascade states remain stable over longer

and longer time scales. The variation in these transition probabilities across cascade levels can

be considerable: according to [4] the optimal cascade model with 10^6 synapses has 15 cascade

levels. With this many levels, the most labile synapses at the top of the cascade change weight

with probability 1 (i.e. deterministically) in response to a weight change instruction, whereas

the most stable synapses deep in the cascade only change weight with probability 1/16,384 in

response to a weight-change instruction. Thus, a weak synapse in its most stable state would

need to receive ~10,000 potentiation instructions in a row in order to reach a 50% chance of

actually undergoing potentiation.

These two operating principles of the Cascade model are clearly distinguishable from those

governing synaptic plasticity in our model. First, in the Cascade model, all synaptic state tran-

sitions are probabilistic, whereas in the dendrite-based model, all synaptic state changes are

deterministic: during learning, weak synapses receiving the instruction to potentiate do so

fully and immediately, and during forgetting, strong synapses that reach the end of their life-

times are fully and immediately depressed. The logic of synapse durability is also different in

the Cascade vs. dendrite-based models. In the Cascade model, when a synapse is first potenti-

ated, it is in its most labile strong state, and therefore most vulnerable to depression. In the

dendrite-based model, a synapse that has just been potentiated is in its most durable state, in

the sense that it will withstand the largest number of consecutive learning events in which it

does not participate before it "ages out" and finally succumbs to synaptic depression.

In the Benna and Fusi model [8], the machinery contained within each synapse consists

(metaphorically) of a chain of connected fluid-filled beakers. The first beaker represents the

synapse’s (graded) strength value by the level of virtual liquid relative to equilibrium, and the

last beaker is tied to the equilibrium liquid level. Synaptic potentiation occurs deterministi-

cally, and consists of adding a fixed amount of liquid "weight" to the first beaker; synaptic

depression consists of removing that amount of liquid from the first beaker. The equilibration

of liquid levels in the beaker chain following an instructed weight change, and particularly the

equilibration of the first beaker, captures the time course of the memory decay at each synapse.

In the example shown in [8], a synapse consisted of a chain of 12 virtual beakers that doubled
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in capacity with each step down the chain (so that the last beaker had a capacity 2,048 times

that of the first beaker), and whose fluid levels were governed by differential equations with

pre-determined rate constants linking each pair of buckets. As a practical matter, the authors

found the number of discrete levels per beaker could be reduced linearly from 35 in the first

(smallest) beaker, corresponding to 35 levels of visible synaptic weight, down to 2 levels in the

last (largest) beaker. This parameterization yielded a total of ~10^14 possible memory states

within each synapse. Interestingly, unlike the cascade model whose synapses only change state

in response to plasticity instructions (which can occur asynchronously), the chain-of-beakers

model, if taken literally, continues to equilibrate—i.e. forget—even during periods when the

rate of new learning slows or stops, such as during quiet wakefulness or sleep. Thus, an addi-

tional layer of mechanism is presumably needed to modulate the inter-beaker flow rates in a

coordinated fashion depending on the external learning rate.

In summary, both of these models [4,8] achieve longer memory lifetimes by increasing the

complexity of the synapse model as the size of the memory increases. In terms of cost, the

machinery inside these more complex synapses requires more parameters (>10), and those

parameters must span large dynamic ranges (>1000) to reach realistic memory sizes.

How does a dendrite-based model grow storage capacity without increasing the complexity

of the individual synapses? Within virtually any recognition memory model, the conceptually

simplest way to increase storage capacity is to reduce the fraction of synapses that are modified

during the storage of each pattern (the signal), while correspondingly reducing the response of

the memory to random input patterns (the noise). Practically, this can be achieved by sparsify-

ing the input patterns inversely with pattern size as the memory grows larger. Thus, if the

memory increases in size from N to c � N synapses, in order to increase capacity c-fold, the pat-

tern density ’a’ must be reduced c-fold so that the same number of synapses is activated by

each pattern as before. Assuming the learning rule instructs each activated synapse to become

strong if it was weak, a�N/2 weak synapses would be potentiated on average (under the

assumption that half of the synapses are strong), and an equal number of strong synapses

would be depressed to maintain homeostasis (drawn from the N/2 strong synapses). To a

rough approximation, this leads to a capacity of ~1/a patterns. Thus, if a = 1% of synapses are

changed during the storage of each pattern, then after ~100 patterns are stored, the memory

will have turned over completely. This simple scaling approach runs into the biological plausi-

bility problem that very large capacities require very low pattern densities, and very low

depression probabilities. To achieve a capacity of 100,000 patterns, for example, only 1 in

100,000 input neurons could be active, and synaptic depression would occur in only 1 in

100,000 strong synapses. Reliably controlling such small activity and plasticity probabilities

could be difficult to achieve in neural tissue.

Dendrites provide a means for sparsifying plasticity without sparsifying

patterns

As an alternative both to this very simple sparsification approach, and to the "complex syn-

apse" approach developed by Fusi and colleagues, adding a layer of dendritic learning units

allows the memory to push further into the sparse plasticity regime without the need for very

low pattern densities or plasticity probabilities. Relative to a flat (1-layer) memory model, den-

dritic learning thresholds can restrict learning to just a few dendrites from a very large pool.

For example, in a simulation of a 5 million-synapse network discussed previously, with a mod-

erate pattern sparseness level of a = 3%, the dendrite learning probability after optimization

was PL = 0.0005, (corresponding to 1–2% of neurons in the network having one dendrite that

crosses the learning threshold). Beyond the sparsification of learning attributable to dendritic
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learning thresholds, learning is sparsified even further by the fact that within each learning

dendrite, only the active 3% of synapses receives (and obeys) the instruction to potentiate or

refresh, and that same small fraction of synapses is depressed. Thus, in the above scenario, rela-

tive to a 1-layer network with the same coding density of 3%, the existence of a dendritic learn-

ing threshold sparsifies learning by a factor of 1/PL = 2000, significantly boosting capacity

without requiring extreme, biologically unrealistic coding sparseness.

Regarding the experimental detection of sparse dendritic learning events

In our model the formation of new memories is achieved through long-term potentiation (or

rejuvenation) of a few activated synapses on a few strongly activated dendrites that undergo

learning events. The "forgetting" of old memories involves heterosynaptic depression of the

least-recently-potentiated/rejuvenated synapses in the same dendrites that are undergoing

learning. Given the pressure to keep memory traces at their bare minimum strength, when our

model is optimized for capacity, synaptic changes are exceedingly sparse, involving only a

small fraction of the synapses on a minute fraction of dendrites. (The finding that memory

capacity is optimized by sparse patterns has also been reported for 1-layer models: [2,111–

114]). For example, in a memory network containing ~5 million synapses, under conditions

that optimize storage capacity (i.e. with dendrites containing ~256 synapses, and patterns of

3% density), we found that each time a pattern is learned, only 150 of the 5 million synapses

learn (0.003%), less than half of which are overtly strengthened (i.e. some are only rejuve-

nated), and those few altered synapses are confined to just 10 of the 20,000 dendrites contained

within the network. If we consider extremely sparse synaptic plasticity to be a prediction of

our model, could such sparse changes be detected experimentally? The likelihood of detecting

changes in this few dendrites seems higher when it is considered that 20,000 dendrites corre-

sponds to 500–1,000 neurons. We would thus expect that 10 (i.e. 1–2%) of the neurons in the

network would contain a dendrite that participates in learning. In vivo imaging techniques

with a field of view containing hundreds of neurons should make this level of detection

possible.

What is the role of structural plasticity in online learning?

What role might structural plasticity play in online learning? We previously explored the role

that active dendrites might play in familiarity-based recognition in the very different scenario

where patterns can be trained repeatedly [46,115]. The opportunity for repeated, interleaved

training of patterns gives the system time to exploit wiring plasticity mechanisms [116],

wherein existing connections between axons and dendrites can be eliminated and new ones

formed in such a way that correlated inputs end up forming contacts onto the same dendrites.

This type of wiring plasticity is not an option in an online learning scenario, since each pattern

is experienced only once, such that all learning-related synaptic changes must be immediate–

or at least immediately induced. We showed that correlation-based sorting of inputs onto dif-

ferent dendrites using a Hebb-type learning rule increased the storage capacity of a neuron by

more than an order of magnitude compared to a neuron with the same total number of synap-

tic inputs that lacked dendrites. Furthermore, as here, we found that dendrites of intermediate

size optimized capacity–though for different reasons.

It is interesting to note that in our current model, structural turnover of weak synapses has

no effect on what is stored in the memory, as long as new weak synapses are added to the sys-

tem at the same rate that existing weak synapses are removed. If weak synapses form a substan-

tial fraction of the total synapse population–we have assumed 50% here (but the percentage

may actually be closer to 90% in CA1 –see [117])–then high rates of spine elimination and new
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spine formation could be tolerated within the memory area without any loss of stored informa-

tion–again, as long as the turnover is restricted to weak synapses. What would be the advan-

tage of eliminating existing weak connections and forming new ones? Under the assumption

that input axons are uncorrelated, as we have assumed in this work for simplicity, we can see

no advantage to this type of structural turnover. However, if meaningful correlations between

input axons do exist, then structural turnover could be a sign that wiring plasticity mecha-

nisms are attempting to co-locate correlated synapses on the same dendrites [118,119], which

could lead to a significant capacity advantage [46,115,116].

Relationship to other forms of memory

Familiarity-based recognition is a very basic form of memory, and is most closely associated

with the perirhinal cortex [10,87,88]. However, currently available data regarding the

responses of familiarity (vs. novelty) neurons in the PRC is complex, and not easily related to

our findings here (see S1 Text for an in depth discussion). Further work will be required to

determine whether the dendrite-based architecture of Fig 2b will be helpful in explaining

familiarity-based recognition processes in the brain.

What can the dendrite-based architecture we have studied here tell us about other types of

memory systems? A trivial extension of our architecture in which N copies of the memory net-

work are concatenated would allow the construction of a full N-bit binary online associative

memory. This type of memory would behave exactly as ours, but would allow an arbitrary N-

bit output pattern to be one-shot associated with each input pattern, as in a Willshaw network.

In this scenario, only the subset of the N networks whose outputs are instructed to be 1 would

learn each input pattern, while any networks instructed to produce 0 responses would simply

ignore the input pattern. If the output patterns are sparse (which they needn’t be), only a small

fraction of the networks would need to participate in the learning of each association.

It might also be desirable to assign extended lifetimes to particularly important patterns;

this could be accomplished in either of two ways: 1) Extended-lifetime synapses could be estab-

lished during the learning of important patterns, so that the synapses representing those pat-

terns would remain invulnerable to depotentiation for longer times, or even permanently.

Doing so would of course reduce the lifetimes of other patterns in the memory. 2) The mem-

ory could be composed of multiple subnetworks having a range of pattern lifetimes, and

important patterns could be stored in longer-lifetime (i.e. larger capacity or more rarely used)

networks. The decision as to which or how many networks participate in the storage of each

pattern could be gated by an "importance" signal provided by another brain area.

In other cases it might be valuable to store different trace strengths for different patterns,

rather than uniform, bare-bones recognition traces for all patterns. Note this goal is inconsis-

tent with the goal to maximize storage lifetimes for all patterns, but could also be useful in cer-

tain ecological situations. Our simple architecture allows for this directly: nothing is to prevent

a larger or small number of dendrites from being used in the learning of any particular pattern,

such that it’s memory trace would be stronger or weaker than the norm. Regardless of trace

strength, a pattern’s lifetime would remain roughly the same, since lifetimes are determined

mainly by the lengths of the dendritic age queues, which do not depend on the number of den-

drites used for storage. The trace strength assigned to each pattern could again be determined

by a signal generated by another brain area, whose effect is to raise or lower dendritic learning

thresholds.

In yet another scenario it might be useful to store gradually decaying memory traces so that

trace strength can represent recency of learning (which is again a different goal than maximiz-

ing recognition capacity). A graded recency signal can be efficiently produced by storing each
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pattern simultaneously in multiple networks with a range of capacities/sizes/memory lifetimes.

Early in its storage lifetime, the pattern would evoke a memory trace from all networks, so that

it’s total trace strength would be high, but as time progresses, and its trace progressively expires

from the lower-capacity networks, its overall trace strength would gradually decay. This use of

such a tiered system to achieve a graded decay time course is more resource-efficient than cer-

tain other forms of trace decay that have been considered in the online memory literature, in

that the stored information in a tiered network with synapse age management expires in a con-

trolled fashion [109].

Finally, it will require future work to determine which of our results can carry over to Hop-

field-style recurrent networks [120–123] constructed from neurons with thresholded den-

drites, where the goal in that case would be to maximize recall capacity. In one obvious

difference, the ability to recall entire patterns from partial cues requires that the entire patterns

be stored (in stark contrast to the need to generate only a reliable familiarity signal), so synapse

resource consumption per pattern will be much higher than in the basic familiarity network.

Furthermore, the need to modify recurrent synapses during the initial learning of a pattern

implies that the participating neurons must fire action potentials during initial learning in

order to activate those recurrent connections, which implies that their dendrites must cross

both the learning and firing thresholds during learning. Interestingly, this requirement would

seem to render such a memory useless for familiarity-based recognition, since the neurons

that participate in the learning of a pattern must already fire on a pattern’s first presentation to

the memory. This incompatibility could be one reason why the functions of familiarity and

recall memory have been assigned to distinct areas within the medial temporal lobe [87,88].

Methods

Notation

aij Age (in number of learning events) of synapses connecting axon i to dendrite j

aðjÞpre Pre-synaptic activation of dendrite j

aðjÞpost Post-synaptic activation of dendrite j

Bi(n,p) Binomial distribution function with n trials and success probability p

CMemory capacity of network, measured in number of patterns

Dj Set of inputs connected to dendrite j

�± Error rates (plus for false positive, minus for false negative)

fA Pattern activation density (i.e. fraction of axons active in a given pattern)

fpot Average fraction of synapses that learn (i.e. are potentiated or juvenated) within a dendrite

during a learning event (fpot ¼
yLpre
K )

fage Average fraction of strong synapses in a dendrite that age during a learning event

fS Fraction of synapses in a dendrite that are strong (equal to 50% in our networks)

KNumber of synapses per dendrite (K ¼ NS=M)

L Length of the age queue, measured in number of learning events

MNumber of dendrites in the network (M ¼ NS=K)
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NA Number of axons providing inputs to the network, defining the dimensionality of the input

Nburst Number of trials used in generating synaptic burst noise from a binomial distribution

NS Total number of synapses in network (NS ¼ M�K)

Pburst Probability used in generating synaptic burst noise from a binomial distribution

PF Probability that a random dendrite fires upon presentation of a random untrained pattern

PL Probability that a random dendrite is involved in the learning of a random pattern

rj Binary output of the jth dendrite (signifying whether the dendrite fired or not)

rOutput of the memory network measured in the number of dendrites that fired

s Slope parameter for dendritic activation sigmoid (only used in simulations)

θ± Maximum tolerated error rate (plus for false positive and minus for false negative)

θF Firing threshold for a dendrite (in spikes)

θLpost Post-synaptic learning threshold (in spikes arriving at strong synapses)

θLpre Pre-synaptic learning threshold (in spikes arriving at strong or weak synapses)

θR Recognition threshold for network to distinguish familiar from novel patterns (in number

of dendrites)

µburst Mean number of spikes produced in a burst by an active synapse (mburst ¼ Nburst�Pburst)

µLD Average number of dendrites used for learning one pattern

µLS Average total number of synapses used for learning one pattern

µpre Average presynaptic activation for a random pattern

µpot Average number of synapses per dendrite used for learning one pattern

wij Weight of synaptic connection from axon i to dendrite j

x Sparse, binary-valued vector representing an input pattern

~x Sparse, random, integer-valued vector representing the number of spikes arriving at each

synapse

Calculating memory capacity

As discussed in the main text, after a certain number of learning events has occurred following

the storage of a pattern feature in a dendrite, the strong synapses encoding the stored feature

begin to “fall off” the end of the dendrite’s age queue, and the memory trace in the dendrite is

effectively lost. We refer to the number of learning events that can be endured before this loss

occurs as the length of the age queue L. If we assume that the frequency of learning events is

constant across dendrites in the network, given that the queue length L is also constant across

dendrites, most of the strong synapses encoding a particular pattern’s features will be

depressed roughly simultaneously (in different dendrites), leading to a relatively rapid decay of

the network’s overall response r to that pattern. The value of L is therefore a measure of the

length of time that a pattern’s trace persists in the memory, and is therefore effectively a mea-

sure of capacity in units of dendritic learning events.
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L can, in principle, be determined by framing learning as a Markov process with the state

diagram shown in Fig 3. Consider a single synapse on a given dendrite. If p! is the ðLþ 1Þ � 1

vector containing the probability that, at a given time, this synapse is in each of the Lþ 1 states

shown in Fig 3, and T is the Lþ 1ð Þ � Lþ 1ð Þmatrix containing the state transition probabili-

ties, then with each learning event, p!will change as p! ! T p!. After many learning events,

p!will approach the equilibrium distribution, characterized by the condition that learning

leaves it unchanged: p!1 ¼ T p!1. Using the fact that for the equilibrium distribution p!1; fs
of the synapses must be strong, one can solve for L (since the ðLþ 1Þ � 1 vector p!1 implicitly

depends on L). Using the eigenvectors and eigenvalues of T, one can also compute the distri-

bution p! tð Þ after any number of learning events. However, while the Markov approach is very

general, the simple dynamics of the age queue allow for a more direct and transparent deriva-

tion of L.

To find L, we might naively divide the total number of strong synapses per dendrite (fS � K)

by the average number of synapses potentiated in each dendrite that experiences a learning

event mpot. where mpot �
yLpre
mburst

. In words, mpot is approximately equal to the total number of spikes

impinging on all activated synapses on the dendrite, given by the threshold value yLpre (since in

most cases learning dendrites will have just crossed this threshold), divided by the average

number of spikes per participating synapse mburst. This gives L � fS �K�mburst
yLpre

. However, this would

underestimate L because synapses that are only juvenated (i.e. that were already strong) do not

contribute to the aging of synapses further along the age queue, so that the average rate of pro-

gression along the age queue slows as strong synapses grow older. To estimate Lmore accu-

rately, consider the equilibrium distribution of synapse ages in the queue of a single dendrite

(blue histogram in Fig 3). The age of the right-most column of the age histogram is an indica-

tor of the expected age (measured in learning events) at which the synapses encoding a pattern

are depressed and moved to the unordered collection of weak synapses. During each learning

event, a large fraction (fage) of synapses in each column that were not activated move rightward

to the next older column, while a small fraction (1 � fageÞ are juvenated (promoted to the first

column). This process leads to a bias towards younger synapses in the queue, and can be well-

approximated by a finite geometric sequence with length L, decay ratio fage, sum fS � K (note

the sum of the columns is the total number of strong synapses), and first column height mpot

(the average number of synapses that learn per dendrite per learning event), so that:

fS � K ¼ mpot �
1 � f Lþ1

age

1 � fage
:

Assuming that the synapses in a dendrite are all equally likely to be potentiated (ignoring

the effects of the postsynaptic threshold–see below), with mpot �
yLpre
mburst

, then we have that fage �

1 �
yLpre
K�mburst

and can solve the above equation for L. Note that L counts the number of dendritic

learning events before a memory is eroded, whereas memory capacity C should count the

number of training patterns. Thus, to approximate C, we must multiply L by the approximate

number of patterns per dendritic learning event, or “learning interval” 1

PL
, where PL is the prob-

ability that an arbitrary dendrite learns a particular pattern. Although PL is conceptually sim-

ple, its expression is complicated since it depends on pattern density, noise level, two learning

thresholds, dendrite size, and fS (see expression below). Collecting these results, we can
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approximate memory capacity by

C �
L
PL
¼

1

PL
�

logð1 � fSÞ

log 1 �
yLpre
K�mburst

� � � 1

2

4

3

5:

For simplicity, the expression for L in the capacity equation does not include the effect of

the postsynaptic threshold yLpost, which makes strong synapses more likely to learn, lowers fage
and increases absolute capacity. The synapse age distribution remains roughly geometric, how-

ever (see Fig 5b), and we observed that the qualitative behavior of the system depends only

weakly on yLpost, justifying its omission from the analysis.

Derivation of PL

Synaptic activation on a dendrite is governed by 4 binomial random variables: as, the number

of active strong synapses; ss, the number of spikes received by strong synapses; aw, the number

of active weak synapses; and sw, the number of spikes received by weak synapses. These ran-

dom variables have the distributions shown below. Learning occurs when presynaptic activa-

tion crosses the presynaptic learning threshold, or ss þ sw > yLpre, and postsynaptic activation

crosses the postsynaptic learning threshold, or ss > yLpost: Using the distributions for as; aw ; ss;

and sw, and the fact that PL ¼ p ss þ sw > yLpre; ss > yLpost

� �
; we can write an explicit expres-

sion for PL:

as e Biðfs�K; fAÞ

ss e BiðNburst�as; pburstÞ

aw e Biðð1 � fsÞK; fAÞ

sw e BiðNburst�aw; pburstÞ

PL ¼
X

i 2 ½0; fs�K�

j 2 ½0; ð1 � fs�KÞ�

k 2 ½yLpost þ 1;Nburst�i�

l 2 ½yLpre � kþ 1;Nburst�j�

BiðNburst�j; pburstÞ½l� � BiðNburst�i; pburstÞ½k� � Biðfs�K; fAÞ½i� � Biðð1 � fsÞK; fAÞ½j�

where Bi N; pð Þ½k� is the binomial pdf with parameters ðN; pÞ evaluated at k. A simpler alterna-

tive to evaluating this expression directly is to estimate it by generating a large number of sam-

ples of as; aw ; ss; and sw according to the above distributions, and directly observing the

fraction of cases that cross both learning thresholds :

Checking error tolerances

Once the capacity formula is used to calculate how long a given memory trace will last, we

must verify that during its lifetime, the trace is sufficiently strong. We do this by checking

whether the error tolerances �þ and �� are met immediately after training.
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First, we compute �þ, the probability that an untrained pattern will be recognized. To be

recognized, a pattern must activate at least yR dendrites in the network. For a randomly

selected untrained pattern, the distribution of the number of activated dendrites will be

approximately Poisson with mean PF �M, whereM is the number of dendrites in the network

and PF is the probability that a given dendrite fires in response to a randomly selected pattern.

For a pattern to fire a dendrite, it must cause a postsynaptic activation > yF , or ss > yF , using

the notation of above. Since the distribution of ss is known, it is relatively easy to write an

expression for PF and �þ explicitly:

PF ¼ pðss > yFÞ ¼
X

i 2 ½0; fs�K�

j 2 ½yF;Nburst �i�

BiðNburst�i; pburstÞ½k� � Biðfs�K; fAÞ½i�

�þ ¼
X

r � yR

PoissðPF �MÞ½r�

As for �� ; the probability that a previously trained pattern is forgotten, we approximate this

quantity with �0
�

, or the immediately post-training false negative rate (justified by the fact that

during the “lifetime” of the memory, C, the trace strength is roughly constant). To calculate �0
�

,

we use the following observation: when training a new pattern, it will learn in a certain set of

dendrites. Immediately after training, if the pattern is re-presentated to the network, all of

these dendrites should respond, since learning has significantly boosted the pattern’s features

in these dendrites. In other words, dendrite readout failures immediately after learning should

be very rare. Therefore, for a pattern to be too weak for recognition immediately after training,

it must have learned in too few dendrites. The number of learning dendrites for a given pattern

will have a Poisson distribution with mean PF �M. Therefore, �� can be written

�� � �
0

�
¼
X

l<yR

PoissðPL �MÞ½l�

If for the given settings of the learning and firing thresholds yLpre; yLpost; yF; yR

� �
, the error

tolerances are met–that is, �þ; �� < 1%� then the memory lifetime is compared to the best

memory lifetime found so far. Otherwise, we continue the search through threshold space.

Code availability

All data contained in figures as well as simulation code is available in S1 Data file titled "Plos

data/code".

Supporting information

S1 Text. Additional material discussing effects of various network parameters on memory

capacity.

(DOCX)

S1 Data. Network simulation code and data.

(ZIP)

S1 Fig. Effect of background noise on network performance. In the base case without back-

ground noise, nominally inactive axons (which were the vast majority) never fired. For the

medium and high noise cases, nominally inactive axons emitted one spike with the indicated

probability. The fraction of inactive axons that fired a spike was chosen so that in the medium
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case, aberrant spikes totaled approximately 10% of the number of “real” pattern spikes (recall

that each active axon generated a burst of 4 spikes on average), and in the high noise case, aber-

rant spikes were 25% of the real spikes. Increasing background noise decreased memory capac-

ity, and, at high noise levels, pushed the optimal dendrite size to shorter values. For all

simulations here, the dendritic activation slope parameter was set to 3.

(TIF)

S2 Fig. Network responses for perturbed patterns. The memory network was trained as nor-

mal to maximize old/new recognition capacity. We then tested how a trained network

responded to perturbed versions of stored patterns. As expected, as an increasing fraction of

training pattern bits were changed, network response decreased (black curve). For example,

when 20% of an original training pattern’s active bits were assigned to different input lines

(keeping pattern density unchanged), average network response fell to roughly one third of the

original response. We then tested whether the network could reliably distinguish between

exact trained patterns and perturbed patterns (red curve). The network was able to distinguish

exact training patterns from 20% perturbed patterns with 85% accuracy.

(TIF)

S3 Fig. Explanation of dendrite "availability" problem faced by short dendrites, and the

remedy. (See S1 Text for details).

(TIF)

S4 Fig. Contributors to additional capacity costs for short dendrites. (a) Distributions of

pre-synaptic responses to random patterns for dendrites of varying size. (b) Same graph as (a)

but with responses normalized to the mean response. Colored arrows indicate points where

the upper 1% of the probability mass begins, to illustrate that shorter dendrites have larger

response variability relative to their mean than longer dendrites. (c) Fraction of synapses used

within each dendrite involved in learning increases for short dendrites. (d) Comparison of

capacity for 3 cases with equivalent synapse usage (red dots); capacity drops linearly for shorter

dendrites because of the higher values of fpot.
(TIF)
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20. Branco T, Clark BA, Häusser M. Dendritic discrimination of temporal input sequences in cortical neu-

rons. Science. 2010; 329: 1671–1675. https://doi.org/10.1126/science.1189664 PMID: 20705816

21. Gidon A, Segev I. Principles governing the operation of synaptic inhibition in dendrites. Neuron. 2012;

75: 330–341. https://doi.org/10.1016/j.neuron.2012.05.015 PMID: 22841317

22. Goldman MS, Levine JH, Major G, Tank DW, Seung HS. Robust persistent neural activity in a model

integrator with multiple hysteretic dendrites per neuron. Cereb Cortex N Y N 1991. 2003; 13: 1185–

1195.

How Dendrites Affect Online Recognition Memory

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006892 May 3, 2019 29 / 34

https://doi.org/10.1038/nn1859
http://www.ncbi.nlm.nih.gov/pubmed/17351638
https://doi.org/10.1016/j.neuron.2005.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15721245
http://www.researchgate.net/publication/2358602_Short-term_Associative_Memory/file/e0b49521bd71403e73.pdf
http://www.researchgate.net/publication/2358602_Short-term_Associative_Memory/file/e0b49521bd71403e73.pdf
http://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses.pdf
http://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses.pdf
https://doi.org/10.1016/j.neuron.2009.02.021
http://www.ncbi.nlm.nih.gov/pubmed/19376065
https://doi.org/10.1038/nn.4401
http://www.ncbi.nlm.nih.gov/pubmed/27694992
https://doi.org/10.1002/hipo.10093
http://www.ncbi.nlm.nih.gov/pubmed/12836918
http://www.ncbi.nlm.nih.gov/pubmed/11316340
http://www.ncbi.nlm.nih.gov/pubmed/9705004
https://doi.org/10.1002/jnr.22444
http://www.ncbi.nlm.nih.gov/pubmed/20544831
https://doi.org/10.1038/71125
http://www.ncbi.nlm.nih.gov/pubmed/10607395
https://doi.org/10.1371/journal.pcbi.1002599
https://doi.org/10.1371/journal.pcbi.1002599
http://www.ncbi.nlm.nih.gov/pubmed/22829759
https://doi.org/10.1038/nn.4062
https://doi.org/10.1038/nn.4062
http://www.ncbi.nlm.nih.gov/pubmed/26167906
http://www.ncbi.nlm.nih.gov/pubmed/7521087
https://doi.org/10.1126/science.1189664
http://www.ncbi.nlm.nih.gov/pubmed/20705816
https://doi.org/10.1016/j.neuron.2012.05.015
http://www.ncbi.nlm.nih.gov/pubmed/22841317
https://doi.org/10.1371/journal.pcbi.1006892


23. Grienberger C, Chen X, Konnerth A. Dendritic function in vivo. Trends Neurosci. 2015; 38: 45–54.

https://doi.org/10.1016/j.tins.2014.11.002 PMID: 25432423

24. Hao J, Wang X, Dan Y, Poo M, Zhang X. An arithmetic rule for spatial summation of excitatory and

inhibitory inputs in pyramidal neurons. Proc Natl Acad Sci U S A. 2009; 106: 21906–21911. https://doi.

org/10.1073/pnas.0912022106 PMID: 19955407

25. Helmchen F, Svoboda K, Denk W, Tank DW. In vivo dendritic calcium dynamics in deep-layer cortical

pyramidal neurons. Nat Neurosci. 1999; 2: 989–996. https://doi.org/10.1038/14788 PMID: 10526338

26. Jadi M, Polsky A, Schiller J, Mel BW. Location-Dependent Effects of Inhibition on Local Spiking in

Pyramidal Neuron Dendrites. PLoS Comput Biol. 2012; 8: e1002550. https://doi.org/10.1371/journal.

pcbi.1002550 PMID: 22719240

27. Jadi MP, Behabadi BF, Poleg-Polsky A, Schiller J, Mel BW. An Augmented Two-Layer Model Cap-

tures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites. Proc IEEE Inst

Electr Electron Eng. 2014; 102. https://doi.org/10.1109/JPROC.2014.2312671 PMID: 25554708

28. Jarsky T, Roxin A, Kath WL, Spruston N. Conditional dendritic spike propagation following distal syn-

aptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci. 2005; 8: 1667–1676. https://

doi.org/10.1038/nn1599 PMID: 16299501

29. Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N. Synapse distribution suggests a

two-stage model of dendritic integration in CA1 pyramidal neurons. Neuron. 2009; 63: 171–177.

https://doi.org/10.1016/j.neuron.2009.06.023 PMID: 19640476

30. Koch C, Poggio T, Torre V. Retinal ganglion cells: a functional interpretation of dendritic morphology.

Philos Trans R Soc Lond B Biol Sci. 1982; 298: 227–263. https://doi.org/10.1098/rstb.1982.0084

PMID: 6127730

31. Larkum ME, Zhu JJ, Sakmann B. A new cellular mechanism for coupling inputs arriving at different cor-

tical layers. Nature. 1999; 398: 338–341. https://doi.org/10.1038/18686 PMID: 10192334
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109. Migues PV, Liu L, Archbold GEB, Einarsson EÖ, Wong J, Bonasia K, et al. Blocking Synaptic Removal

of GluA2-Containing AMPA Receptors Prevents the Natural Forgetting of Long-Term Memories. J

Neurosci. 2016; 36: 3481–3494. https://doi.org/10.1523/JNEUROSCI.3333-15.2016 PMID: 27013677
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