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Abstract

The ability to distinguish between negative, positive and neutral valence is a key part of emotion perception. Emotional valence has
conceptual meaning that supersedes any particular type of stimulus, although it is typically captured experimentally in association
with particular tasks. We sought to identify neural encoding for task-invariant emotional valence. We evaluated whether high-gamma
responses (HGRs) to visually displayed words conveying emotions could be used to decode emotional valence from HGRs to facial
expressions. Intracranial electroencephalography was recorded from 14 individuals while they participated in two tasks, one involving
reading words with positive, negative, and neutral valence, and the other involving viewing faces with positive, negative, and neutral
facial expressions. Quadratic discriminant analysis was used to identify information in the HGR that differentiates the three emotion
conditions. A classifier was trained on the emotional valence labels from one task and was cross-validated on data from the same
task (within-task classifier) as well as the other task (between-task classifier). Emotional valence could be decoded in the left medial
orbitofrontal cortex and middle temporal gyrus, both using within-task classifiers and between-task classifiers. These observations
suggest the presence of task-independent emotional valence information in the signals from these regions.
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assess whether the neural circuit representation of emotional
valence can be abstracted away from the actual stimulus and task
features used to define the emotion concept.

Alarge body of research has been dedicated to identifying the
neural mechanisms underlying emotion perception utilizing var-
ious methodologies. Invasive recordings from the human brain

Introduction

The ability to distinguish between negative, positive and neu-
tral valence is a key part of emotion perception. In fact, one can
scarcely define an emotional quality that is not either positive
or negative in valence, as valence is an intrinsic characteristic
of emotional experience and expression. A stimulus connot-
ing negative valence suggests something aversive, unpleasant
or repellent. It may lead one to exhibit defensive or self-
protective reactions, to avoid further exposure and/or to expe-
rience unpleasant feelings, while a positively valenced stimulus

constitute a small proportion of this literature, but direct record-
ings from the human brain can overcome several limitations
inherent in non-invasive technologies. Direct recording of neu-
ronal activities allows for the measurement of brain responses

may have the opposite effect. Humans have the ability to rapidly
perceive valence from a wide variety of unrelated types of stim-
uli via virtually any sensory modality from the very basic (e.g. a
noxious somatosensory stimulus) to the complex (e.g. a beauti-
ful work of art), even when there is no consciously experienced
feeling in response to the stimulus. The central conjecture eval-
uated in this study is that all instances of positive emotion and
all instances of negative emotion are alike at some level that
can be distinguished by the nervous system. In other words, we

with millisecond temporal resolution, millimeter spatial resolu-
tion and high signal-to-noise (SNR) ratio (Lachaux et al., 2003).
Invasive recordings can investigate deep brain areas not easily
accessed with non-invasive electrophysiology. Intracranial elec-
troencephalography (iEEG) studies of emotion perception have
generally involved measuring event-related potentials or event-
related spectral changes in response to emotionally laden and
neutral stimuli (most commonly facial expressions, images of
scenes, printed words or audio or video clips) and contrasting the
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responses between emotion conditions. A variety of limbic, par-
alimbic and frontal and temporal neocortical regions have been
implicated (see Guillory and Bujarski (2014) for a review).

Emotion processing often recruits brain regions engaged in per-
ception or interpretation of the stimulus, most commonly regions
involved in visual processing as most tasks utilize visual stimuli
(Vuilleumier and Driver, 2007; Boucher et al., 2015; Weisholtz
et al,, 2015). The involvement of sensory regions suggests that
the neural substrates of emotion perception or processing are,
to some degree, task specific. Nevertheless, several limbic and
multimodal cortical regions have been implicated in emotion
perception across various types of tasks. From the iEEG litera-
ture alone, such regions have included the amygdala with tasks
involving viewing emotional scenes (Oya et al., 2002), emotional
facial expressions (Krolak-Salmon et al,, 2004; Pourtois et al.,
2010a,b; Sato et al.,, 2011; Meletti et al., 2012; Zheng et al., 2017)
or printed emotional words (Naccache et al., 2005) and hearing
vocal non-verbal emotional utterances (Dominguez-Borras et al.,
2019) or music (Omigie et al., 2015); insula with tasks involving
viewing emotional scenes (Brazdil et al., 2009), facial expressions
(Krolak-Salmon et al., 2004) or printed emotional words (Ponz et al.,
2014); and orbitofrontal cortex in tasks involving viewing emo-
tional facial expressions (Jung et al., 2011) or emotion words (Ponz
et al., 2014) or listening to music (Omigie et al., 2015).

These studies have examined neural responses to stimuli
within a particular task, leaving open the question of the degree
to which the emotion-related findings are specific to the partic-
ular task or reflect task-invariant emotion coding. We sought to
identify brain regions coding for emotional valence independent of
processing domain by comparing within-subject neural responses
to similar valence defined in distinct ways. We considered visu-
ally presented stimuli with negative, neutral and positive valence
from two separate tasks with different types of stimulus sets con-
veying emotion in different ways—one language based and the
other image based. We focused on the HGR as this frequency band
has shown correspondence with neural activation with good spa-
tial and temporal resolution (Crone et al., 2011; Lachaux et al,
2012). One approach to identify task-invariant neural responses is
to examine between-task decoding accuracy in a machine learn-
ing setting (Piva et al., 2019). We trained machine learning classi-
fiers to use the HGR to discriminate between the three emotion
valence conditions in each task separately and identified brain
regions in which classifier performance was better than chance
for both tasks individually. The tasks differed in both the manner
in which emotion was conveyed (facial expression or words) and
in the specific type of emotion conveyed. Negative faces depicted
expressions of fear, and positive faces depicted expressions of
happiness, while the negative and positive words depicted a range
of emotions related to depressive and counter-depressive themes.
The two tasks were alike only in their valence categories (positive,
neutral and negative). To assess the degree of task invariance,
we further assessed the degree of extrapolation when the clas-
sifiers were trained on one task and tested on the other. This
technique identified brain regions in which high-gamma signals
contain information about emotional valence independent of the
specific emotion conveyed or the method by which it is conveyed
(words vs faces).

Materials and methods
Participants

Patients with pharmacologically intractable epilepsy who were
undergoing intracranial EEG monitoring at New York Presbyterian
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Hospital, NYC, and at Brigham and Women’s Hospital in Boston
for seizure localization were recruited to participate after meet-
ing the following inclusion criteria: they had capacity to consent,
were fluent in English, were over 18years old and were able to
read. All protocols were approved by the IRB at each institution.
The research was carried out in accordance with The Code of
Ethics of the world Medical Association (Declaration of Helsinki)
for experiments involving humans.

Tasks

Participants completed two similar tasks (one verbal and one non-
verbal), involving the viewing of stimuli with positive, neutral
and negative emotional valence that were presented on a lap-
top screen at the bedside. Stimuli were presented using either
E-Prime (Psychology Software Tools, Inc.) or the Psychophysics
Toolbox (Figure 1). The task was implemented in an identical way
on each platform. Half of the participants completed the verbal
task first and the other half completed the non-verbal task first.
Most participants completed both tasks on the same day, but
three participants completed them on consecutive days.

In the word (WD) task, stimuli consisted of single words pre-
sented in a white font within a white box on an otherwise black
background, centered on the screen and subtending about 5-6°
of visual angle vertically and 12-15° horizontally. There were 24
positive, 24 neutral and 24 negative words, which were either
adjectives, nouns or verbs, chosen to be relevant to depressive and
counter-depressive themes based on clinical experience and rated
for suitability by a panel of three experts. Words were balanced
across the categories for length, frequency within the lexicon and
part of speech, with the exception that, within the neutral list,
verbs were substituted for adjectives, given that adjectives are
typically not free of emotional valence. Negative words included
words such as burden and guilty. Positive words included words
such as praise and heroic. Neutral words included words such as
clarinet and umbrella. Example face stimuli are shown in Figures 1
and 2. The WD task was utilized in a previously published fMRI
study (Epstein et al., 2006). In the face (FA) task, participants
viewed images from the NimStim Set, an image bank of validated
emotional facial expressions (Tottenham et al., 2009). Images con-
sisted of color photographs of naturally posed actors of different
sex and ethnicity from the neck up on a blank background exhibit-
ing facial expressions of fear (negative condition), happiness (pos-
itive condition) or a blank expression (neutral condition). Images
were centered on the screen and subtended approximately 17-20°

FA WD

Jittered ISI
~2.8s

Jittered ISI
~2.8s

6 stimuli per block 6 stimuli per block

Fig. 1. Diagram of tasks. Each subject completed both a word (WD) task
and a face (FA) task. Each task consisted of positive, neutral and
negative stimuli with 24 trials per condition. Stimuli were presented in
block design with six stimuli per block, 2 s presentation time and a
jittered ISI around 2.8 s. Blocks were presented in pseudo-random order.
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Fig. 2. HGRs from each of five electrodes in a particular brain region is entered as training data into a classifier along with condition labels for each
trial. The trained classifier is then tested with data from three trials that were not included in the training set (one trial for each of the three
conditions). This procedure is repeated until all trials have been tested, and the classifier performance is calculated as the percentage of trials

correctly classified.

of visual angle vertically and 14-16° horizontally. There were 24
positive faces, 24 neutral faces and 24 negative faces.

In each task, the stimuli were presented one at a time in
valence-specific six-stimulus blocks. Each stimulus appeared on
the screen for 2s followed by an inter-stimulus interval (ISI)
jittered around an average of 2.8s (range=1.8-3.8s). The par-
ticipant was instructed to press a button with the right index
finger in response to each stimulus, irrespective of the content.
Participants were given up to 2s to respond to each stimulus,
and reaction time data were collected. Each task was analyzed
separately by fitting the reaction times to a generalized linear
mixed-effects model with condition (positive, negative or neutral)
as a fixed effect and subject as the random effect and the natural
logarithm as a link function.

Electrophysiology data collection

Electrodes consisted of commercially available strips, grids and
depth electrodes that were implanted in various locations based
on clinical need. The number, type and location of the elec-
trodes was not influenced by the research plan and was dictated
strictly by clinical needs. iEEG was recorded using the XLTEK clin-
ical EEG recording system (Natus Neuroworks) with a sampling
rate of 500 Hz for most participants. One study was sampled at
250Hz, one was sampled at 2000 Hz and four studies were sam-
pled at 512 Hz. The stimulus presentation laptop sent a trigger
pulse to the EEG headbox that was recorded along with the EEG
signals and was used to identify the precise timing of the stimulus
presentation within the recordings.

Electrode localization

The iELVis software toolbox (Groppe et al., 2017) was utilized to
identify the precise locations of the intracranial electrodes. The
Desikan—Killiany atlas (Desikan et al., 2006), as implemented in
iELVis and FreeSurfer (http://surfernmr.mgh harvard.edu/), was
used to label the locations of the cortical electrodes based on
anatomical parcellation of each individual brain. Depth elec-
trodes in hippocampus and amygdala were labeled based on
FreeSurfer's volumetric brain segmentation (aparc + aseg.mgz).

Data analyses

Data analyses were carried out using MATLAB (Mathworks, Nat-
ick, MA). Electrodes were removed from the analyses if markedly
corrupted by artifact, and line noise was removed by applying a
series of notch filters at 60 Hz and harmonics. Each electrode was
then re-referenced against the average signal. The high-gamma
amplitude (HGA) was extracted by applying an 80-150Hz band-
pass filter on the re-referenced signals and then extracting the
analytic signal from the Hilbert transform. Additional frequency
bands were also tested and are described in Supplementary Meth-
ods and Supplementary Table S1.

HGR was calculated by subtracting the mean of the 1-s pre-
stimulus baseline from the 1500ms HGA signal post-stimulus
onset. HGR was then binned into three 500ms time windows
representing the mean HGR during the first 500 ms following stim-
ulus onset (bin 1), 500-1000ms following stimulus onset (bin 2)
and 1000-1500ms following stimulus onset (bin 3).

Quadratic discriminant analysis was then used in order to
identify information in the HGR that differentiates the three
emotion conditions (Hung et al., 2005; Meyers and Kreiman,
2012; Singer and Kreiman, 2012). A classifier (classify func-
tion in MATLAB Statistics and Machine Learning Toolbox) was
trained separately for each brain region, task and time bin on the
three different emotion conditions using a ‘leave one out’ cross-
validation approach. To identify emotion-related information in
the signal that is independent from the stimulus type, the classi-
fier performance was also tested on the opposite task from which
it was trained using a completely analogous procedure (we refer
to this as ‘between-task’ classification, as opposed to ‘within-task’
classification when the classifier was tested on the same task on
which it was trained).

Separate classifiers were trained and tested for each brain
region containing at least five electrodes, combined across sub-
jects. To reduce the impact of the multiple comparisons problem
given the large number of classifiers and because our interest
was in identifying brain regions that exhibited task-independent
emotion information, we focused specifically on regions in which
both within-task and between-task classifiers performed better
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than chance. This combination was relatively unlikely to occur
by chance, even with modest performance thresholds. P-values
were computed for each region/time bin pair using the permuta-
tion method and corrected for multiple comparisons across the
experiment. Region/time bin pairs were considered significant if
the familywise error rate (FWER) was less than 0.05.

Among region-time bin pairs that survived the performance
threshold, we investigated whether better than chance classi-
fier performance was driven by the coding of valence or sim-
ply distinguishing emotion from non-emotion by comparing the
proportion of emotion stimuli (positive and negative) that were
classified with the correct valence as compared to the opposite
valence using a one-sided binomial test. An analogous proce-
dure was used to compare the proportion of emotion stimuli
correctly classified vs misclassified as neutral, and among the
misclassified emotion stimuli, the proportion labeled with the
opposite valence as compared to the proportion misclassified as
neutral.

Results

We recorded intracranial field potential signals in 14 participants
(age 25-58, 6 female). The average reaction time across subjects
was 986 +239ms (mean + SD, WD) and 871+ 315ms (FA). There
was no significant effect of emotional valence for either the WD
task (P=0.675, ANOVA test) or the FA task (P=0.220, ANOVA test).
Reaction time was significantly shorter for faces than for words
(P<0.001).

Collectively, there were 947 intracerebral or subdural elec-
trodes (Figure 3). High-gamma band (80-150Hz) responses rel-
ative to pre-stimulus baseline were computed for each elec-
trode. An example of HGR from an electrode in the left medial
orbitofrontal cortex is shown in Figure 4 and Supplementary
Figure S1. The neurophysiological responses from this electrode
revealed a partial separation among the three emotional valences,
particularly within the first second after stimulus onset, both
for the FA task (Figure 4A) and for the WD task (Figure 4B).
Notably, despite the large stimulus differences between the two
tasks, the responses from this electrode were qualitatively similar
between the two tasks: there was an increased HGR to nega-
tive (red) and neutral (black) stimuli compared to positive stimuli
(green).

An ANOVA was performed to test whether HGR discriminated
between the three valence conditions for each electrode, time
bin and task. This involved 4290 statistical tests (3 time bins x 2
tasks x 715 electrodes). At a statistical threshold of P<0.05, there
were 222 significant tests (5.2% of the total), which is about what
would be expected by chance. Because of the trial-to-trial variabil-
ity in individual electrode responses, the small number of trials

Fig. 3. Locations of all 947 electrodes transformed into standard
coordinate space and plotted together on Freesurfer’s average brain
template. A. Surface electrodes. B. Depth electrodes (depicted with
transparent cortical surfaces).

Fig. 4. Example electrode in the left mOFC showing high-gamma
responses (DHG, normalized by the pre-stimulus baseline, Methods) in
the face task (A) and word task (B). Responses are aligned to stimulus
onset at Time = 0. Red = negative, black = neutral, green = positive.
Shaded error bars indicate standard error of the mean (n = 24 trials).
The location of the electrode is depicted on the freesurfer average brain
template adjacent to the plots.

and the large number of electrodes, we used a classifier anal-
ysis based on ensembles of electrodes. Classifiers were trained
to associate emotional valence labels for each trial with HGR
data in three consecutive 500-ms time bins starting at stimu-
lus onset. The procedure is able to determine in a data-driven
way which electrodes and trials are most useful for classification.
The classifiers were trained using cross-validation by randomly
selecting a subset of the trials for a given emotional valence and
task for training and testing its performance on the remaining
trials (within-task classifier, Methods).

We examined each brain region containing at least five elec-
trodes with an aim to identify brain regions in which HGR
appeared sensitive to emotion independent of task in at least one
of the three time bins. We defined this as better than chance clas-
sifier performance on both tasks individually and on at least one
of the two between-task classifiers (training on words and test-
ing on faces or vice versa). Among the 947 electrodes, 753 were
localized to the amygdala, hippocampus or one of the cortical
regions in the Desikan-Killiani atlas (most of the remaining elec-
trodes were in white matter). Among these regions, there were 40
regions with at least five electrodes that were submitted for fur-
ther analysis (Table 1). Because a language task was used, it was
considered probable that some effects would be lateralized, and,
thus, homologous regions from the two hemispheres were con-
sidered separately. Classifier accuracy (performance) was then
tested on trials that were left out of the training set (Figure 2).
The left medial orbitofrontal cortex (mOFC) during time bin 1
and the left middle temporal gyrus (MTG) during time bin 2
showed significantly better than chance classifier performance
for both tasks individually and between tasks when trained on
words and tested on faces for the high-gamma frequency band
(P<0.005; Figures 5 and 6; Supplementary Table S1 for findings



Table 1. Collective number of electrodes in each brain region
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Region N electrodes Region N electrodes Region N electrodes
Amygdala-L 8 lateralorbitofrontal-L 20 rostralmiddlefrontal-L 30
Amygdala-R 7 lateralorbitofrontal-R 8 rostralmiddlefrontal-R 13
Hippocampus-L 6 lingual-L 10 superiorfrontal-L 13
Hippocampus-R 6 lingual-R 1 superiorfrontal-R 5
bankssts-L 9 medialorbitofrontal-L superiorparietal-L 3
bankssts-R 2 medialorbitofrontal-R 3 superiorparietal-R 4
caudalanteriorcingulate-L 2 middletemporal-L 76 superiortemporal-L 66
caudalanteriorcingulate-R 0 middletemporal-R 16 superiortemporal-R 12
caudalmiddlefrontal-L 8 parahippocampal-L 10 supramarginal-L 39
caudalmiddlefrontal-R 6 parahippocampal-R 4 supramarginal-R 16
entorhinal-L 8 parsopercularis-L 20 temporalpole-L 10
entorhinal-R 0 parsopercularis-R 6 temporalpole-R 2
frontalpole-L 0 parsorbitalis-L 13 transversetemporal-L 1
frontalpole-R 2 parsorbitalis-R 2 transversetemporal-R 0
fusiform-L 28 parstriangularis-L 13 cuneus-L 0
fusiform-R 9 parstriangularis-R 6 cuneus-R 0
inferiorparietal-L 19 postcentral-L 42 isthmuscingulate-L 0
inferiorparietal-R 10 postcentral-R 13 isthmuscingulate-R 0
inferiortemporal-L 49 precentral-L 30 paracentral-L 0
inferiortemporal-R 16 precentral-R 18 paracentral-R 0
insula-L 3 precuneus-L 1 pericalcarine-L 0
insula-R 2 precuneus-R 1 pericalcarine-R 0
lateraloccipital-L 15 rostralanteriorcingulate-L 1 posteriorcingulate-L 0
lateraloccipital-R 3 rostralanteriorcingulate-R 1 posteriorcingulate-R 0

Bolded regions contained >5 electrodes and were included in the analyses.

in other frequency bands). In both cases, the classifier trained
on words performed better than chance when tested on both
words and faces. The classifier trained on faces performed better
than chance when tested on faces but did not exceed thresh-
old when tested on words. Mean linear coefficients are depicted
in Supplementary Figure S2. Because these two regions con-
tained markedly different numbers of electrodes (6 in the left
mOFC, 76 in the left MTG), the left MTG was re-analyzed for
time bin 2 (500-1000ms) using different random subsamples of
six electrodes from this region for each iteration of the classi-
fier. With electrode subsampling, the findings were no longer
significant in this region, suggesting that there are subsets of
electrodes that drive the classification performance. Electrode
weights, as estimated from the absolute value of the mean
linear coefficients, are depicted by location in Supplementary
Figure S3.

As the classifier labeled trials from among three categories,
better than chance performance could be achieved even if only
one of the three categories could be discriminated from the other
two. Neutral stimuli lack emotional content and are qualitatively
different from the other two categories for this reason. Thus,
we explored whether the classifier’s success in mOFC and MTG
depended only on an ability to discriminate emotion from no emo-
tion or whether positive stimuli could be correctly discriminated
from negative stimuli. We found that across the four classifier
analyses (the two within-task analyses and the two between-task
analyses), the emotion stimuli (positive and negative trials) were
correctly labeled more often than they were labeled with the
opposite emotional valence, both in the left mOFC during bin 1
(81 correct emotion labels (46% of emotion trials), 39 incorrect
emotion labels (22%), P<0.0001) and in the left MTG during bin
2 (75 correct emotion labels (43%), 50 incorrect emotion labels
(28%), P=0.016; Figure 7; see Supplementary Figure S4 for full
confusion matrices).

Fig. 5. Electrode locations in the left mOFC (red) and left MTG (brown).
Brain regions colored dark gray were included in the analyses but did not
show significant results. Brain regions colored light gray were excluded
from analysis due to inadequate electrode coverage (<5 electrodes).

Discussion

Social interactions constitute the essential fabric of daily expe-
rience. Social interactions depend on each individual’s ability to
recognize emotions expressed by others either verbally or non-
verbally. Here, we sought to identify neural substrates of emo-
tional valence and to assess whether those neural substrates
represent abstract emotional concepts or task-specific signals.
Consistent with earlier work, we found that neural responses
could distinguish between different emotional valences (Figure 2)
both in a task involving language and a task involving faces
(Figure 1). We used a machine learning classifier to quantify the
extent to which emotional valence could be read out in single
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Fig. 6. Within-task and cross-task mean classifier performance (standard deviations in parentheses) for the L mOFC in bin 1 and the L MTG in bin 2.
These two regions showed better than chance performance for the within-task classifiers for both words and faces as well as one of the cross-task
classifiers. Performance colored red indicates it exceeds the significance threshold for P<0.05. On the color bar, the white line indicates chance
performance (33.3%), and the red line indicates the threshold for performance significantly better than change (P<0.05). NOTE: This figure requires
color.
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Fig. 7. To evaluate whether the classifier’s success in mOFC and MTG depended only on an ability to discriminate emotion from no emotion (neutral
stimuli) or whether positive stimuli could be correctly discriminated from negative stimuli, we examined the misclassification pattern among emotion
stimuli (positive and negative faces and words). Combined across the four classifiers (FA-FA, FA-WD, WD-FA, WD-WD), emotion stimuli were more
likely to be classified with the correct valence (EC) than with the opposite valence (EO) in the L mOFC and L MTG, indicating that the signal contained
information discriminating the two emotional valences from each other. Emotion stimuli were also more likely to be classified correctly than
misclassified as neutral. EC = emotion stimuli classified correctly; EN = emotion stimuli misclassified as neutral; EO = emotion stimuli misclassified as

the opposite emotion valence; *=P<0.05; * =P <0.0001.

trials (Figure 3). The classifier was able to discriminate emotional
valence when trained and tested on different partitions of the
trials within each task, consistent with a body of earlier work
demonstrating task-specific representation of emotional valence
throughout multiple brain regions. Two brain regions, the MTG
and OFC stood out from the rest because their representation
allowed the classifier to extrapolate between tasks (Figure 5).

The sequence of cortical activation involved in the processing
of a stimulus generally follows a pathway beginning in primary
sensory cortex and propagating to higher cortical areas with
prominent feedback modulation at multiple stages of processing
as features of the stimulus are decoded. Different types of emo-
tional stimuli may require distinct processing steps to decode the
emotional valence. For example, within the visual modality, some
investigators have suggested that the analysis of low-frequency
visual features of fearful facial expressions may be adequate
to activate the amygdala via a magnocellular retinal-collicular-
pulvinar pathway that bypasses visual cortex (Vuilleumier et al.,
2003). In contrast, representing the emotional content in printed
words requires fine-grained decoding of high spatial-frequency

information to represent the visual word form, and lexicoseman-
tic transformation to decode word meaning that likely involves
peri-Sylvian language areas (Weisholtz et al., 2015). Emotional
content in stimuli can modulate activity at multiple stages of
processing specific to a particular task, including areas of lan-
guage cortex (Beauregard et al., 1997; Maddock et al., 2003; Cato
et al., 2004; Kuchinke et al., 2005), visual cortex (Vuilleumier et al.,
2001; Pessoa et al., 2002) and auditory cortex (Sander and Scheich,
2001; Grandjean et al., 2005; Liebenthal et al., 2016). It is clear
that emotion impacts the perceptual/cognitive processing stream
in a manner that is to some extent dependent on the particu-
larities of the stimuli used to convey the emotion. While these
neural changes can be utilized by a machine learning classifier
to decode emotional valence categories, it is unclear if emotion
is truly coded in these perceptual/cognitive areas or if the neural
changes reflect augmentation of perceptual/cognitive processing
of the emotional stimuli.

At a basic level, emotional valence has meaning independent of
task or stimulus type. Classifier decoding analysis can be used
to identify valence-related information in a neural signal that is



independent of the particular task or stimulus type if a classi-
fler trained on one task is able to decode the stimulus valence
from a qualitatively different stimulus set. There was little sim-
ilarity in the sensory inputs between the verbal stimuli in the
WD task and the face images in the FA task, aside from the fact
that the emotional valence of the stimuli could be broadly cate-
gorized as negative, neutral and positive. Nevertheless, despite
the heterogeneity between the two tasks, we found that some
classifiers could not only read out valence information within a
task but also across tasks. Specifically, within the mOFC and MTG,
classifiers trained exclusively within the WD task were able to
extract valence information when considering neural responses
during the FA task on which they were not trained. This indicates
that the mOFC and MTG may represent emotional valence-related
information independent of the representation of the particu-
lar stimuli or the manner in which that emotional content is
discerned from the stimuli (rapid visual detection vs lexicoseman-
tic transformation). Thus, the between-task extrapolation effect
is likely not driven simply by emotional modulation of circuitry
involved in processing facial identity or word meaning. The lack
of symmetry between the two between-task classifiers was inter-
esting but not necessarily surprising. Our criteria for identifying
task-invariant valence information required better than chance
decoding within each task as well as with at least one of the two
between-task classifiers. It was not expected that just because
training on one task allowed for successful decoding in the other
task that the converse must also be true. One possible explana-
tion for the asymmetry is differing SNR ratios between the two
tasks. A classifier trained on a task with higher SNR may perform
better when tested on a lower SNR dataset than the converse.

Both the mOFC and the MTG are high-order multimodal cor-
tical association areas that have been implicated in emotional
processing. The OFC has been closely linked with processing of
emotion-related information supporting goal-directed behavior.
It has been proposed that OFC represents changing and relative
reward values (Kringelbach and Rolls, 2004) and that it may rep-
resent the reward and punishment value of primary as well as
learned reinforcers, allowing for behavior change to occur when
reinforcement values change (Rolls, 2000). Thus, the OFC appears
to monitor the affective properties of stimuli from various sensory
modalities and is therefore ideally situated to process valence in
a task-invariant manner. The OFC has been implicated in the pro-
cessing of both emotional facial expressions and emotion words.
Ventral frontal lobe damage can lead to impairment in identifica-
tion of facial expressions even in patients who were not impaired
in facial recognition (Hornak et al., 1996). Bilateral OFC lesions can
also cause impairment in emotional voice discrimination (Hornak
et al., 2003). Magnetoencephalography can detect early involve-
ment of the OFC in processing affectively charged visual scenes
(Rudrauf et al.,, 2008) and phase-locking between the OFC and
amygdala in response to emotional facial expressions (Cushing
et al., 2019). The emotional valence of written words can also
modulate OFC activation seen with functional MRI (Lewis et al.,
2007).

The middle temporal gyrus is a multimodal association area
on the lateral temporal lobe bounded inferiorly and posteriorly by
visual association cortex and superiorly by auditory association
cortex. Lesions to this region can lead to deficits in word compre-
hension and naming (Dronkers et al., 2004) and its functional and
structural connectivity with peri-Sylvian language areas position
it as an important region for language comprehension (Turken
and Dronkers, 2011) and possibly semantic processing more gen-
erally (Binder and Desai, 2011). Functional imaging studies have
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shown that emotional content in words can modulate MTG activ-
ity (Beauregard et al., 1997; Cato et al., 2004; Weisholtz et al., 2015).
The posterior portion of the MTG and adjacent superior temporal
sulcus (STS) are also involved in face processing and have been
implicated, in particular, in perception of facial expression (Haxby
et al., 2000, 2002; Said et al., 2011). It has been proposed that the
posterior MTG/STS represents changeable aspects of faces inde-
pendent of facial identity (Haxby et al., 2000), although the notion
of two truly dissociable systems for the recognition of facial iden-
tity and facial expression has been questioned (Calder and Young,
2005). In a human iEEG study, a decoding analysis was able to dis-
criminate fearful and happy facial expressions using information
from the high-gamma band and below 30Hz in the lateral and
inferior temporal cortex, although performance was better in the
inferior temporal cortex, contrary to prediction (Tsuchiya et al.,
2008). Emotional scenes (Sabatinelli et al., 2011) and emotional
gestures (Grosbras and Paus, 2006; Flaisch et al., 2009) have also
been shown to modulate activity in portions of lateral temporal
neocortex. The variety of types of emotional stimuli that engage
the MTG may indicate an emotion function independent of stim-
ulus type or task, but it is also possible that emotion modulates
various types of stimulus representations in the MTG and adja-
cent regions. The fact that the MTG classifier could decode facial
expressions when trained on word valence may indicate regions
of MTG that can represent emotional valence more generally.
Alternatively, emotional valence may modulate representations
of words and faces that have overlapping anatomical fields, at
least within the spatial resolution of an iEEG electrode.

Variability in the neural response to stimuli in the same cat-
egory (with the same emotional valence label) can occur due to
noise in the signal, differences in degree to which different stim-
uli evoke the emotional connotations they are intended to evoke
and distractions during the task. Typically, such variability is dealt
with by averaging across trials, which assigns equal weight to
each trial. This approach risks missing the signal within the noise
when there is a small number of trials. The classifier analysis
allows decoding at the single trial level and is sensitive to rel-
evant information in the signal, even with a small number of
trials, as trials (and electrodes) containing information relevant
to the condition labels can be weighted more strongly than those
that do not. Similarly, responses may vary from electrode-to-
electrode within a brain region due to a variety of factors, such as
electrode artifact, epileptiform activity, or anatomic distributions
that do not map properly onto the gyral patterns reflected in the
Desikan—Killiany atlas, and averaging across electrodes within a
region may obscure findings by assigning equal weight to relevant
and irrelevant electrodes. Decoding analysis uses a data-driven
approach to assign weight to the most informative electrodes and
trials at the expense of some loss of temporal and spatial pre-
cision. The MTG is a considerably larger region than the mOFC,
and in our study, there were considerably more electrodes cov-
ering the left MTG than the left mOFC (76 vs 6). We repeated the
analyses of the left MTG randomly subsampling the electrodes
down to 6 with each iteration of the classifier so as to equalize the
amount of data and make the performance results more compa-
rable between the two regions. However, this resulted in the MTG
classifiers no longer performing better than chance. While the
MTG was fairly well-covered by electrodes (Figure 5), the region is
functionally heterogenous, and it is likely that all electrodes did
not contribute equally to the classifier performance. Randomly
sampling only 6 out of the 76 electrodes likely did not consistently
include enough relevant electrodes to mirror the performance of
the classifiers that included all 76 electrodes.
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The classifier was trained to distinguish three different valence
categories, but the classifier performances we report could have
been achieved even if the classifier was only able to distinguish
one of the stimulus types from the other two. For example, if a
signal distinguishes neutral stimuli from emotion-laden stimuli
but represents positive and negative valence similarly, a classifier
might decode neutral stimuli very successfully but could achieve,
at best, 50% performance decoding the positive and neutral stim-
uli. In this scenario, a classifier could achieve, in principle, an
overall performance level as high as 67%. We investigated this
possibility and found that within the left mOFC and left MTG,
emotion trials were more likely to be labeled with the correct emo-
tional valence than the incorrect emotional valence, suggesting
that positive and negative emotions can be discriminated from
each other in these regions. Thus, the neural signal contains infor-
mation about emotional valence and not just the presence or
absence of emotional content.

Limitations of this study included the low number of trials
per condition and variable electrode locations across participants.
As with any study employing invasive human brain recordings,
the participants are limited to a clinical population (in this case,
patients with epilepsy) in whom neurophysiological properties
can differ from healthy individuals. The low number of trials
likely contributed to unconvincing findings at the single electrode
level. While the classifier analysis allowed for the identification
of task-invariant emotional valence encoding, the need to bin
signals across time and combine electrodes within brain regions
limited the spatial and temporal specificity of the findings. HGA
was used as a metric of brain activity based on a body of evi-
dence demonstrating consistent and well-localized task-related
activation of sensorimotor and language areas, but additional
valence-related information is likely encoded in other frequency
bands as well (Supplementary Table S1). The amygdala is known
to be involved in representing emotional properties of experi-
mental stimuli but did not appear as a significant finding in the
primary analysis of this study. It is possible that with a greater
number of trials or amygdala electrodes, such an effect may have
been detected, but it also may be that amygdala activity contains
more valence-relevant information at other frequency bands. In
fact, when other frequency bands were examined in a secondary
analysis, the right amygdala showed significant task-invariant
valence information in the low gamma band (30-80 Hz) during bin
1(P=0.035; Supplementary Table S1). The between-task classifier
appears to be a promising approach for the identification of task-
invariant information in neural signals, but further research is
needed to clarify the temporal dynamics of these signals as well
as the spatial specificity. Additionally, different parts of the brain
may carry information in different frequency bands, and fur-
ther research is needed to understand the relationships between
frequency band, brain location, and task.

Conclusions

Viewing negatively valenced, positively valenced and neutral
stimuli evoked changes in the high-gamma band that differen-
tiated between the three valence conditions in the left mOFC and
left MTG. The signal in these regions contains valence-related
information that is independent of the method by which the emo-
tional valence is conveyed (e.g. via facial expression or words) by
showing that a classifier trained to decode emotion from words
can perform better than chance when decoding emotion from
facial expressions, even when it has not been trained on facial
expression data at all. The results suggest that mOFC and MTG

encode general stimulus-independent valence-related informa-
tion that can be applied in different contexts and may provide
a mechanism by which qualitatively different items can be com-
pared based on emotional valence.
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